Properties

Label 351.2.t.c.181.5
Level $351$
Weight $2$
Character 351.181
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.5
Root \(0.219737 - 1.71806i\) of defining polynomial
Character \(\chi\) \(=\) 351.181
Dual form 351.2.t.c.64.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.784270 - 0.452798i) q^{2} +(-0.589947 - 1.02182i) q^{4} +(1.94254 - 1.12153i) q^{5} +(2.97576 + 1.71806i) q^{7} +2.87970i q^{8} -2.03130 q^{10} +(3.20133 + 1.84829i) q^{11} +(-3.28340 - 1.48972i) q^{13} +(-1.55587 - 2.69484i) q^{14} +(0.124029 - 0.214825i) q^{16} +4.21120 q^{17} -4.25298i q^{19} +(-2.29200 - 1.32329i) q^{20} +(-1.67380 - 2.89911i) q^{22} +(-1.89162 - 3.27639i) q^{23} +(0.0156524 - 0.0271108i) q^{25} +(1.90053 + 2.65506i) q^{26} -4.05425i q^{28} +(1.18945 - 2.06020i) q^{29} +(6.37163 - 3.67866i) q^{31} +(4.79325 - 2.76738i) q^{32} +(-3.30272 - 1.90682i) q^{34} +7.70739 q^{35} +5.49928i q^{37} +(-1.92574 + 3.33549i) q^{38} +(3.22967 + 5.59395i) q^{40} +(-6.86085 + 3.96111i) q^{41} +(-0.450266 + 0.779883i) q^{43} -4.36157i q^{44} +3.42609i q^{46} +(-4.80060 - 2.77163i) q^{47} +(2.40343 + 4.16287i) q^{49} +(-0.0245514 + 0.0141748i) q^{50} +(0.414812 + 4.23390i) q^{52} -7.59566 q^{53} +8.29163 q^{55} +(-4.94749 + 8.56930i) q^{56} +(-1.86571 + 1.07717i) q^{58} +(4.44379 - 2.56562i) q^{59} +(6.50907 - 11.2740i) q^{61} -6.66277 q^{62} -5.50838 q^{64} +(-8.04892 + 0.788585i) q^{65} +(-11.7002 + 6.75511i) q^{67} +(-2.48439 - 4.30308i) q^{68} +(-6.04468 - 3.48989i) q^{70} +2.65506i q^{71} +5.45741i q^{73} +(2.49006 - 4.31292i) q^{74} +(-4.34578 + 2.50904i) q^{76} +(6.35092 + 11.0001i) q^{77} +(-5.46886 + 9.47234i) q^{79} -0.556410i q^{80} +7.17434 q^{82} +(0.465547 + 0.268784i) q^{83} +(8.18044 - 4.72298i) q^{85} +(0.706259 - 0.407759i) q^{86} +(-5.32252 + 9.21887i) q^{88} +5.75227i q^{89} +(-7.21120 - 10.0741i) q^{91} +(-2.23192 + 3.86579i) q^{92} +(2.50998 + 4.34740i) q^{94} +(-4.76984 - 8.26161i) q^{95} +(5.87585 + 3.39243i) q^{97} -4.35308i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.784270 0.452798i −0.554562 0.320177i 0.196398 0.980524i \(-0.437076\pi\)
−0.750960 + 0.660348i \(0.770409\pi\)
\(3\) 0 0
\(4\) −0.589947 1.02182i −0.294974 0.510909i
\(5\) 1.94254 1.12153i 0.868732 0.501563i 0.00180550 0.999998i \(-0.499425\pi\)
0.866927 + 0.498436i \(0.166092\pi\)
\(6\) 0 0
\(7\) 2.97576 + 1.71806i 1.12473 + 0.649364i 0.942605 0.333911i \(-0.108368\pi\)
0.182127 + 0.983275i \(0.441702\pi\)
\(8\) 2.87970i 1.01813i
\(9\) 0 0
\(10\) −2.03130 −0.642355
\(11\) 3.20133 + 1.84829i 0.965236 + 0.557279i 0.897781 0.440443i \(-0.145179\pi\)
0.0674557 + 0.997722i \(0.478512\pi\)
\(12\) 0 0
\(13\) −3.28340 1.48972i −0.910652 0.413174i
\(14\) −1.55587 2.69484i −0.415823 0.720226i
\(15\) 0 0
\(16\) 0.124029 0.214825i 0.0310073 0.0537063i
\(17\) 4.21120 1.02137 0.510683 0.859769i \(-0.329393\pi\)
0.510683 + 0.859769i \(0.329393\pi\)
\(18\) 0 0
\(19\) 4.25298i 0.975701i −0.872927 0.487851i \(-0.837781\pi\)
0.872927 0.487851i \(-0.162219\pi\)
\(20\) −2.29200 1.32329i −0.512506 0.295896i
\(21\) 0 0
\(22\) −1.67380 2.89911i −0.356856 0.618092i
\(23\) −1.89162 3.27639i −0.394431 0.683174i 0.598598 0.801050i \(-0.295725\pi\)
−0.993028 + 0.117876i \(0.962392\pi\)
\(24\) 0 0
\(25\) 0.0156524 0.0271108i 0.00313048 0.00542215i
\(26\) 1.90053 + 2.65506i 0.372725 + 0.520700i
\(27\) 0 0
\(28\) 4.05425i 0.766181i
\(29\) 1.18945 2.06020i 0.220876 0.382569i −0.734198 0.678935i \(-0.762442\pi\)
0.955074 + 0.296367i \(0.0957750\pi\)
\(30\) 0 0
\(31\) 6.37163 3.67866i 1.14438 0.660707i 0.196868 0.980430i \(-0.436923\pi\)
0.947511 + 0.319723i \(0.103590\pi\)
\(32\) 4.79325 2.76738i 0.847334 0.489209i
\(33\) 0 0
\(34\) −3.30272 1.90682i −0.566411 0.327018i
\(35\) 7.70739 1.30279
\(36\) 0 0
\(37\) 5.49928i 0.904076i 0.891999 + 0.452038i \(0.149303\pi\)
−0.891999 + 0.452038i \(0.850697\pi\)
\(38\) −1.92574 + 3.33549i −0.312397 + 0.541087i
\(39\) 0 0
\(40\) 3.22967 + 5.59395i 0.510655 + 0.884481i
\(41\) −6.86085 + 3.96111i −1.07148 + 0.618622i −0.928587 0.371116i \(-0.878975\pi\)
−0.142898 + 0.989737i \(0.545642\pi\)
\(42\) 0 0
\(43\) −0.450266 + 0.779883i −0.0686649 + 0.118931i −0.898314 0.439354i \(-0.855207\pi\)
0.829649 + 0.558285i \(0.188541\pi\)
\(44\) 4.36157i 0.657531i
\(45\) 0 0
\(46\) 3.42609i 0.505150i
\(47\) −4.80060 2.77163i −0.700239 0.404283i 0.107197 0.994238i \(-0.465812\pi\)
−0.807436 + 0.589955i \(0.799146\pi\)
\(48\) 0 0
\(49\) 2.40343 + 4.16287i 0.343347 + 0.594695i
\(50\) −0.0245514 + 0.0141748i −0.00347209 + 0.00200461i
\(51\) 0 0
\(52\) 0.414812 + 4.23390i 0.0575241 + 0.587136i
\(53\) −7.59566 −1.04334 −0.521672 0.853146i \(-0.674692\pi\)
−0.521672 + 0.853146i \(0.674692\pi\)
\(54\) 0 0
\(55\) 8.29163 1.11804
\(56\) −4.94749 + 8.56930i −0.661136 + 1.14512i
\(57\) 0 0
\(58\) −1.86571 + 1.07717i −0.244979 + 0.141439i
\(59\) 4.44379 2.56562i 0.578532 0.334016i −0.182018 0.983295i \(-0.558263\pi\)
0.760550 + 0.649279i \(0.224929\pi\)
\(60\) 0 0
\(61\) 6.50907 11.2740i 0.833401 1.44349i −0.0619247 0.998081i \(-0.519724\pi\)
0.895326 0.445412i \(-0.146943\pi\)
\(62\) −6.66277 −0.846173
\(63\) 0 0
\(64\) −5.50838 −0.688547
\(65\) −8.04892 + 0.788585i −0.998346 + 0.0978120i
\(66\) 0 0
\(67\) −11.7002 + 6.75511i −1.42941 + 0.825269i −0.997074 0.0764454i \(-0.975643\pi\)
−0.432333 + 0.901714i \(0.642310\pi\)
\(68\) −2.48439 4.30308i −0.301276 0.521825i
\(69\) 0 0
\(70\) −6.04468 3.48989i −0.722477 0.417122i
\(71\) 2.65506i 0.315098i 0.987511 + 0.157549i \(0.0503592\pi\)
−0.987511 + 0.157549i \(0.949641\pi\)
\(72\) 0 0
\(73\) 5.45741i 0.638741i 0.947630 + 0.319371i \(0.103472\pi\)
−0.947630 + 0.319371i \(0.896528\pi\)
\(74\) 2.49006 4.31292i 0.289464 0.501366i
\(75\) 0 0
\(76\) −4.34578 + 2.50904i −0.498495 + 0.287806i
\(77\) 6.35092 + 11.0001i 0.723755 + 1.25358i
\(78\) 0 0
