Properties

Label 351.2.h.a.334.12
Level $351$
Weight $2$
Character 351.334
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(289,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 334.12
Character \(\chi\) \(=\) 351.334
Dual form 351.2.h.a.289.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65628 q^{2} +5.05585 q^{4} +(-0.324360 + 0.561808i) q^{5} +(-0.773958 + 1.34053i) q^{7} +8.11720 q^{8} +(-0.861592 + 1.49232i) q^{10} -5.07008 q^{11} +(-0.445184 - 3.57796i) q^{13} +(-2.05585 + 3.56084i) q^{14} +11.4499 q^{16} +(0.103828 + 0.179835i) q^{17} +(-1.79488 - 3.10883i) q^{19} +(-1.63991 + 2.84041i) q^{20} -13.4676 q^{22} +(-1.60137 - 2.77365i) q^{23} +(2.28958 + 3.96567i) q^{25} +(-1.18254 - 9.50408i) q^{26} +(-3.91301 + 6.77754i) q^{28} +6.83026 q^{29} +(1.58024 - 2.73705i) q^{31} +14.1798 q^{32} +(0.275796 + 0.477692i) q^{34} +(-0.502082 - 0.869631i) q^{35} +(-4.71300 + 8.16316i) q^{37} +(-4.76772 - 8.25793i) q^{38} +(-2.63289 + 4.56031i) q^{40} +(-4.30114 - 7.44979i) q^{41} +(-2.99929 + 5.19492i) q^{43} -25.6335 q^{44} +(-4.25368 - 7.36759i) q^{46} +(1.42859 + 2.47438i) q^{47} +(2.30198 + 3.98714i) q^{49} +(6.08178 + 10.5340i) q^{50} +(-2.25078 - 18.0896i) q^{52} +2.48667 q^{53} +(1.64453 - 2.84841i) q^{55} +(-6.28237 + 10.8814i) q^{56} +18.1431 q^{58} +2.98403 q^{59} +(-4.02238 + 6.96697i) q^{61} +(4.19756 - 7.27038i) q^{62} +14.7657 q^{64} +(2.15453 + 0.910439i) q^{65} +(-2.47432 - 4.28565i) q^{67} +(0.524937 + 0.909217i) q^{68} +(-1.33367 - 2.30999i) q^{70} +(0.787066 + 1.36324i) q^{71} +3.03817 q^{73} +(-12.5191 + 21.6837i) q^{74} +(-9.07465 - 15.7178i) q^{76} +(3.92403 - 6.79661i) q^{77} +(3.23418 + 5.60177i) q^{79} +(-3.71389 + 6.43264i) q^{80} +(-11.4251 - 19.7888i) q^{82} +(-1.24623 - 2.15854i) q^{83} -0.134710 q^{85} +(-7.96696 + 13.7992i) q^{86} -41.1548 q^{88} +(1.76275 - 3.05317i) q^{89} +(5.14094 + 2.17241i) q^{91} +(-8.09626 - 14.0231i) q^{92} +(3.79473 + 6.57267i) q^{94} +2.32875 q^{95} +(4.69325 - 8.12894i) q^{97} +(6.11471 + 10.5910i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 18 q^{4} + 2 q^{5} + 3 q^{7} + 18 q^{8} - 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 11 q^{20} - 18 q^{22} - 17 q^{23} - 6 q^{25} + 12 q^{26} + 24 q^{29} - 6 q^{31} + 38 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65628 1.87828 0.939138 0.343539i \(-0.111626\pi\)
0.939138 + 0.343539i \(0.111626\pi\)
\(3\) 0 0
\(4\) 5.05585 2.52792
\(5\) −0.324360 + 0.561808i −0.145058 + 0.251248i −0.929395 0.369088i \(-0.879670\pi\)
0.784336 + 0.620336i \(0.213004\pi\)
\(6\) 0 0
\(7\) −0.773958 + 1.34053i −0.292529 + 0.506674i −0.974407 0.224791i \(-0.927830\pi\)
0.681878 + 0.731466i \(0.261163\pi\)
\(8\) 8.11720 2.86986
\(9\) 0 0
\(10\) −0.861592 + 1.49232i −0.272459 + 0.471913i
\(11\) −5.07008 −1.52869 −0.764343 0.644810i \(-0.776937\pi\)
