Properties

Label 351.2.t.c
Level $351$
Weight $2$
Character orbit 351.t
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{15} q^{2} + (\beta_{8} + \beta_{5}) q^{4} - \beta_{4} q^{5} + (\beta_{15} + \beta_{12}) q^{7} + (\beta_{15} + \beta_{14} + \cdots + \beta_{7}) q^{8} + (\beta_1 - 1) q^{10} - \beta_{19} q^{11}+ \cdots + ( - 3 \beta_{15} - 2 \beta_{14} + \cdots - 2 \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{18} - 3\nu^{16} - 3\nu^{14} + 9\nu^{12} - 27\nu^{10} - 324\nu^{8} - 486\nu^{6} - 729\nu^{4} + 6561 ) / 6561 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{18} + 6\nu^{16} + 3\nu^{14} + 54\nu^{10} + 81\nu^{8} + 972\nu^{6} + 2916\nu^{4} + 2187\nu^{2} - 13122 ) / 6561 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 4 \nu^{18} - 21 \nu^{16} - 66 \nu^{14} - 99 \nu^{12} - 189 \nu^{10} - 648 \nu^{8} - 4617 \nu^{6} + \cdots - 39366 ) / 19683 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5 \nu^{19} + 15 \nu^{17} - 12 \nu^{15} - 153 \nu^{13} - 27 \nu^{11} + 324 \nu^{9} + 2673 \nu^{7} + \cdots - 98415 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 4 \nu^{18} - 3 \nu^{16} + 42 \nu^{14} + 117 \nu^{12} + 54 \nu^{10} + 81 \nu^{8} - 972 \nu^{6} + \cdots + 118098 ) / 19683 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 5 \nu^{19} - 6 \nu^{17} + 66 \nu^{15} + 99 \nu^{13} + 27 \nu^{11} - 81 \nu^{9} + \cdots + 157464 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4 \nu^{19} - 6 \nu^{17} - 96 \nu^{15} - 225 \nu^{13} - 297 \nu^{11} - 810 \nu^{9} + \cdots - 196830 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 8 \nu^{18} - 24 \nu^{16} + 3 \nu^{14} + 18 \nu^{12} - 54 \nu^{10} - 324 \nu^{8} - 3402 \nu^{6} + \cdots + 98415 ) / 19683 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 8 \nu^{19} - 24 \nu^{17} + 57 \nu^{15} + 180 \nu^{13} + 108 \nu^{11} - 81 \nu^{9} + \cdots + 216513 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 7 \nu^{18} + 6 \nu^{16} + 87 \nu^{14} + 198 \nu^{12} + 297 \nu^{10} + 324 \nu^{8} - 1701 \nu^{6} + \cdots + 177147 ) / 19683 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 10 \nu^{19} - 21 \nu^{17} + 51 \nu^{15} + 90 \nu^{13} + 216 \nu^{11} - 405 \nu^{9} + \cdots + 137781 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10 \nu^{19} - 3 \nu^{17} + 78 \nu^{15} + 225 \nu^{13} - 27 \nu^{11} + 81 \nu^{9} + \cdots + 196830 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 4 \nu^{18} + 21 \nu^{16} + 30 \nu^{14} + 18 \nu^{12} + 81 \nu^{10} + 324 \nu^{8} + 3159 \nu^{6} + \cdots - 26244 ) / 6561 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 11 \nu^{19} + 15 \nu^{17} - 102 \nu^{15} - 180 \nu^{13} - 108 \nu^{11} - 648 \nu^{9} + \cdots - 216513 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 13 \nu^{19} + 30 \nu^{17} - 15 \nu^{15} - 117 \nu^{13} - 54 \nu^{11} + 891 \nu^{9} + \cdots - 196830 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 8 \nu^{18} - 6 \nu^{16} + 111 \nu^{14} + 315 \nu^{12} + 432 \nu^{10} + 648 \nu^{8} + \cdots + 295245 ) / 19683 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 7 \nu^{18} - 15 \nu^{16} - 195 \nu^{14} - 387 \nu^{12} - 459 \nu^{10} - 324 \nu^{8} - 486 \nu^{6} + \cdots - 334611 ) / 19683 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 8 \nu^{19} + 78 \nu^{17} + 240 \nu^{15} + 306 \nu^{13} + 783 \nu^{11} + 2268 \nu^{9} + \cdots + 137781 \nu ) / 59049 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 14 \nu^{19} + 78 \nu^{17} + 258 \nu^{15} + 441 \nu^{13} + 783 \nu^{11} + 2025 \nu^{9} + \cdots + 196830 \nu ) / 59049 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{15} - \beta_{12} - 2\beta_{11} - \beta_{7} + \beta_{6} + \beta_{4} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{17} + 2\beta_{16} + 2\beta_{13} - \beta_{10} + 2\beta_{8} - \beta_{5} + \beta_{3} - \beta_{2} + \beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{19} - \beta_{18} - \beta_{15} - \beta_{14} - \beta_{9} - \beta_{6} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{17} + 2\beta_{10} - 2\beta_{5} - 2\beta_{3} - 2\beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - \beta_{19} + 2 \beta_{18} - 2 \beta_{15} - 2 \beta_{14} - 3 \beta_{12} - 3 \beta_{11} + \cdots - 4 \beta_{4} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{17} + \beta_{16} + \beta_{13} - 5\beta_{10} + 7\beta_{8} + 7\beta_{5} - 4\beta_{3} + 7\beta_{2} + 2\beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -3\beta_{18} + 3\beta_{15} - 3\beta_{12} + 3\beta_{11} - 12\beta_{9} - 9\beta_{7} + 9\beta_{6} - 6\beta_{4} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 12 \beta_{17} + 3 \beta_{16} + 3 \beta_{13} + 6 \beta_{10} + 3 \beta_{8} + 18 \beta_{5} - 6 \beta_{3} + \cdots - 21 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 24 \beta_{19} + 12 \beta_{18} + 24 \beta_{15} - 21 \beta_{14} - 9 \beta_{12} - 27 \beta_{11} + \cdots + 3 \beta_{4} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 15 \beta_{17} + 24 \beta_{16} - 30 \beta_{13} + 24 \beta_{10} + 6 \beta_{8} - 165 \beta_{5} + \cdots + 51 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 18 \beta_{19} + 45 \beta_{18} - 72 \beta_{15} + 45 \beta_{14} - 99 \beta_{12} + 72 \beta_{11} + \cdots - 99 \beta_{6} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 54 \beta_{17} + 36 \beta_{16} - 45 \beta_{13} - 81 \beta_{10} - 180 \beta_{8} + 423 \beta_{5} + \cdots - 567 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 9 \beta_{19} - 9 \beta_{18} + 306 \beta_{15} + 144 \beta_{14} + 216 \beta_{12} + 135 \beta_{11} + \cdots - 441 \beta_{4} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 549 \beta_{17} - 504 \beta_{16} - 342 \beta_{13} + 117 \beta_{10} - 207 \beta_{8} - 477 \beta_{5} + \cdots - 450 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 54 \beta_{19} + 162 \beta_{18} + 1296 \beta_{15} + 135 \beta_{14} + 378 \beta_{12} + \cdots - 108 \beta_{4} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 351 \beta_{17} - 729 \beta_{16} + 108 \beta_{10} - 891 \beta_{8} + 2241 \beta_{5} + 1593 \beta_{3} + \cdots + 1323 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 1026 \beta_{19} + 1080 \beta_{18} - 270 \beta_{15} + 3294 \beta_{14} + 2916 \beta_{12} + \cdots + 2538 \beta_{4} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 1998 \beta_{17} + 1917 \beta_{16} - 27 \beta_{13} - 3024 \beta_{10} - 2862 \beta_{8} - 4806 \beta_{5} + \cdots + 5238 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 7776 \beta_{19} - 6723 \beta_{18} - 3969 \beta_{15} - 4131 \beta_{14} - 3078 \beta_{12} + \cdots + 6723 \beta_{4} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(-\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
1.66095 0.491165i
−1.23798 1.21137i
0.651881 1.60470i
1.65391 + 0.514376i
0.219737 + 1.71806i
−0.219737 1.71806i
−1.65391 0.514376i
−0.651881 + 1.60470i
1.23798 + 1.21137i
−1.66095 + 0.491165i
1.66095 + 0.491165i
−1.23798 + 1.21137i
0.651881 + 1.60470i
1.65391 0.514376i
0.219737 1.71806i
−0.219737 + 1.71806i
−1.65391 + 0.514376i
−0.651881 1.60470i
1.23798 1.21137i
−1.66095 0.491165i
−2.14539 + 1.23864i 0 2.06847 3.58269i −0.771397 0.445366i 0 −0.850723 + 0.491165i 5.29379i 0 2.20660
64.2 −1.97712 + 1.14149i 0 1.60600 2.78168i 2.78501 + 1.60793i 0 −2.09815 + 1.21137i 2.76698i 0 −7.34174
64.3 −1.41717 + 0.818205i 0 0.338918 0.587023i −0.950358 0.548689i 0 −2.77942 + 1.60470i 2.16360i 0 1.79576
64.4 −0.929969 + 0.536918i 0 −0.423439 + 0.733417i −1.10543 0.638222i 0 0.890926 0.514376i 3.05708i 0 1.37069
64.5 −0.784270 + 0.452798i 0 −0.589947 + 1.02182i 1.94254 + 1.12153i 0 2.97576 1.71806i 2.87970i 0 −2.03130
64.6 0.784270 0.452798i 0 −0.589947 + 1.02182i −1.94254 1.12153i 0 −2.97576 + 1.71806i 2.87970i 0 −2.03130
64.7 0.929969 0.536918i 0 −0.423439 + 0.733417i 1.10543 + 0.638222i 0 −0.890926 + 0.514376i 3.05708i 0 1.37069
64.8 1.41717 0.818205i 0 0.338918 0.587023i 0.950358 + 0.548689i 0 2.77942 1.60470i 2.16360i 0 1.79576
64.9 1.97712 1.14149i 0 1.60600 2.78168i −2.78501 1.60793i 0 2.09815 1.21137i 2.76698i 0 −7.34174
64.10 2.14539 1.23864i 0 2.06847 3.58269i 0.771397 + 0.445366i 0 0.850723 0.491165i 5.29379i 0 2.20660
181.1 −2.14539 1.23864i 0 2.06847 + 3.58269i −0.771397 + 0.445366i 0 −0.850723 0.491165i 5.29379i 0 2.20660
181.2 −1.97712 1.14149i 0 1.60600 + 2.78168i 2.78501 1.60793i 0 −2.09815 1.21137i 2.76698i 0 −7.34174
181.3 −1.41717 0.818205i 0 0.338918 + 0.587023i −0.950358 + 0.548689i 0 −2.77942 1.60470i 2.16360i 0 1.79576
181.4 −0.929969 0.536918i 0 −0.423439 0.733417i −1.10543 + 0.638222i 0 0.890926 + 0.514376i 3.05708i 0 1.37069
181.5 −0.784270 0.452798i 0 −0.589947 1.02182i 1.94254 1.12153i 0 2.97576 + 1.71806i 2.87970i 0 −2.03130
181.6 0.784270 + 0.452798i 0 −0.589947 1.02182i −1.94254 + 1.12153i 0 −2.97576 1.71806i 2.87970i 0 −2.03130
181.7 0.929969 + 0.536918i 0 −0.423439 0.733417i 1.10543 0.638222i 0 −0.890926 0.514376i 3.05708i 0 1.37069
181.8 1.41717 + 0.818205i 0 0.338918 + 0.587023i 0.950358 0.548689i 0 2.77942 + 1.60470i 2.16360i 0 1.79576
181.9 1.97712 + 1.14149i 0 1.60600 + 2.78168i −2.78501 + 1.60793i 0 2.09815 + 1.21137i 2.76698i 0 −7.34174
181.10 2.14539 + 1.23864i 0 2.06847 + 3.58269i 0.771397 0.445366i 0 0.850723 + 0.491165i 5.29379i 0 2.20660
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