\(79\) −5.46886 + 9.47234i −0.615294 + 1.06572i 0.375038 + 0.927009i \(0.377630\pi\)
−0.990333 + 0.138712i \(0.955704\pi\)
\(80\) 0.556410i 0.0622085i
\(81\) 0 0
\(82\) 7.17434 0.792273
\(83\) 0.465547 + 0.268784i 0.0511004 + 0.0295029i 0.525333 0.850897i \(-0.323941\pi\)
−0.474232 + 0.880400i \(0.657274\pi\)
\(84\) 0 0
\(85\) 8.18044 4.72298i 0.887294 0.512279i
\(86\) 0.706259 0.407759i 0.0761579 0.0439698i
\(87\) 0 0
\(88\) −5.32252 + 9.21887i −0.567382 + 0.982735i
\(89\) 5.75227i 0.609739i 0.952394 + 0.304870i \(0.0986129\pi\)
−0.952394 + 0.304870i \(0.901387\pi\)
\(90\) 0 0
\(91\) −7.21120 10.0741i −0.755939 1.05605i
\(92\) −2.23192 + 3.86579i −0.232693 + 0.403037i
\(93\) 0 0
\(94\) 2.50998 + 4.34740i 0.258884 + 0.448401i
\(95\) −4.76984 8.26161i −0.489375 0.847623i
\(96\) 0 0
\(97\) 5.87585 + 3.39243i 0.596603 + 0.344449i 0.767704 0.640805i \(-0.221399\pi\)
−0.171101 + 0.985253i \(0.554733\pi\)
\(98\) 4.35308i 0.439727i
\(99\) 0 0
\(100\) −0.0369364 −0.00369364
\(101\) −2.48116 + 4.29749i −0.246884 + 0.427616i −0.962660 0.270715i \(-0.912740\pi\)
0.715776 + 0.698330i \(0.246073\pi\)
\(102\) 0 0
\(103\) −1.05587 1.82881i −0.104038 0.180198i 0.809307 0.587386i \(-0.199843\pi\)
−0.913345 + 0.407188i \(0.866510\pi\)
\(104\) 4.28995 9.45522i 0.420664 0.927161i
\(105\) 0 0
\(106\) 5.95705 + 3.43930i 0.578600 + 0.334055i
\(107\) 8.07404 0.780547 0.390274 0.920699i \(-0.372380\pi\)
0.390274 + 0.920699i \(0.372380\pi\)
\(108\) 0 0
\(109\) 10.0020i 0.958021i 0.877809 + 0.479011i \(0.159004\pi\)
−0.877809 + 0.479011i \(0.840996\pi\)
\(110\) −6.50287 3.75443i −0.620024 0.357971i
\(111\) 0 0
\(112\) 0.738163 0.426179i 0.0697498 0.0402701i
\(113\) 9.71733 + 16.8309i 0.914130 + 1.58332i 0.808171 + 0.588948i \(0.200458\pi\)
0.105959 + 0.994371i \(0.466209\pi\)
\(114\) 0 0
\(115\) −7.34912 4.24302i −0.685309 0.395664i
\(116\) −2.80686 −0.260611
\(117\) 0 0
\(118\) −4.64684 −0.427776
\(119\) 12.5315 + 7.23508i 1.14876 + 0.663238i
\(120\) 0 0
\(121\) 1.33233 + 2.30766i 0.121121 + 0.209787i
\(122\) −10.2097 + 5.89459i −0.924346 + 0.533671i
\(123\) 0 0
\(124\) −7.51786 4.34044i −0.675123 0.389783i
\(125\) 11.1451i 0.996845i
\(126\) 0 0
\(127\) −1.76413 −0.156541 −0.0782704 0.996932i \(-0.524940\pi\)
−0.0782704 + 0.996932i \(0.524940\pi\)
\(128\) −5.26644 3.04058i −0.465492 0.268752i
\(129\) 0 0
\(130\) 6.66959 + 3.02607i 0.584962 + 0.265404i
\(131\) −3.56490 6.17458i −0.311466 0.539476i 0.667214 0.744866i \(-0.267487\pi\)
−0.978680 + 0.205391i \(0.934153\pi\)
\(132\) 0 0
\(133\) 7.30686 12.6559i 0.633585 1.09740i
\(134\) 12.2348 1.05693
\(135\) 0 0
\(136\) 12.1270i 1.03988i
\(137\) 3.91494 + 2.26029i 0.334476 + 0.193110i 0.657826 0.753170i \(-0.271476\pi\)
−0.323351 + 0.946279i \(0.604809\pi\)
\(138\) 0 0
\(139\) −7.05496 12.2195i −0.598394 1.03645i −0.993058 0.117623i \(-0.962472\pi\)
0.394664 0.918825i \(-0.370861\pi\)
\(140\) −4.54696 7.87556i −0.384288 0.665606i
\(141\) 0 0
\(142\) 1.20221 2.08228i 0.100887 0.174741i
\(143\) −7.75782 10.8377i −0.648741 0.906298i
\(144\) 0 0
\(145\) 5.33603i 0.443133i
\(146\) 2.47111 4.28008i 0.204510 0.354222i
\(147\) 0 0
\(148\) 5.61927 3.24428i 0.461901 0.266679i
\(149\) −5.02499 + 2.90118i −0.411663 + 0.237674i −0.691504 0.722372i \(-0.743052\pi\)
0.279841 + 0.960046i \(0.409718\pi\)
\(150\) 0 0
\(151\) −8.44018 4.87294i −0.686852 0.396554i 0.115580 0.993298i \(-0.463127\pi\)
−0.802432 + 0.596744i \(0.796461\pi\)
\(152\) 12.2473 0.993389
\(153\) 0 0
\(154\) 11.5027i 0.926917i
\(155\) 8.25145 14.2919i 0.662773 1.14796i
\(156\) 0 0
\(157\) 0.539798 + 0.934957i 0.0430806 + 0.0746177i 0.886762 0.462227i \(-0.152949\pi\)
−0.843681 + 0.536845i \(0.819616\pi\)
\(158\) 8.57812 4.95258i 0.682438 0.394006i
\(159\) 0 0
\(160\) 6.20739 10.7515i 0.490738 0.849982i
\(161\) 12.9997i 1.02452i
\(162\) 0 0
\(163\) 5.54857i 0.434598i −0.976105 0.217299i \(-0.930275\pi\)
0.976105 0.217299i \(-0.0697247\pi\)
\(164\) 8.09508 + 4.67370i 0.632120 + 0.364954i
\(165\) 0 0
\(166\) −0.243410 0.421598i −0.0188923 0.0327223i
\(167\) −11.5515 + 6.66925i −0.893880 + 0.516082i −0.875210 0.483744i \(-0.839277\pi\)
−0.0186702 + 0.999826i \(0.505943\pi\)
\(168\) 0 0
\(169\) 8.56147 + 9.78270i 0.658575 + 0.752515i
\(170\) −8.55423 −0.656079
\(171\) 0 0
\(172\) 1.06253 0.0810173
\(173\) 3.72080 6.44461i 0.282887 0.489975i −0.689208 0.724564i \(-0.742041\pi\)
0.972095 + 0.234589i \(0.0753745\pi\)
\(174\) 0 0
\(175\) 0.0931556 0.0537834i 0.00704190 0.00406564i
\(176\) 0.794117 0.458484i 0.0598588 0.0345595i
\(177\) 0 0
\(178\) 2.60462 4.51133i 0.195224 0.338138i
\(179\) −23.2047 −1.73440 −0.867202 0.497957i \(-0.834084\pi\)
−0.867202 + 0.497957i \(0.834084\pi\)
\(180\) 0 0
\(181\) 5.18439 0.385353 0.192676 0.981262i \(-0.438283\pi\)
0.192676 + 0.981262i \(0.438283\pi\)
\(182\) 1.09398 + 11.1660i 0.0810914 + 0.827682i
\(183\) 0 0
\(184\) 9.43502 5.44731i 0.695559 0.401581i
\(185\) 6.16760 + 10.6826i 0.453451 + 0.785400i
\(186\) 0 0
\(187\) 13.4814 + 7.78351i 0.985860 + 0.569186i
\(188\) 6.54045i 0.477012i
\(189\) 0 0
\(190\) 8.63911i 0.626747i
\(191\) 8.07057 13.9786i 0.583966 1.01146i −0.411037 0.911619i \(-0.634833\pi\)
0.995003 0.0998406i \(-0.0318333\pi\)
\(192\) 0 0
\(193\) 2.83991 1.63962i 0.204421 0.118023i −0.394295 0.918984i \(-0.629011\pi\)
0.598716 + 0.800961i \(0.295678\pi\)
\(194\) −3.07217 5.32115i −0.220569 0.382037i
\(195\) 0 0
\(196\) 2.83580 4.91174i 0.202557 0.350839i
\(197\) 7.11249i 0.506744i −0.967369 0.253372i \(-0.918460\pi\)
0.967369 0.253372i \(-0.0815396\pi\)
\(198\) 0 0
\(199\) −13.8449 −0.981437 −0.490719 0.871318i \(-0.663266\pi\)
−0.490719 + 0.871318i \(0.663266\pi\)
\(200\) 0.0780709 + 0.0450743i 0.00552045 + 0.00318723i
\(201\) 0 0
\(202\) 3.89179 2.24693i 0.273825 0.158093i
\(203\) 7.07906 4.08710i 0.496853 0.286858i
\(204\) 0 0
\(205\) −8.88500 + 15.3893i −0.620555 + 1.07483i
\(206\) 1.91238i 0.133242i