−0.764343 + 0.644810i \(0.776937\pi\)
\(12\) 0 0
\(13\) −0.445184 3.57796i −0.123472 0.992348i
\(14\) −2.05585 + 3.56084i −0.549450 + 0.951675i
\(15\) 0 0
\(16\) 11.4499 2.86247
\(17\) 0.103828 + 0.179835i 0.0251819 + 0.0436163i 0.878342 0.478033i \(-0.158650\pi\)
−0.853160 + 0.521650i \(0.825317\pi\)
\(18\) 0 0
\(19\) −1.79488 3.10883i −0.411774 0.713214i 0.583310 0.812250i \(-0.301757\pi\)
−0.995084 + 0.0990360i \(0.968424\pi\)
\(20\) −1.63991 + 2.84041i −0.366696 + 0.635136i
\(21\) 0 0
\(22\) −13.4676 −2.87130
\(23\) −1.60137 2.77365i −0.333908 0.578345i 0.649367 0.760475i \(-0.275034\pi\)
−0.983274 + 0.182130i \(0.941701\pi\)
\(24\) 0 0
\(25\) 2.28958 + 3.96567i 0.457916 + 0.793134i
\(26\) −1.18254 9.50408i −0.231914 1.86390i
\(27\) 0 0
\(28\) −3.91301 + 6.77754i −0.739490 + 1.28083i
\(29\) 6.83026 1.26835 0.634173 0.773191i \(-0.281341\pi\)
0.634173 + 0.773191i \(0.281341\pi\)
\(30\) 0 0
\(31\) 1.58024 2.73705i 0.283819 0.491589i −0.688503 0.725233i \(-0.741732\pi\)
0.972322 + 0.233645i \(0.0750653\pi\)
\(32\) 14.1798 2.50665
\(33\) 0 0
\(34\) 0.275796 + 0.477692i 0.0472986 + 0.0819235i
\(35\) −0.502082 0.869631i −0.0848673 0.146995i
\(36\) 0 0
\(37\) −4.71300 + 8.16316i −0.774813 + 1.34202i 0.160087 + 0.987103i \(0.448823\pi\)
−0.934900 + 0.354912i \(0.884511\pi\)
\(38\) −4.76772 8.25793i −0.773426 1.33961i
\(39\) 0 0
\(40\) −2.63289 + 4.56031i −0.416297 + 0.721048i
\(41\) −4.30114 7.44979i −0.671725 1.16346i −0.977415 0.211331i \(-0.932220\pi\)
0.305689 0.952131i \(-0.401113\pi\)
\(42\) 0 0
\(43\) −2.99929 + 5.19492i −0.457387 + 0.792217i −0.998822 0.0485254i \(-0.984548\pi\)
0.541435 + 0.840743i \(0.317881\pi\)
\(44\) −25.6335 −3.86440
\(45\) 0 0
\(46\) −4.25368 7.36759i −0.627171 1.08629i
\(47\) 1.42859 + 2.47438i 0.208381 + 0.360926i 0.951205 0.308561i \(-0.0998474\pi\)
−0.742824 + 0.669487i \(0.766514\pi\)
\(48\) 0 0
\(49\) 2.30198 + 3.98714i 0.328854 + 0.569592i
\(50\) 6.08178 + 10.5340i 0.860093 + 1.48973i
\(51\) 0 0
\(52\) −2.25078 18.0896i −0.312128 2.50858i
\(53\) 2.48667 0.341571 0.170786 0.985308i \(-0.445369\pi\)
0.170786 + 0.985308i \(0.445369\pi\)
\(54\) 0 0
\(55\) 1.64453 2.84841i 0.221748 0.384079i
\(56\) −6.28237 + 10.8814i −0.839517 + 1.45409i
\(57\) 0 0
\(58\) 18.1431 2.38231
\(59\) 2.98403 0.388487 0.194244 0.980953i \(-0.437775\pi\)
0.194244 + 0.980953i \(0.437775\pi\)
\(60\) 0 0
\(61\) −4.02238 + 6.96697i −0.515013 + 0.892029i 0.484835 + 0.874606i \(0.338880\pi\)
−0.999848 + 0.0174233i \(0.994454\pi\)
\(62\) 4.19756 7.27038i 0.533090 0.923339i
\(63\) 0 0
\(64\) 14.7657 1.84572
\(65\) 2.15453 + 0.910439i 0.267236 + 0.112926i
\(66\) 0 0
\(67\) −2.47432 4.28565i −0.302286 0.523575i 0.674367 0.738396i \(-0.264417\pi\)
−0.976653 + 0.214821i \(0.931083\pi\)
\(68\) 0.524937 + 0.909217i 0.0636579 + 0.110259i
\(69\) 0 0
