Defining parameters
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(351, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 32 | 64 |
Cusp forms | 72 | 24 | 48 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(351, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
351.2.t.a | $2$ | $2.803$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-6\) | \(6\) | \(q+(-2+2\zeta_{6})q^{4}+(-2-2\zeta_{6})q^{5}+\cdots\) |
351.2.t.b | $2$ | $2.803$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(6\) | \(-6\) | \(q+(-2+2\zeta_{6})q^{4}+(2+2\zeta_{6})q^{5}+(-4+\cdots)q^{7}+\cdots\) |
351.2.t.c | $20$ | $2.803$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{15}q^{2}+(\beta _{5}+\beta _{8})q^{4}-\beta _{4}q^{5}+(\beta _{12}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(351, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(351, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)