\(207\) 0 0
\(208\) −0.727267 + 0.520589i −0.0504269 + 0.0360963i
\(209\) 7.86073 13.6152i 0.543738 0.941782i
\(210\) 0 0
\(211\) −7.21695 12.5001i −0.496836 0.860545i 0.503158 0.864195i \(-0.332171\pi\)
−0.999993 + 0.00365007i \(0.998838\pi\)
\(212\) 4.48104 + 7.76139i 0.307759 + 0.533055i
\(213\) 0 0
\(214\) −6.33223 3.65591i −0.432862 0.249913i
\(215\) 2.01994i 0.137759i
\(216\) 0 0
\(217\) 25.2806 1.71616
\(218\) 4.52890 7.84429i 0.306736 0.531283i
\(219\) 0 0
\(220\) −4.89162 8.47254i −0.329793 0.571219i
\(221\) −13.8271 6.27350i −0.930109 0.422002i
\(222\) 0 0
\(223\) 9.52959 + 5.50191i 0.638149 + 0.368435i 0.783901 0.620886i \(-0.213227\pi\)
−0.145752 + 0.989321i \(0.546560\pi\)
\(224\) 19.0181 1.27070
\(225\) 0 0
\(226\) 17.6000i 1.17073i
\(227\) 7.03055 + 4.05909i 0.466634 + 0.269411i 0.714830 0.699299i \(-0.246504\pi\)
−0.248196 + 0.968710i \(0.579838\pi\)
\(228\) 0 0
\(229\) −4.65740 + 2.68895i −0.307769 + 0.177691i −0.645928 0.763398i \(-0.723529\pi\)
0.338158 + 0.941089i \(0.390196\pi\)
\(230\) 3.84246 + 6.65534i 0.253365 + 0.438840i
\(231\) 0 0
\(232\) 5.93275 + 3.42528i 0.389504 + 0.224880i
\(233\) −20.0992 −1.31675 −0.658373 0.752692i \(-0.728755\pi\)
−0.658373 + 0.752692i \(0.728755\pi\)
\(234\) 0 0
\(235\) −12.4338 −0.811094
\(236\) −5.24321 3.02717i −0.341304 0.197052i
\(237\) 0 0
\(238\) −6.55206 11.3485i −0.424707 0.735614i
\(239\) 12.2635 7.08034i 0.793261 0.457989i −0.0478485 0.998855i \(-0.515236\pi\)
0.841109 + 0.540865i \(0.181903\pi\)
\(240\) 0 0
\(241\) −26.2041 15.1289i −1.68795 0.974539i −0.956084 0.293092i \(-0.905316\pi\)
−0.731867 0.681447i \(-0.761351\pi\)
\(242\) 2.41310i 0.155120i
\(243\) 0 0
\(244\) −15.3600 −0.983326
\(245\) 9.33754 + 5.39103i 0.596554 + 0.344421i
\(246\) 0 0
\(247\) −6.33575 + 13.9643i −0.403134 + 0.888525i
\(248\) 10.5935 + 18.3484i 0.672685 + 1.16512i
\(249\) 0 0
\(250\) 5.04647 8.74074i 0.319167 0.552813i
\(251\) 17.5085 1.10512 0.552562 0.833472i \(-0.313650\pi\)
0.552562 + 0.833472i \(0.313650\pi\)
\(252\) 0 0
\(253\) 13.9850i 0.879232i
\(254\) 1.38355 + 0.798793i 0.0868117 + 0.0501208i
\(255\) 0 0
\(256\) 8.26192 + 14.3101i 0.516370 + 0.894379i
\(257\) 9.15211 + 15.8519i 0.570893 + 0.988815i 0.996475 + 0.0838952i \(0.0267361\pi\)
−0.425582 + 0.904920i \(0.639931\pi\)
\(258\) 0 0
\(259\) −9.44807 + 16.3645i −0.587074 + 1.01684i
\(260\) 5.55423 + 7.75931i 0.344459 + 0.481212i
\(261\) 0 0
\(262\) 6.45672i 0.398897i
\(263\) −4.19661 + 7.26875i −0.258774 + 0.448210i −0.965914 0.258864i \(-0.916652\pi\)
0.707140 + 0.707074i \(0.249985\pi\)
\(264\) 0 0
\(265\) −14.7549 + 8.51875i −0.906387 + 0.523303i
\(266\) −11.4611 + 6.61707i −0.702725 + 0.405719i
\(267\) 0 0
\(268\) 13.8050 + 7.97032i 0.843275 + 0.486865i
\(269\) −21.3238 −1.30014 −0.650069 0.759875i \(-0.725260\pi\)
−0.650069 + 0.759875i \(0.725260\pi\)
\(270\) 0 0
\(271\) 18.4587i 1.12129i 0.828057 + 0.560643i \(0.189446\pi\)
−0.828057 + 0.560643i \(0.810554\pi\)
\(272\) 0.522312 0.904671i 0.0316698 0.0548538i
\(273\) 0 0
\(274\) −2.04691 3.54535i −0.123658 0.214183i
\(275\) 0.100217 0.0578603i 0.00604331 0.00348911i
\(276\) 0 0
\(277\) 4.31390 7.47189i 0.259197 0.448943i −0.706830 0.707383i \(-0.749875\pi\)
0.966027 + 0.258441i \(0.0832087\pi\)
\(278\) 12.7779i 0.766367i
\(279\) 0 0
\(280\) 22.1950i 1.32640i
\(281\) −3.00928 1.73741i −0.179518 0.103645i 0.407548 0.913184i \(-0.366384\pi\)
−0.587066 + 0.809539i \(0.699717\pi\)
\(282\) 0 0
\(283\) 6.89178 + 11.9369i 0.409674 + 0.709576i 0.994853 0.101328i \(-0.0323091\pi\)
−0.585179 + 0.810904i \(0.698976\pi\)
\(284\) 2.71299 1.56635i 0.160986 0.0929456i
\(285\) 0 0
\(286\) 1.17691 + 12.0124i 0.0695920 + 0.710311i
\(287\) −27.2217 −1.60684
\(288\) 0 0
\(289\) 0.734202 0.0431884
\(290\) −2.41615 + 4.18489i −0.141881 + 0.245745i
\(291\) 0 0
\(292\) 5.57648 3.21958i 0.326339 0.188412i
\(293\) −24.6911 + 14.2554i −1.44247 + 0.832810i −0.998014 0.0629917i \(-0.979936\pi\)
−0.444455 + 0.895801i \(0.646603\pi\)
\(294\) 0 0
\(295\) 5.75484 9.96768i 0.335060 0.580341i
\(296\) −15.8363 −0.920465
\(297\) 0 0
\(298\) 5.25460 0.304391
\(299\) 1.33007 + 13.5757i 0.0769196 + 0.785102i
\(300\) 0 0
\(301\) −2.67977 + 1.54716i −0.154459 + 0.0891770i
\(302\) 4.41292 + 7.64340i 0.253935 + 0.439828i
\(303\) 0 0
\(304\) −0.913648 0.527495i −0.0524013 0.0302539i
\(305\) 29.2004i 1.67201i
\(306\) 0 0
\(307\) 21.8137i 1.24497i −0.782631 0.622486i \(-0.786123\pi\)
0.782631 0.622486i \(-0.213877\pi\)
\(308\) 7.49342 12.9790i 0.426977 0.739546i
\(309\) 0 0
\(310\) −12.9427 + 7.47249i −0.735097 + 0.424409i
\(311\) −3.48161 6.03032i −0.197424 0.341948i 0.750268 0.661133i \(-0.229924\pi\)
−0.947692 + 0.319185i \(0.896591\pi\)
\(312\) 0 0
\(313\) −11.2253 + 19.4428i −0.634491 + 1.09897i 0.352131 + 0.935951i \(0.385457\pi\)
−0.986623 + 0.163020i \(0.947876\pi\)
\(314\) 0.977678i 0.0551736i
\(315\) 0 0
\(316\) 12.9054 0.725983
\(317\) 8.84739 + 5.10804i 0.496919 + 0.286896i 0.727440 0.686171i \(-0.240710\pi\)
−0.230522 + 0.973067i \(0.574043\pi\)
\(318\) 0 0
\(319\) 7.61567 4.39691i 0.426395 0.246180i
\(320\) −10.7003 + 6.17780i −0.598163 + 0.345350i
\(321\) 0 0
\(322\) −5.88622 + 10.1952i −0.328026 + 0.568158i
\(323\) 17.9102i 0.996548i
\(324\) 0 0
\(325\) −0.0917806 + 0.0656979i −0.00509107 + 0.00364426i
\(326\) −2.51239 + 4.35158i −0.139148 + 0.241012i
\(327\) 0 0
\(328\) −11.4068 19.7572i −0.629836 1.09091i
\(329\) −9.52362 16.4954i −0.525054 0.909420i
\(330\) 0 0
\(331\) −4.67794 2.70081i −0.257123 0.148450i 0.365898 0.930655i \(-0.380762\pi\)
−0.623021 + 0.782205i \(0.714095\pi\)
\(332\) 0.634273i 0.0348103i
\(333\) 0 0
\(334\) 12.0793 0.660949
\(335\) −15.1521 + 26.2442i −0.827848 + 1.43387i
\(336\) 0 0
\(337\) 16.4621 + 28.5132i 0.896749 + 1.55321i 0.831625 + 0.555338i \(0.187411\pi\)
0.0651239 + 0.997877i \(0.479256\pi\)
\(338\) −2.28492 11.5489i −0.124283 0.628177i