\(70\) −1.33367 2.30999i −0.159404 0.276096i
\(71\) 0.787066 + 1.36324i 0.0934076 + 0.161787i 0.908943 0.416921i \(-0.136891\pi\)
−0.815535 + 0.578707i \(0.803557\pi\)
\(72\) 0 0
\(73\) 3.03817 0.355591 0.177796 0.984067i \(-0.443103\pi\)
0.177796 + 0.984067i \(0.443103\pi\)
\(74\) −12.5191 + 21.6837i −1.45531 + 2.52068i
\(75\) 0 0
\(76\) −9.07465 15.7178i −1.04093 1.80295i
\(77\) 3.92403 6.79661i 0.447184 0.774546i
\(78\) 0 0
\(79\) 3.23418 + 5.60177i 0.363874 + 0.630248i 0.988595 0.150600i \(-0.0481205\pi\)
−0.624721 + 0.780848i \(0.714787\pi\)
\(80\) −3.71389 + 6.43264i −0.415225 + 0.719191i
\(81\) 0 0
\(82\) −11.4251 19.7888i −1.26169 2.18530i
\(83\) −1.24623 2.15854i −0.136792 0.236931i 0.789489 0.613765i \(-0.210346\pi\)
−0.926281 + 0.376835i \(0.877013\pi\)
\(84\) 0 0
\(85\) −0.134710 −0.0146114
\(86\) −7.96696 + 13.7992i −0.859099 + 1.48800i
\(87\) 0 0
\(88\) −41.1548 −4.38712
\(89\) 1.76275 3.05317i 0.186851 0.323635i −0.757348 0.653012i \(-0.773505\pi\)
0.944199 + 0.329376i \(0.106839\pi\)
\(90\) 0 0
\(91\) 5.14094 + 2.17241i 0.538916 + 0.227730i
\(92\) −8.09626 14.0231i −0.844093 1.46201i
\(93\) 0 0
\(94\) 3.79473 + 6.57267i 0.391397 + 0.677919i
\(95\) 2.32875 0.238925
\(96\) 0 0
\(97\) 4.69325 8.12894i 0.476527 0.825369i −0.523111 0.852265i \(-0.675229\pi\)
0.999638 + 0.0268952i \(0.00856206\pi\)
\(98\) 6.11471 + 10.5910i 0.617679 + 1.06985i
\(99\) 0 0
\(100\) 11.5758 + 20.0498i 1.15758 + 2.00498i
\(101\) 4.18722 0.416644 0.208322 0.978060i \(-0.433200\pi\)
0.208322 + 0.978060i \(0.433200\pi\)
\(102\) 0 0
\(103\) 2.03207 3.51965i 0.200226 0.346801i −0.748375 0.663275i \(-0.769166\pi\)
0.948601 + 0.316474i \(0.102499\pi\)
\(104\) −3.61365 29.0430i −0.354348 2.84790i
\(105\) 0 0
\(106\) 6.60532 0.641565
\(107\) −5.05806 + 8.76081i −0.488981 + 0.846940i −0.999920 0.0126775i \(-0.995965\pi\)
0.510939 + 0.859617i \(0.329298\pi\)
\(108\) 0 0
\(109\) −4.37589 −0.419134 −0.209567 0.977794i \(-0.567205\pi\)
−0.209567 + 0.977794i \(0.567205\pi\)
\(110\) 4.36834 7.56619i 0.416505 0.721407i
\(111\) 0 0
\(112\) −8.86174 + 15.3490i −0.837355 + 1.45034i
\(113\) 13.4142 1.26190 0.630951 0.775823i \(-0.282665\pi\)
0.630951 + 0.775823i \(0.282665\pi\)
\(114\) 0 0
\(115\) 2.07767 0.193744
\(116\) 34.5327 3.20628
\(117\) 0 0
\(118\) 7.92642 0.729686
\(119\) −0.321433 −0.0294657
\(120\) 0 0
\(121\) 14.7057 1.33688
\(122\) −10.6846 + 18.5062i −0.967337 + 1.67548i
\(123\) 0 0
\(124\) 7.98943 13.8381i 0.717472 1.24270i
\(125\) −6.21419 −0.555814
\(126\) 0 0
\(127\) 6.23233 10.7947i 0.553029 0.957875i −0.445024 0.895518i \(-0.646805\pi\)
0.998054 0.0623567i \(-0.0198617\pi\)
\(128\) 10.8624 0.960113
\(129\) 0 0
\(130\) 5.72304 + 2.41839i 0.501943 + 0.212106i
\(131\) −9.84851 + 17.0581i −0.860468 + 1.49037i 0.0110094 + 0.999939i \(0.496496\pi\)
−0.871478 + 0.490435i \(0.836838\pi\)
