Properties

Label 351.2.t
Level $351$
Weight $2$
Character orbit 351.t
Rep. character $\chi_{351}(64,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $3$
Sturm bound $84$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(84\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(351, [\chi])\).

Total New Old
Modular forms 96 32 64
Cusp forms 72 24 48
Eisenstein series 24 8 16

Trace form

\( 24 q + 8 q^{4} - 16 q^{10} - 2 q^{13} + 18 q^{14} - 4 q^{16} + 24 q^{17} - 10 q^{22} - 18 q^{23} + 2 q^{25} + 12 q^{26} - 36 q^{35} - 12 q^{38} - 8 q^{40} + 6 q^{43} + 4 q^{52} - 72 q^{53} - 28 q^{55} - 36 q^{56}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(351, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
351.2.t.a 351.t 117.t $2$ $2.803$ \(\Q(\sqrt{-3}) \) None 117.2.t.a \(0\) \(0\) \(-6\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+2\zeta_{6})q^{4}+(-2-2\zeta_{6})q^{5}+\cdots\)
351.2.t.b 351.t 117.t $2$ $2.803$ \(\Q(\sqrt{-3}) \) None 117.2.t.a \(0\) \(0\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+2\zeta_{6})q^{4}+(2+2\zeta_{6})q^{5}+(-4+\cdots)q^{7}+\cdots\)
351.2.t.c 351.t 117.t $20$ $2.803$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 117.2.t.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{15}q^{2}+(\beta _{5}+\beta _{8})q^{4}-\beta _{4}q^{5}+(\beta _{12}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(351, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)