\(339\) 0 0
\(340\) −9.65206 5.57262i −0.523457 0.302218i
\(341\) 27.1969 1.47279
\(342\) 0 0
\(343\) 7.53586i 0.406898i
\(344\) −2.24583 1.29663i −0.121087 0.0699097i
\(345\) 0 0
\(346\) −5.83622 + 3.36954i −0.313757 + 0.181148i
\(347\) 6.81390 + 11.8020i 0.365789 + 0.633566i 0.988902 0.148566i \(-0.0474658\pi\)
−0.623113 + 0.782132i \(0.714132\pi\)
\(348\) 0 0
\(349\) −9.76413 5.63732i −0.522662 0.301759i 0.215361 0.976534i \(-0.430907\pi\)
−0.738023 + 0.674776i \(0.764240\pi\)
\(350\) −0.0974121 −0.00520690
\(351\) 0 0
\(352\) 20.4597 1.09050
\(353\) −23.0629 13.3154i −1.22751 0.708706i −0.261005 0.965337i \(-0.584054\pi\)
−0.966509 + 0.256631i \(0.917387\pi\)
\(354\) 0 0
\(355\) 2.97773 + 5.15757i 0.158041 + 0.273736i
\(356\) 5.87778 3.39354i 0.311522 0.179857i
\(357\) 0 0
\(358\) 18.1988 + 10.5071i 0.961835 + 0.555316i
\(359\) 34.9036i 1.84214i −0.389396 0.921071i \(-0.627316\pi\)
0.389396 0.921071i \(-0.372684\pi\)
\(360\) 0 0
\(361\) 0.912132 0.0480069
\(362\) −4.06596 2.34748i −0.213702 0.123381i
\(363\) 0 0
\(364\) −6.03969 + 13.3117i −0.316566 + 0.697725i
\(365\) 6.12064 + 10.6013i 0.320369 + 0.554895i
\(366\) 0 0
\(367\) 1.35716 2.35068i 0.0708434 0.122704i −0.828428 0.560096i \(-0.810764\pi\)
0.899271 + 0.437392i \(0.144098\pi\)
\(368\) −0.938467 −0.0489210
\(369\) 0 0
\(370\) 11.1707i 0.580737i
\(371\) −22.6029 13.0498i −1.17348 0.677510i
\(372\) 0 0
\(373\) 0.875481 + 1.51638i 0.0453307 + 0.0785150i 0.887800 0.460229i \(-0.152233\pi\)
−0.842470 + 0.538744i \(0.818899\pi\)
\(374\) −7.04872 12.2087i −0.364480 0.631299i
\(375\) 0 0
\(376\) 7.98146 13.8243i 0.411612 0.712933i
\(377\) −6.97457 + 4.99250i −0.359209 + 0.257127i
\(378\) 0 0
\(379\) 2.90941i 0.149446i −0.997204 0.0747231i \(-0.976193\pi\)
0.997204 0.0747231i \(-0.0238073\pi\)
\(380\) −5.62791 + 9.74783i −0.288706 + 0.500053i
\(381\) 0 0
\(382\) −12.6590 + 7.30868i −0.647691 + 0.373945i
\(383\) 17.7065 10.2229i 0.904760 0.522363i 0.0260185 0.999661i \(-0.491717\pi\)
0.878741 + 0.477298i \(0.158384\pi\)
\(384\) 0 0
\(385\) 24.6739 + 14.2455i 1.25750 + 0.726017i
\(386\) −2.96968 −0.151152
\(387\) 0 0
\(388\) 8.00541i 0.406413i
\(389\) 6.48161 11.2265i 0.328631 0.569205i −0.653610 0.756832i \(-0.726746\pi\)
0.982240 + 0.187627i \(0.0600795\pi\)
\(390\) 0 0
\(391\) −7.96600 13.7975i −0.402858 0.697771i
\(392\) −11.9878 + 6.92117i −0.605476 + 0.349572i
\(393\) 0 0
\(394\) −3.22052 + 5.57811i −0.162248 + 0.281021i
\(395\) 24.5339i 1.23444i
\(396\) 0 0
\(397\) 29.1809i 1.46455i 0.681010 + 0.732274i \(0.261541\pi\)
−0.681010 + 0.732274i \(0.738459\pi\)
\(398\) 10.8581 + 6.26894i 0.544268 + 0.314233i
\(399\) 0 0
\(400\) −0.00388271 0.00672506i −0.000194136 0.000336253i
\(401\) 19.2018 11.0862i 0.958894 0.553617i 0.0630612 0.998010i \(-0.479914\pi\)
0.895832 + 0.444392i \(0.146580\pi\)
\(402\) 0 0
\(403\) −26.4008 + 2.58659i −1.31512 + 0.128847i
\(404\) 5.85500 0.291297
\(405\) 0 0
\(406\) −7.40253 −0.367381
\(407\) −10.1642 + 17.6050i −0.503823 + 0.872647i
\(408\) 0 0
\(409\) 1.81749 1.04933i 0.0898689 0.0518858i −0.454392 0.890802i \(-0.650143\pi\)
0.544261 + 0.838916i \(0.316810\pi\)
\(410\) 13.9365 8.04623i 0.688273 0.397375i
\(411\) 0 0
\(412\) −1.24581 + 2.15781i −0.0613767 + 0.106307i
\(413\) 17.6315 0.867591
\(414\) 0 0
\(415\) 1.20579 0.0591901
\(416\) −19.8608 + 1.94584i −0.973755 + 0.0954027i
\(417\) 0 0
\(418\) −12.3299 + 7.11865i −0.603074 + 0.348185i
\(419\) 0.195699 + 0.338961i 0.00956053 + 0.0165593i 0.870766 0.491697i \(-0.163623\pi\)
−0.861206 + 0.508257i \(0.830290\pi\)
\(420\) 0 0
\(421\) −9.59987 5.54249i −0.467869 0.270124i 0.247478 0.968893i \(-0.420398\pi\)
−0.715347 + 0.698769i \(0.753731\pi\)
\(422\) 13.0713i 0.636301i
\(423\) 0 0
\(424\) 21.8732i 1.06226i
\(425\) 0.0659154 0.114169i 0.00319737 0.00553800i
\(426\) 0 0
\(427\) 38.7389 22.3659i 1.87470 1.08236i
\(428\) −4.76326 8.25021i −0.230241 0.398789i
\(429\) 0 0
\(430\) 0.914627 1.58418i 0.0441072 0.0763960i
\(431\) 36.4573i 1.75609i 0.478580 + 0.878044i \(0.341152\pi\)
−0.478580 + 0.878044i \(0.658848\pi\)
\(432\) 0 0
\(433\) 8.82757 0.424226 0.212113 0.977245i \(-0.431966\pi\)
0.212113 + 0.977245i \(0.431966\pi\)
\(434\) −19.8268 11.4470i −0.951717 0.549474i
\(435\) 0 0
\(436\) 10.2203 5.90067i 0.489462 0.282591i
\(437\) −13.9344 + 8.04504i −0.666574 + 0.384847i
\(438\) 0 0
\(439\) 17.5672 30.4273i 0.838438 1.45222i −0.0527626 0.998607i \(-0.516803\pi\)
0.891200 0.453610i \(-0.149864\pi\)
\(440\) 23.8774i 1.13831i
\(441\) 0 0
\(442\) 8.00352 + 11.1810i 0.380688 + 0.531826i
\(443\) 11.9526 20.7025i 0.567885 0.983606i −0.428890 0.903357i \(-0.641095\pi\)
0.996775 0.0802490i \(-0.0255715\pi\)
\(444\) 0 0
\(445\) 6.45133 + 11.1740i 0.305822 + 0.529700i
\(446\) −4.98251 8.62997i −0.235929 0.408641i
\(447\) 0 0
\(448\) −16.3916 9.46370i −0.774431 0.447118i
\(449\) 13.9683i 0.659206i 0.944120 + 0.329603i \(0.106915\pi\)
−0.944120 + 0.329603i \(0.893085\pi\)
\(450\) 0 0
\(451\) −29.2851 −1.37898
\(452\) 11.4654 19.8587i 0.539288 0.934075i
\(453\) 0 0
\(454\) −3.67590 6.36684i −0.172518 0.298811i
\(455\) −25.3065 11.4819i −1.18639 0.538278i
\(456\) 0 0
\(457\) −15.0872 8.71058i −0.705748 0.407464i 0.103737 0.994605i \(-0.466920\pi\)
−0.809485 + 0.587141i \(0.800253\pi\)
\(458\) 4.87021 0.227570
\(459\) 0 0
\(460\) 10.0126i 0.466841i
\(461\) 20.6691 + 11.9333i 0.962658 + 0.555791i 0.896990 0.442051i \(-0.145749\pi\)
0.0656678 + 0.997842i \(0.479082\pi\)
\(462\) 0 0
\(463\) 9.12555 5.26864i 0.424100 0.244854i −0.272730 0.962091i \(-0.587926\pi\)
0.696830 + 0.717236i \(0.254593\pi\)
\(464\) −0.295055 0.511049i −0.0136976 0.0237249i
\(465\) 0 0
\(466\) 15.7632 + 9.10090i 0.730217 + 0.421591i
\(467\) 8.40923 0.389133 0.194566 0.980889i \(-0.437670\pi\)
0.194566 + 0.980889i \(0.437670\pi\)
\(468\) 0 0
\(469\) −46.4227 −2.14360
\(470\) 9.75148 + 5.63002i 0.449802 + 0.259693i