\(132\) 0 0
\(133\) 5.55665 0.481823
\(134\) −6.57250 11.3839i −0.567777 0.983419i
\(135\) 0 0
\(136\) 0.842789 + 1.45975i 0.0722686 + 0.125173i
\(137\) 7.09825 12.2945i 0.606444 1.05039i −0.385377 0.922759i \(-0.625929\pi\)
0.991821 0.127633i \(-0.0407380\pi\)
\(138\) 0 0
\(139\) 3.49371 0.296333 0.148166 0.988962i \(-0.452663\pi\)
0.148166 + 0.988962i \(0.452663\pi\)
\(140\) −2.53845 4.39672i −0.214538 0.371591i
\(141\) 0 0
\(142\) 2.09067 + 3.62115i 0.175445 + 0.303880i
\(143\) 2.25712 + 18.1405i 0.188750 + 1.51699i
\(144\) 0 0
\(145\) −2.21546 + 3.83729i −0.183984 + 0.318670i
\(146\) 8.07025 0.667899
\(147\) 0 0
\(148\) −23.8282 + 41.2717i −1.95867 + 3.39251i
\(149\) 12.3716 1.01352 0.506761 0.862087i \(-0.330843\pi\)
0.506761 + 0.862087i \(0.330843\pi\)
\(150\) 0 0
\(151\) 0.517479 + 0.896300i 0.0421118 + 0.0729398i 0.886313 0.463087i \(-0.153258\pi\)
−0.844201 + 0.536026i \(0.819925\pi\)
\(152\) −14.5694 25.2350i −1.18174 2.04683i
\(153\) 0 0
\(154\) 10.4233 18.0537i 0.839936 1.45481i
\(155\) 1.02513 + 1.77558i 0.0823405 + 0.142618i
\(156\) 0 0
\(157\) 0.504491 0.873804i 0.0402628 0.0697372i −0.845192 0.534463i \(-0.820514\pi\)
0.885455 + 0.464726i \(0.153847\pi\)
\(158\) 8.59091 + 14.8799i 0.683456 + 1.18378i
\(159\) 0 0
\(160\) −4.59935 + 7.96631i −0.363611 + 0.629792i
\(161\) 4.95756 0.390710
\(162\) 0 0
\(163\) −3.52876 6.11200i −0.276394 0.478728i 0.694092 0.719886i \(-0.255806\pi\)
−0.970486 + 0.241158i \(0.922473\pi\)
\(164\) −21.7459 37.6650i −1.69807 2.94114i
\(165\) 0 0
\(166\) −3.31035 5.73370i −0.256933 0.445021i
\(167\) −9.22813 15.9836i −0.714094 1.23685i −0.963308 0.268398i \(-0.913506\pi\)
0.249214 0.968448i \(-0.419828\pi\)
\(168\) 0 0
\(169\) −12.6036 + 3.18571i −0.969509 + 0.245054i
\(170\) −0.357828 −0.0274442
\(171\) 0 0
\(172\) −15.1639 + 26.2647i −1.15624 + 2.00266i
\(173\) 0.879831 1.52391i 0.0668923 0.115861i −0.830640 0.556811i \(-0.812025\pi\)
0.897532 + 0.440950i \(0.145358\pi\)
\(174\) 0 0
\(175\) −7.08816 −0.535814
\(176\) −58.0519 −4.37582
\(177\) 0 0
\(178\) 4.68236 8.11009i 0.350958 0.607877i
\(179\) 4.63867 8.03441i 0.346711 0.600520i −0.638952 0.769246i \(-0.720632\pi\)
0.985663 + 0.168726i \(0.0539653\pi\)
\(180\) 0 0
\(181\) −17.7014 −1.31574 −0.657868 0.753133i \(-0.728541\pi\)
−0.657868 + 0.753133i \(0.728541\pi\)
\(182\) 13.6558 + 5.77053i 1.01223 + 0.427740i
\(183\) 0 0
\(184\) −12.9986 22.5142i −0.958269 1.65977i
\(185\) −3.05742 5.29560i −0.224786 0.389341i
\(186\) 0 0
\(187\) −0.526414 0.911776i −0.0384952 0.0666757i
\(188\) 7.22271 + 12.5101i 0.526771 + 0.912393i
\(189\) 0 0
\(190\) 6.18583 0.448767
\(191\) 0.271844 0.470847i 0.0196699 0.0340693i −0.856023 0.516938i \(-0.827072\pi\)
0.875693 + 0.482869i \(0.160405\pi\)
\(192\) 0 0
\(193\) 12.3513 + 21.3931i 0.889065 + 1.53991i 0.840982 + 0.541063i \(0.181978\pi\)