13.b even 2 1 inner
117.t even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 351.2.t.c 20
3.b odd 2 1 117.2.t.c 20
9.c even 3 1 inner 351.2.t.c 20
9.c even 3 1 1053.2.b.i 10
9.d odd 6 1 117.2.t.c 20
9.d odd 6 1 1053.2.b.j 10
13.b even 2 1 inner 351.2.t.c 20
39.d odd 2 1 117.2.t.c 20
117.n odd 6 1 117.2.t.c 20
117.n odd 6 1 1053.2.b.j 10
117.t even 6 1 inner 351.2.t.c 20
117.t even 6 1 1053.2.b.i 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.t.c 20 3.b odd 2 1
117.2.t.c 20 9.d odd 6 1
117.2.t.c 20 39.d odd 2 1
117.2.t.c 20 117.n odd 6 1
351.2.t.c 20 1.a even 1 1 trivial
351.2.t.c 20 9.c even 3 1 inner
351.2.t.c 20 13.b even 2 1 inner
351.2.t.c 20 117.t even 6 1 inner
1053.2.b.i 10 9.c even 3 1
1053.2.b.i 10 117.t even 6 1
1053.2.b.j 10 9.d odd 6 1
1053.2.b.j 10 117.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(351, [\chi])\):

\( T_{2}^{20} - 16 T_{2}^{18} + 165 T_{2}^{16} - 1012 T_{2}^{14} + 4501 T_{2}^{12} - 12987 T_{2}^{10} + \cdots + 6561 \) Copy content Toggle raw display
\( T_{5}^{20} - 19 T_{5}^{18} + 249 T_{5}^{16} - 1618 T_{5}^{14} + 7456 T_{5}^{12} - 19407 T_{5}^{10} + \cdots + 6561 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} - 16 T^{18} + \cdots + 6561 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} - 19 T^{18} + \cdots + 6561 \) Copy content Toggle raw display
$7$ \( T^{20} - 30 T^{18} + \cdots + 531441 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 276922881 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 137858491849 \) Copy content Toggle raw display
$17$ \( (T^{5} - 3 T^{4} - 33 T^{3} + \cdots - 81)^{4} \) Copy content Toggle raw display
$19$ \( (T^{10} + 129 T^{8} + \cdots + 700569)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} + 12 T^{9} + \cdots + 531441)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 6 T^{9} + \cdots + 6561)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 138251528157681 \) Copy content Toggle raw display
$37$ \( (T^{10} + 231 T^{8} + \cdots + 41641209)^{2} \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 273245607441 \) Copy content Toggle raw display
$43$ \( (T^{10} - 2 T^{9} + \cdots + 32041)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 49241109874401 \) Copy content Toggle raw display
$53$ \( (T^{5} + 27 T^{4} + \cdots + 243)^{4} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 75017234240001 \) Copy content Toggle raw display
$61$ \( (T^{10} + T^{9} + \cdots + 118091689)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 282429536481 \) Copy content Toggle raw display
$71$ \( (T^{10} + 97 T^{8} + \cdots + 178929)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + 369 T^{8} + \cdots + 56746089)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + 7 T^{9} + \cdots + 1481089)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 20\!\cdots\!81 \) Copy content Toggle raw display
$89$ \( (T^{10} + 637 T^{8} + \cdots + 5851791009)^{2} \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 47048089623921 \) Copy content Toggle raw display
show more
show less