\(471\) 0 0
\(472\) 7.38823 + 12.7968i 0.340071 + 0.589020i
\(473\) −2.88290 + 1.66444i −0.132556 + 0.0765310i
\(474\) 0 0
\(475\) −0.115302 0.0665694i −0.00529040 0.00305441i
\(476\) 17.0733i 0.782551i
\(477\) 0 0
\(478\) −12.8239 −0.586550
\(479\) −13.6025 7.85338i −0.621512 0.358830i 0.155945 0.987766i \(-0.450158\pi\)
−0.777457 + 0.628935i \(0.783491\pi\)
\(480\) 0 0
\(481\) 8.19238 18.0563i 0.373540 0.823298i
\(482\) 13.7007 + 23.7303i 0.624050 + 1.08089i
\(483\) 0 0
\(484\) 1.57201 2.72280i 0.0714549 0.123764i
\(485\) 15.2188 0.691051
\(486\) 0 0
\(487\) 37.8948i 1.71718i 0.512666 + 0.858588i \(0.328658\pi\)
−0.512666 + 0.858588i \(0.671342\pi\)
\(488\) 32.4659 + 18.7442i 1.46966 + 0.848509i
\(489\) 0 0
\(490\) −4.88210 8.45605i −0.220551 0.382005i
\(491\) −1.88027 3.25672i −0.0848553 0.146974i 0.820474 0.571684i \(-0.193709\pi\)
−0.905330 + 0.424710i \(0.860376\pi\)
\(492\) 0 0
\(493\) 5.00903 8.67590i 0.225595 0.390743i
\(494\) 11.2919 8.08293i 0.508048 0.363668i
\(495\) 0 0
\(496\) 1.82505i 0.0819471i
\(497\) −4.56154 + 7.90082i −0.204613 + 0.354400i
\(498\) 0 0
\(499\) 7.15464 4.13073i 0.320286 0.184917i −0.331234 0.943549i \(-0.607465\pi\)
0.651520 + 0.758632i \(0.274132\pi\)
\(500\) 11.3882 6.57500i 0.509298 0.294043i
\(501\) 0 0
\(502\) −13.7314 7.92780i −0.612860 0.353835i
\(503\) 12.9954 0.579434 0.289717 0.957112i \(-0.406439\pi\)
0.289717 + 0.957112i \(0.406439\pi\)
\(504\) 0 0
\(505\) 11.1307i 0.495312i
\(506\) −6.33241 + 10.9680i −0.281510 + 0.487589i
\(507\) 0 0
\(508\) 1.04074 + 1.80262i 0.0461754 + 0.0799782i
\(509\) 23.2712 13.4356i 1.03148 0.595524i 0.114070 0.993473i \(-0.463611\pi\)
0.917408 + 0.397949i \(0.130278\pi\)
\(510\) 0 0
\(511\) −9.37613 + 16.2399i −0.414776 + 0.718413i
\(512\) 2.80162i 0.123815i
\(513\) 0 0
\(514\) 16.5762i 0.731146i
\(515\) −4.10213 2.36837i −0.180761 0.104363i
\(516\) 0 0
\(517\) −10.2455 17.7458i −0.450597 0.780458i
\(518\) 14.8197 8.55614i 0.651139 0.375935i
\(519\) 0 0
\(520\) −2.27089 23.1785i −0.0995851 1.01644i
\(521\) −14.2080 −0.622464 −0.311232 0.950334i \(-0.600742\pi\)
−0.311232 + 0.950334i \(0.600742\pi\)
\(522\) 0 0
\(523\) 7.07846 0.309519 0.154760 0.987952i \(-0.450540\pi\)
0.154760 + 0.987952i \(0.450540\pi\)
\(524\) −4.20620 + 7.28536i −0.183749 + 0.318262i
\(525\) 0 0
\(526\) 6.58255 3.80044i 0.287013 0.165707i
\(527\) 26.8322 15.4916i 1.16883 0.674824i
\(528\) 0 0
\(529\) 4.34352 7.52320i 0.188849 0.327096i
\(530\) 15.4291 0.670198
\(531\) 0 0
\(532\) −17.2427 −0.747564
\(533\) 28.4279 2.78519i 1.23135 0.120640i
\(534\) 0 0
\(535\) 15.6842 9.05527i 0.678086 0.391493i
\(536\) −19.4527 33.6931i −0.840229 1.45532i
\(537\) 0 0
\(538\) 16.7236 + 9.65540i 0.721007 + 0.416274i
\(539\) 17.7689i 0.765362i
\(540\) 0 0
\(541\) 7.18897i 0.309078i −0.987987 0.154539i \(-0.950611\pi\)
0.987987 0.154539i \(-0.0493892\pi\)
\(542\) 8.35807 14.4766i 0.359010 0.621823i
\(543\) 0 0
\(544\) 20.1853 11.6540i 0.865438 0.499661i
\(545\) 11.2176 + 19.4294i 0.480508 + 0.832264i
\(546\) 0 0
\(547\) 15.8887 27.5201i 0.679353 1.17667i −0.295823 0.955243i \(-0.595594\pi\)
0.975176 0.221431i \(-0.0710729\pi\)
\(548\) 5.33381i 0.227849i
\(549\) 0 0
\(550\) −0.104796 −0.00446852
\(551\) −8.76198 5.05873i −0.373273 0.215509i
\(552\) 0 0
\(553\) −32.5480 + 18.7916i −1.38408 + 0.799100i
\(554\) −6.76652 + 3.90665i −0.287482 + 0.165978i
\(555\) 0 0
\(556\) −8.32411 + 14.4178i −0.353021 + 0.611450i
\(557\) 32.2223i 1.36530i −0.730745 0.682650i \(-0.760827\pi\)
0.730745 0.682650i \(-0.239173\pi\)
\(558\) 0 0
\(559\) 2.64021 1.88990i 0.111669 0.0799343i
\(560\) 0.955943 1.65574i 0.0403960 0.0699679i
\(561\) 0 0
\(562\) 1.57339 + 2.72519i 0.0663694 + 0.114955i
\(563\) −16.8257 29.1430i −0.709119 1.22823i −0.965184 0.261571i \(-0.915760\pi\)
0.256065 0.966659i \(-0.417574\pi\)
\(564\) 0 0
\(565\) 37.7527 + 21.7965i 1.58827 + 0.916987i
\(566\) 12.4824i 0.524672i
\(567\) 0 0
\(568\) −7.64578 −0.320810
\(569\) −5.66793 + 9.81715i −0.237612 + 0.411556i −0.960029 0.279902i \(-0.909698\pi\)
0.722416 + 0.691458i \(0.243031\pi\)
\(570\) 0 0
\(571\) 0.127260 + 0.220421i 0.00532568 + 0.00922435i 0.868676 0.495381i \(-0.164971\pi\)
−0.863350 + 0.504605i \(0.831638\pi\)
\(572\) −6.49751 + 14.3208i −0.271675 + 0.598782i
\(573\) 0 0
\(574\) 21.3491 + 12.3259i 0.891095 + 0.514474i
\(575\) −0.118434 −0.00493903
\(576\) 0 0
\(577\) 1.91400i 0.0796807i 0.999206 + 0.0398403i \(0.0126849\pi\)
−0.999206 + 0.0398403i \(0.987315\pi\)
\(578\) −0.575812 0.332445i −0.0239506 0.0138279i
\(579\) 0 0
\(580\) −5.45246 + 3.14798i −0.226401 + 0.130713i
\(581\) 0.923571 + 1.59967i 0.0383162 + 0.0663656i
\(582\) 0 0
\(583\) −24.3162 14.0390i −1.00707 0.581435i
\(584\) −15.7157 −0.650321
\(585\) 0 0
\(586\) 25.8193 1.06659
\(587\) −7.69412 4.44220i −0.317570 0.183349i 0.332739 0.943019i \(-0.392027\pi\)
−0.650309 + 0.759670i \(0.725361\pi\)
\(588\) 0 0
\(589\) −15.6453 27.0984i −0.644653 1.11657i
\(590\) −9.02670 + 5.21156i −0.371623 + 0.214557i
\(591\) 0 0
\(592\) 1.18138 + 0.682072i 0.0485545 + 0.0280330i
\(593\) 43.1136i 1.77046i 0.465152 + 0.885231i \(0.346000\pi\)
−0.465152 + 0.885231i \(0.654000\pi\)
\(594\) 0 0
\(595\) 32.4574 1.33062
\(596\) 5.92896 + 3.42309i 0.242860 + 0.140215i
\(597\) 0 0
\(598\) 5.10392 11.2493i 0.208715 0.460016i
\(599\) −5.59868 9.69720i −0.228756 0.396217i 0.728684 0.684850i \(-0.240132\pi\)
−0.957440 + 0.288634i \(0.906799\pi\)
\(600\) 0 0
\(601\) −2.96273 + 5.13159i −0.120852 + 0.209322i −0.920104 0.391674i \(-0.871896\pi\)
0.799252 + 0.600996i \(0.205229\pi\)
\(602\) 2.80221 0.114210
\(603\) 0 0
\(604\) 11.4991i 0.467892i
\(605\) 5.17622 + 2.98849i 0.210443 + 0.121499i
\(606\) 0 0
\(607\) −2.53470 4.39022i −0.102880 0.178194i 0.809990 0.586444i \(-0.199472\pi\)
−0.912870 + 0.408250i \(0.866139\pi\)
\(608\) −11.7696 20.3856i −0.477321 0.826745i
\(609\) 0 0
\(610\) −13.2219 + 22.9010i −0.535339 + 0.927235i
\(611\) 11.6334 + 16.2519i 0.470635 + 0.657482i
\(612\) 0 0
\(613\) 24.6393i 0.995173i −0.867414 0.497587i \(-0.834220\pi\)
0.867414 0.497587i \(-0.165780\pi\)
\(614\) −9.87719 + 17.1078i −0.398611 + 0.690414i
\(615\) 0 0
\(616\) −31.6771 + 18.2888i −1.27630 + 0.736875i
\(617\) −38.0933 + 21.9932i −1.53358 + 0.885413i −0.534387 + 0.845240i \(0.679457\pi\)
−0.999193 + 0.0401727i \(0.987209\pi\)
\(618\) 0 0
\(619\) 17.7979 + 10.2756i 0.715358 + 0.413012i 0.813042 0.582206i \(-0.197810\pi\)
−0.0976839 + 0.995217i \(0.531143\pi\)
\(620\) −19.4717 −0.782002
\(621\) 0 0
\(622\) 6.30587i 0.252842i
\(623\) −9.88272 + 17.1174i −0.395943 + 0.685793i
\(624\) 0 0
\(625\) 12.5778 + 21.7853i 0.503111 + 0.871414i
\(626\) 17.6073 10.1656i 0.703730 0.406299i
\(627\) 0 0
\(628\) 0.636905 1.10315i 0.0254153 0.0440205i
\(629\) 23.1586i 0.923392i
\(630\) 0 0
\(631\) 25.1460i 1.00105i −0.865723 0.500523i \(-0.833141\pi\)
0.865723 0.500523i \(-0.166859\pi\)
\(632\) −27.2775 15.7487i −1.08504 0.626449i
\(633\) 0 0
\(634\) −4.62582 8.01216i −0.183715 0.318204i
\(635\) −3.42689 + 1.97852i −0.135992 + 0.0785151i
\(636\) 0 0
\(637\) −1.68994 17.2488i −0.0669577 0.683422i
\(638\) −7.96365 −0.315284
\(639\) 0 0
\(640\) −13.6404 −0.539183
\(641\) −16.6711 + 28.8751i −0.658467 + 1.14050i 0.322545 + 0.946554i \(0.395462\pi\)
−0.981012 + 0.193945i \(0.937872\pi\)
\(642\) 0 0
\(643\) −27.1759 + 15.6900i −1.07171 + 0.618754i −0.928649 0.370959i \(-0.879029\pi\)
−0.143065 + 0.989713i \(0.545696\pi\)
\(644\) −13.2833 + 7.66911i −0.523435 + 0.302205i
\(645\) 0 0
\(646\) −8.10969 + 14.0464i −0.319072 + 0.552648i
\(647\) 47.5495 1.86936 0.934681 0.355486i \(-0.115685\pi\)
0.934681 + 0.355486i \(0.115685\pi\)
\(648\) 0 0
\(649\) 18.9680 0.744561
\(650\) 0.101729 0.00996676i 0.00399012 0.000390929i
\(651\) 0 0
\(652\) −5.66964 + 3.27337i −0.222040 + 0.128195i
\(653\) −13.8728 24.0284i −0.542884 0.940302i −0.998737 0.0502473i \(-0.983999\pi\)
0.455853 0.890055i \(-0.349334\pi\)
\(654\) 0 0
\(655\) −13.8499 7.99627i −0.541162 0.312440i
\(656\) 1.96518i 0.0767273i
\(657\) 0 0
\(658\) 17.2491i 0.672440i
\(659\) 7.80940 13.5263i 0.304211 0.526909i −0.672874 0.739757i \(-0.734940\pi\)
0.977085 + 0.212848i \(0.0682738\pi\)
\(660\) 0 0
\(661\) 15.5161 8.95822i 0.603506 0.348434i −0.166914 0.985972i \(-0.553380\pi\)
0.770420 + 0.637537i \(0.220047\pi\)
\(662\) 2.44585 + 4.23633i 0.0950605 + 0.164650i
\(663\) 0 0
\(664\) −0.774017 + 1.34064i −0.0300377 + 0.0520268i
\(665\) 32.7794i 1.27113i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 13.6295 + 7.86901i 0.527342 + 0.304461i
\(669\) 0 0
\(670\) 23.7667 13.7217i 0.918187 0.530115i
\(671\) 41.6753 24.0613i 1.60886 0.928875i
\(672\) 0 0
\(673\) 2.94960 5.10885i 0.113699 0.196932i −0.803560 0.595224i \(-0.797064\pi\)
0.917259 + 0.398292i \(0.130397\pi\)
\(674\) 29.8161i 1.14847i
\(675\) 0 0
\(676\) 4.94532 14.5196i 0.190205 0.558444i
\(677\) 13.7045 23.7369i 0.526707 0.912283i −0.472809 0.881165i \(-0.656760\pi\)
0.999516 0.0311180i \(-0.00990678\pi\)
\(678\) 0 0
\(679\) 11.6568 + 20.1901i 0.447345 + 0.774825i
\(680\) 13.6008 + 23.5572i 0.521566 + 0.903379i
\(681\) 0 0
\(682\) −21.3297 12.3147i −0.816757 0.471555i
\(683\) 16.0989i 0.616006i 0.951385 + 0.308003i \(0.0996607\pi\)
−0.951385 + 0.308003i \(0.900339\pi\)
\(684\) 0 0
\(685\) 10.1399 0.387427
\(686\) −3.41223 + 5.91015i −0.130279 + 0.225651i
\(687\) 0 0
\(688\) 0.111692 + 0.193457i 0.00425823 + 0.00737547i
\(689\) 24.9396 + 11.3154i 0.950124 + 0.431083i
\(690\) 0 0
\(691\) 23.9736 + 13.8412i 0.912000 + 0.526543i 0.881074 0.472979i \(-0.156821\pi\)
0.0309256 + 0.999522i \(0.490155\pi\)
\(692\) −8.78030 −0.333777
\(693\) 0 0
\(694\) 12.3413i 0.468469i
\(695\) −27.4091 15.8247i −1.03969 0.600264i
\(696\) 0 0
\(697\) −28.8924 + 16.6810i −1.09438 + 0.631839i
\(698\) 5.10514 + 8.84236i 0.193232 + 0.334688i
\(699\) 0 0
\(700\) −0.109914 0.0634588i −0.00415435 0.00239852i
\(701\) 10.0776 0.380624 0.190312 0.981724i \(-0.439050\pi\)
0.190312 + 0.981724i \(0.439050\pi\)
\(702\) 0 0
\(703\) 23.3883 0.882108
\(704\) −17.6341 10.1811i −0.664611 0.383713i
\(705\) 0 0
\(706\) 12.0584 + 20.8857i 0.453822 + 0.786043i
\(707\) −14.7666 + 8.52553i −0.555357 + 0.320635i
\(708\) 0 0
\(709\) 2.79484 + 1.61360i 0.104962 + 0.0606000i 0.551562 0.834134i \(-0.314032\pi\)
−0.446600 + 0.894734i \(0.647365\pi\)
\(710\) 5.39324i 0.202405i
\(711\) 0 0
\(712\) −16.5648 −0.620793
\(713\) −24.1055 13.9173i −0.902756 0.521207i
\(714\) 0 0
\(715\) −27.2248 12.3522i −1.01815 0.461946i
\(716\) 13.6896 + 23.7110i 0.511604 + 0.886123i
\(717\) 0 0
\(718\) −15.8043 + 27.3738i −0.589811 + 1.02158i
\(719\) 30.0712 1.12147 0.560733 0.827996i \(-0.310519\pi\)
0.560733 + 0.827996i \(0.310519\pi\)
\(720\) 0 0
\(721\) 7.25614i 0.270233i
\(722\) −0.715357 0.413012i −0.0266228 0.0153707i
\(723\) 0 0
\(724\) −3.05852 5.29751i −0.113669 0.196880i
\(725\) −0.0372356 0.0644940i −0.00138290 0.00239525i
\(726\) 0 0
\(727\) 9.68860 16.7811i 0.359330 0.622378i −0.628519 0.777794i \(-0.716339\pi\)
0.987849 + 0.155416i \(0.0496719\pi\)
\(728\) 29.0105 20.7661i 1.07520 0.769643i
\(729\) 0 0
\(730\) 11.0857i 0.410299i
\(731\) −1.89616 + 3.28424i −0.0701320 + 0.121472i
\(732\) 0 0
\(733\) 21.1938 12.2362i 0.782810 0.451955i −0.0546155 0.998507i \(-0.517393\pi\)
0.837425 + 0.546552i \(0.184060\pi\)
\(734\) −2.12877 + 1.22904i −0.0785742 + 0.0453648i
\(735\) 0 0
\(736\) −18.1340 10.4697i −0.668429 0.385918i
\(737\) −49.9416 −1.83962
\(738\) 0 0
\(739\) 3.30687i 0.121645i 0.998149 + 0.0608226i \(0.0193724\pi\)
−0.998149 + 0.0608226i \(0.980628\pi\)
\(740\) 7.27712 12.6043i 0.267512 0.463344i
\(741\) 0 0
\(742\) 11.8178 + 20.4691i 0.433846 + 0.751444i
\(743\) −15.1394 + 8.74076i −0.555412 + 0.320667i −0.751302 0.659959i \(-0.770574\pi\)
0.195890 + 0.980626i \(0.437240\pi\)
\(744\) 0 0
\(745\) −6.50751 + 11.2713i −0.238417 + 0.412950i
\(746\) 1.58566i 0.0580553i
\(747\) 0 0
\(748\) 18.3674i 0.671580i
\(749\) 24.0264 + 13.8717i 0.877906 + 0.506859i
\(750\) 0 0
\(751\) 14.2922 + 24.7548i 0.521528 + 0.903314i 0.999686 + 0.0250400i \(0.00797130\pi\)
−0.478158 + 0.878274i \(0.658695\pi\)
\(752\) −1.19083 + 0.687526i −0.0434251 + 0.0250715i
\(753\) 0 0
\(754\) 7.73054 0.757392i 0.281530 0.0275826i
\(755\) −21.8606 −0.795587
\(756\) 0 0
\(757\) 11.9611 0.434733 0.217367 0.976090i \(-0.430253\pi\)
0.217367 + 0.976090i \(0.430253\pi\)
\(758\) −1.31737 + 2.28176i −0.0478492 + 0.0828772i
\(759\) 0 0
\(760\) 23.7910 13.7357i 0.862989 0.498247i
\(761\) −1.84327 + 1.06421i −0.0668185 + 0.0385777i −0.533037 0.846092i \(-0.678949\pi\)
0.466219 + 0.884670i \(0.345616\pi\)
\(762\) 0 0
\(763\) −17.1841 + 29.7637i −0.622105 + 1.07752i
\(764\) −19.0449 −0.689019
\(765\) 0 0
\(766\) −18.5156 −0.668994
\(767\) −18.4128 + 1.80398i −0.664848 + 0.0651379i
\(768\) 0 0
\(769\) −6.62584 + 3.82543i −0.238934 + 0.137949i −0.614687 0.788771i \(-0.710718\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(770\) −12.9007 22.3446i −0.464907 0.805243i
\(771\) 0 0
\(772\) −3.35080 1.93458i −0.120598 0.0696272i
\(773\) 24.6440i 0.886383i −0.896427 0.443191i \(-0.853846\pi\)
0.896427 0.443191i \(-0.146154\pi\)
\(774\) 0 0
\(775\) 0.230320i 0.00827333i
\(776\) −9.76918 + 16.9207i −0.350693 + 0.607418i
\(777\) 0 0
\(778\) −10.1667 + 5.86972i −0.364492 + 0.210440i
\(779\) 16.8465 + 29.1791i 0.603590 + 1.04545i
\(780\) 0 0
\(781\) −4.90731 + 8.49972i −0.175598 + 0.304144i
\(782\) 14.4280i 0.515943i
\(783\) 0 0
\(784\) 1.19238 0.0425851
\(785\) 2.09716 + 1.21080i 0.0748509 + 0.0432152i
\(786\) 0 0
\(787\) −36.2586 + 20.9339i −1.29248 + 0.746214i −0.979093 0.203411i \(-0.934797\pi\)
−0.313388 + 0.949625i \(0.601464\pi\)
\(788\) −7.26768 + 4.19599i −0.258900 + 0.149476i
\(789\) 0 0
\(790\) 11.1089 19.2412i 0.395237 0.684571i
\(791\) 66.7797i 2.37441i
\(792\) 0 0
\(793\) −38.1671 + 27.3205i −1.35535 + 0.970181i
\(794\) 13.2131 22.8857i 0.468914 0.812183i
\(795\) 0 0
\(796\) 8.16775 + 14.1470i 0.289498 + 0.501426i
\(797\) −20.8781 36.1620i −0.739541 1.28092i −0.952702 0.303906i \(-0.901709\pi\)
0.213161 0.977017i \(-0.431624\pi\)
\(798\) 0 0
\(799\) −20.2163 11.6719i −0.715200 0.412921i
\(800\) 0.173265i 0.00612583i
\(801\) 0 0
\(802\) −20.0792 −0.709022
\(803\) −10.0869 + 17.4709i −0.355957 + 0.616536i
\(804\) 0 0
\(805\) −14.5795 25.2524i −0.513859 0.890030i
\(806\) 21.8766 + 9.92565i 0.770569 + 0.349616i
\(807\) 0 0
\(808\) −12.3755 7.14499i −0.435368 0.251360i
\(809\) −45.2476 −1.59082 −0.795410 0.606072i \(-0.792744\pi\)
−0.795410 + 0.606072i \(0.792744\pi\)
\(810\) 0 0
\(811\) 52.8820i 1.85694i 0.371410 + 0.928469i \(0.378874\pi\)
−0.371410 + 0.928469i \(0.621126\pi\)
\(812\) −8.35255 4.82235i −0.293117 0.169231i
\(813\) 0 0
\(814\) 15.9430 9.20470i 0.558802 0.322625i
\(815\) −6.22288 10.7784i −0.217978 0.377549i
\(816\) 0 0
\(817\) 3.31683 + 1.91497i 0.116041 + 0.0669964i
\(818\) −1.90053 −0.0664505
\(819\) 0 0
\(820\) 20.9667 0.732190
\(821\) 29.8105 + 17.2111i 1.04039 + 0.600671i 0.919945 0.392048i \(-0.128233\pi\)
0.120449 + 0.992720i \(0.461567\pi\)
\(822\) 0 0
\(823\) 5.99853 + 10.3898i 0.209096 + 0.362164i 0.951430 0.307866i \(-0.0996147\pi\)
−0.742334 + 0.670030i \(0.766281\pi\)
\(824\) 5.26644 3.04058i 0.183465 0.105924i
\(825\) 0 0
\(826\) −13.8279 7.98353i −0.481134 0.277783i
\(827\) 4.35092i 0.151296i −0.997135 0.0756482i \(-0.975897\pi\)
0.997135 0.0756482i \(-0.0241026\pi\)
\(828\) 0 0
\(829\) 45.6204 1.58446 0.792230 0.610222i \(-0.208920\pi\)
0.792230 + 0.610222i \(0.208920\pi\)
\(830\) −0.945668 0.545982i −0.0328246 0.0189513i
\(831\) 0 0
\(832\) 18.0862 + 8.20594i 0.627027 + 0.284490i
\(833\) 10.1213 + 17.5307i 0.350683 + 0.607401i
\(834\) 0 0
\(835\) −14.9595 + 25.9106i −0.517695 + 0.896674i
\(836\) −18.5497 −0.641554
\(837\) 0 0
\(838\) 0.354449i 0.0122442i
\(839\) −21.3626 12.3337i −0.737520 0.425808i 0.0836466 0.996495i \(-0.473343\pi\)
−0.821167 + 0.570688i \(0.806677\pi\)
\(840\) 0 0
\(841\) 11.6704 + 20.2137i 0.402427 + 0.697025i
\(842\) 5.01926 + 8.69361i 0.172975 + 0.299602i
\(843\) 0 0
\(844\) −8.51525 + 14.7488i −0.293107 + 0.507676i
\(845\) 27.6026 + 9.40138i 0.949559 + 0.323417i
\(846\) 0 0
\(847\) 9.15606i 0.314606i
\(848\) −0.942085 + 1.63174i −0.0323513 + 0.0560341i
\(849\) 0 0
\(850\) −0.103391 + 0.0596928i −0.00354628 + 0.00204744i
\(851\) 18.0178 10.4026i 0.617641 0.356595i
\(852\) 0 0
\(853\) 22.9668 + 13.2599i 0.786369 + 0.454010i 0.838683 0.544620i \(-0.183326\pi\)
−0.0523138 + 0.998631i \(0.516660\pi\)
\(854\) −40.5089 −1.38619
\(855\) 0 0
\(856\) 23.2508i 0.794697i
\(857\) −3.20474 + 5.55077i −0.109472 + 0.189611i −0.915556 0.402190i \(-0.868249\pi\)
0.806085 + 0.591800i \(0.201583\pi\)
\(858\) 0 0
\(859\) −12.7998 22.1699i −0.436723 0.756427i 0.560711 0.828011i \(-0.310528\pi\)
−0.997435 + 0.0715846i \(0.977194\pi\)
\(860\) 2.06402 1.19166i 0.0703824 0.0406353i
\(861\) 0 0
\(862\) 16.5078 28.5924i 0.562258 0.973860i
\(863\) 48.4823i 1.65036i −0.564873 0.825178i \(-0.691075\pi\)
0.564873 0.825178i \(-0.308925\pi\)
\(864\) 0 0
\(865\) 16.6919i 0.567542i
\(866\) −6.92319 3.99711i −0.235260 0.135827i
\(867\) 0 0
\(868\) −14.9142 25.8322i −0.506222 0.876802i
\(869\) −35.0152 + 20.2160i −1.18781 + 0.685782i
\(870\) 0 0
\(871\) 48.4797 4.74975i 1.64267 0.160939i
\(872\) −28.8029 −0.975389
\(873\) 0 0
\(874\) 14.5711 0.492876
\(875\) −19.1478 + 33.1650i −0.647315 + 1.12118i
\(876\) 0 0
\(877\) 27.0023 15.5898i 0.911801 0.526429i 0.0307911 0.999526i \(-0.490197\pi\)
0.881010 + 0.473097i \(0.156864\pi\)
\(878\) −27.5549 + 15.9088i −0.929932 + 0.536897i
\(879\) 0 0
\(880\) 1.02840 1.78125i 0.0346675 0.0600459i
\(881\) 49.6614 1.67314 0.836568 0.547863i \(-0.184558\pi\)
0.836568 + 0.547863i \(0.184558\pi\)
\(882\) 0 0
\(883\) 30.3523 1.02144 0.510718 0.859748i \(-0.329380\pi\)
0.510718 + 0.859748i \(0.329380\pi\)
\(884\) 1.74686 + 17.8298i 0.0587532 + 0.599681i
\(885\) 0 0
\(886\) −18.7481 + 10.8242i −0.629855 + 0.363647i
\(887\) 6.42161 + 11.1226i 0.215616 + 0.373459i 0.953463 0.301510i \(-0.0974906\pi\)
−0.737847 + 0.674968i \(0.764157\pi\)
\(888\) 0 0
\(889\) −5.24962 3.03087i −0.176066 0.101652i
\(890\) 11.6846i 0.391669i
\(891\) 0 0
\(892\) 12.9834i 0.434715i
\(893\) −11.7877 + 20.4169i −0.394460 + 0.683224i
\(894\) 0 0
\(895\) −45.0762 + 26.0248i −1.50673 + 0.869912i
\(896\) −10.4478 18.0961i −0.349035 0.604547i
\(897\) 0 0
\(898\) 6.32484 10.9549i 0.211063 0.365571i
\(899\) 17.5024i 0.583738i
\(900\) 0 0
\(901\) −31.9869 −1.06564
\(902\) 22.9674 + 13.2602i 0.764731 + 0.441518i
\(903\) 0 0
\(904\) −48.4680 + 27.9830i −1.61202 + 0.930701i
\(905\) 10.0709 5.81444i 0.334768 0.193279i
\(906\) 0 0
\(907\) 10.2993 17.8389i 0.341983 0.592331i −0.642818 0.766019i \(-0.722235\pi\)
0.984801 + 0.173688i \(0.0555683\pi\)
\(908\) 9.57860i 0.317877i
\(909\) 0 0
\(910\) 14.6481 + 20.4636i 0.485581 + 0.678362i
\(911\) 21.1949 36.7107i 0.702219 1.21628i −0.265466 0.964120i \(-0.585526\pi\)
0.967686 0.252159i \(-0.0811407\pi\)
\(912\) 0 0
\(913\) 0.993579 + 1.72093i 0.0328827 + 0.0569545i
\(914\) 7.88827 + 13.6629i 0.260921 + 0.451928i
\(915\) 0 0
\(916\) 5.49524 + 3.17268i 0.181568 + 0.104828i
\(917\) 24.4988i 0.809021i
\(918\) 0 0
\(919\) −42.7987 −1.41180 −0.705899 0.708313i \(-0.749457\pi\)
−0.705899 + 0.708313i \(0.749457\pi\)
\(920\) 12.2186 21.1633i 0.402836 0.697733i
\(921\) 0 0
\(922\) −10.8068 18.7179i −0.355903 0.616441i
\(923\) 3.95529 8.71764i 0.130190 0.286944i
\(924\) 0 0
\(925\) 0.149090 + 0.0860769i 0.00490203 + 0.00283019i
\(926\) −9.54253 −0.313587
\(927\) 0 0
\(928\) 13.1667i 0.432218i
\(929\) 10.2242 + 5.90296i 0.335446 + 0.193670i 0.658257 0.752794i \(-0.271294\pi\)
−0.322810 + 0.946464i \(0.604628\pi\)
\(930\) 0 0
\(931\) 17.7046 10.2218i 0.580245 0.335004i
\(932\) 11.8575 + 20.5378i 0.388405 + 0.672738i
\(933\) 0 0
\(934\) −6.59511 3.80769i −0.215799 0.124591i
\(935\) 34.9177 1.14193
\(936\) 0 0
\(937\) 24.7925 0.809935 0.404967 0.914331i \(-0.367283\pi\)
0.404967 + 0.914331i \(0.367283\pi\)
\(938\) 36.4079 + 21.0201i 1.18876 + 0.686331i
\(939\) 0 0
\(940\) 7.33531 + 12.7051i 0.239251 + 0.414395i
\(941\) 20.6367 11.9146i 0.672737 0.388405i −0.124376 0.992235i \(-0.539693\pi\)
0.797113 + 0.603830i \(0.206360\pi\)
\(942\) 0 0
\(943\) 25.9563 + 14.9859i 0.845253 + 0.488007i
\(944\) 1.27285i 0.0414278i
\(945\) 0 0
\(946\) 3.01462 0.0980138
\(947\) 42.4532 + 24.5104i 1.37954 + 0.796480i 0.992104 0.125415i \(-0.0400261\pi\)
0.387440 + 0.921895i \(0.373359\pi\)
\(948\) 0 0
\(949\) 8.13001 17.9189i 0.263911 0.581671i
\(950\) 0.0602850 + 0.104417i 0.00195590 + 0.00338773i
\(951\) 0 0
\(952\) −20.8349 + 36.0870i −0.675262 + 1.16959i
\(953\) −7.78372 −0.252140 −0.126070 0.992021i \(-0.540236\pi\)
−0.126070 + 0.992021i \(0.540236\pi\)
\(954\) 0 0
\(955\) 36.2055i 1.17158i
\(956\) −14.4697 8.35406i −0.467982 0.270190i
\(957\) 0 0
\(958\) 7.11200 + 12.3183i 0.229778 + 0.397987i
\(959\) 7.76661 + 13.4522i 0.250797 + 0.434393i
\(960\) 0 0
\(961\) 11.5651 20.0314i 0.373069 0.646174i
\(962\) −14.6009 + 10.4515i −0.470752 + 0.336971i
\(963\) 0 0
\(964\) 35.7011i 1.14985i
\(965\) 3.67777 6.37008i 0.118392 0.205060i
\(966\) 0 0
\(967\) 32.5591 18.7980i 1.04703 0.604502i 0.125213 0.992130i \(-0.460039\pi\)
0.921816 + 0.387627i \(0.126705\pi\)
\(968\) −6.64538 + 3.83671i −0.213590 + 0.123317i
\(969\) 0 0
\(970\) −11.9357 6.89105i −0.383231 0.221258i
\(971\) 9.16512 0.294123 0.147061 0.989127i \(-0.453019\pi\)
0.147061 + 0.989127i \(0.453019\pi\)
\(972\) 0 0
\(973\) 48.4833i 1.55430i
\(974\) 17.1587 29.7197i 0.549800 0.952281i
\(975\) 0 0
\(976\) −1.61463 2.79662i −0.0516831 0.0895177i
\(977\) −41.0043 + 23.6739i −1.31184 + 0.757394i −0.982401 0.186782i \(-0.940194\pi\)
−0.329443 + 0.944176i \(0.606861\pi\)
\(978\) 0 0
\(979\) −10.6318 + 18.4149i −0.339795 + 0.588542i
\(980\) 12.7217i 0.406380i
\(981\) 0 0
\(982\) 3.40553i 0.108675i
\(983\) 14.0634 + 8.11949i 0.448552 + 0.258972i 0.707219 0.706995i \(-0.249950\pi\)
−0.258666 + 0.965967i \(0.583283\pi\)
\(984\) 0 0
\(985\) −7.97686 13.8163i −0.254164 0.440225i
\(986\) −7.85686 + 4.53616i −0.250213 + 0.144461i
\(987\) 0 0
\(988\) 18.0067 1.76419i 0.572870 0.0561263i
\(989\) 3.40693 0.108334
\(990\) 0 0
\(991\) −37.7634 −1.19959 −0.599797 0.800152i \(-0.704752\pi\)
−0.599797 + 0.800152i \(0.704752\pi\)
\(992\) 20.3605 35.2655i 0.646447 1.11968i
\(993\) 0 0
\(994\) 7.15496 4.13092i 0.226942 0.131025i
\(995\) −26.8943 + 15.5274i −0.852606 + 0.492252i
\(996\) 0 0
\(997\) −23.8283 + 41.2718i −0.754649 + 1.30709i 0.190899 + 0.981610i \(0.438860\pi\)
−0.945549 + 0.325481i \(0.894474\pi\)
\(998\) −7.48156 −0.236824
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.t.c.181.5 20
3.2 odd 2 117.2.t.c.25.6 yes 20
9.2 odd 6 1053.2.b.j.649.5 10
9.4 even 3 inner 351.2.t.c.64.6 20
9.5 odd 6 117.2.t.c.103.5 yes 20
9.7 even 3 1053.2.b.i.649.6 10
13.12 even 2 inner 351.2.t.c.181.6 20
39.38 odd 2 117.2.t.c.25.5 20
117.25 even 6 1053.2.b.i.649.5 10
117.38 odd 6 1053.2.b.j.649.6 10
117.77 odd 6 117.2.t.c.103.6 yes 20
117.103 even 6 inner 351.2.t.c.64.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.5 20 39.38 odd 2
117.2.t.c.25.6 yes 20 3.2 odd 2
117.2.t.c.103.5 yes 20 9.5 odd 6
117.2.t.c.103.6 yes 20 117.77 odd 6
351.2.t.c.64.5 20 117.103 even 6 inner
351.2.t.c.64.6 20 9.4 even 3 inner
351.2.t.c.181.5 20 1.1 even 1 trivial
351.2.t.c.181.6 20 13.12 even 2 inner
1053.2.b.i.649.5 10 117.25 even 6
1053.2.b.i.649.6 10 9.7 even 3
1053.2.b.j.649.5 10 9.2 odd 6
1053.2.b.j.649.6 10 117.38 odd 6