0.0480832 + 0.998843i \(0.484689\pi\)
\(194\) 12.4666 21.5928i 0.895050 1.55027i
\(195\) 0 0
\(196\) 11.6384 + 20.1584i 0.831318 + 1.43988i
\(197\) −9.01337 + 15.6116i −0.642176 + 1.11228i 0.342770 + 0.939419i \(0.388635\pi\)
−0.984946 + 0.172863i \(0.944698\pi\)
\(198\) 0 0
\(199\) −8.59093 14.8799i −0.608995 1.05481i −0.991406 0.130818i \(-0.958240\pi\)
0.382412 0.923992i \(-0.375094\pi\)
\(200\) 18.5850 + 32.1901i 1.31416 + 2.27619i
\(201\) 0 0
\(202\) 11.1225 0.782573
\(203\) −5.28633 + 9.15620i −0.371028 + 0.642639i
\(204\) 0 0
\(205\) 5.58047 0.389757
\(206\) 5.39775 9.34918i 0.376079 0.651388i
\(207\) 0 0
\(208\) −5.09731 40.9673i −0.353435 2.84057i
\(209\) 9.10019 + 15.7620i 0.629473 + 1.09028i
\(210\) 0 0
\(211\) −1.35161 2.34105i −0.0930483 0.161164i 0.815744 0.578413i \(-0.196328\pi\)
−0.908792 + 0.417249i \(0.862994\pi\)
\(212\) 12.5722 0.863465
\(213\) 0 0
\(214\) −13.4356 + 23.2712i −0.918441 + 1.59079i
\(215\) −1.94570 3.37004i −0.132695 0.229835i
\(216\) 0 0
\(217\) 2.44607 + 4.23672i 0.166050 + 0.287607i
\(218\) −11.6236 −0.787250
\(219\) 0 0
\(220\) 8.31449 14.4011i 0.560563 0.970923i
\(221\) 0.597219 0.451551i 0.0401733 0.0303746i
\(222\) 0 0
\(223\) 5.22419 0.349838 0.174919 0.984583i \(-0.444034\pi\)
0.174919 + 0.984583i \(0.444034\pi\)
\(224\) −10.9746 + 19.0085i −0.733268 + 1.27006i
\(225\) 0 0
\(226\) 35.6319 2.37020
\(227\) −2.78555 + 4.82471i −0.184883 + 0.320227i −0.943537 0.331267i \(-0.892524\pi\)
0.758654 + 0.651494i \(0.225857\pi\)
\(228\) 0 0
\(229\) 11.4445 19.8225i 0.756276 1.30991i −0.188461 0.982081i \(-0.560350\pi\)
0.944737 0.327828i \(-0.106317\pi\)
\(230\) 5.51889 0.363905
\(231\) 0 0
\(232\) 55.4425 3.63998
\(233\) −15.4122 −1.00969 −0.504844 0.863211i \(-0.668450\pi\)
−0.504844 + 0.863211i \(0.668450\pi\)
\(234\) 0 0
\(235\) −1.85350 −0.120909
\(236\) 15.0868 0.982066
\(237\) 0 0
\(238\) −0.853817 −0.0553447
\(239\) 5.97112 10.3423i 0.386240 0.668987i −0.605701 0.795693i \(-0.707107\pi\)
0.991940 + 0.126706i \(0.0404404\pi\)
\(240\) 0 0
\(241\) 8.91315 15.4380i 0.574146 0.994450i −0.421988 0.906602i \(-0.638667\pi\)
0.996134 0.0878488i \(-0.0279992\pi\)
\(242\) 39.0625 2.51103
\(243\) 0 0
\(244\) −20.3365 + 35.2239i −1.30191 + 2.25498i
\(245\) −2.98668 −0.190812
\(246\) 0 0
\(247\) −10.3242 + 7.80602i −0.656914 + 0.496685i
\(248\) 12.8271 22.2172i 0.814521 1.41079i
\(249\) 0 0
\(250\) −16.5067 −1.04397
\(251\) −0.779623 1.35035i −0.0492094 0.0852331i 0.840372 0.542011i \(-0.182337\pi\)
−0.889581 + 0.456778i \(0.849003\pi\)
\(252\) 0 0
\(253\) 8.11905 + 14.0626i 0.510440 + 0.884108i
\(254\) 16.5548 28.6738i 1.03874 1.79915i
\(255\) 0 0
\(256\) −0.677748 −0.0423593
\(257\) 9.90154 + 17.1500i 0.617641 + 1.06979i 0.989915 + 0.141663i \(0.0452450\pi\)
−0.372274 + 0.928123i \(0.621422\pi\)
\(258\) 0 0
\(259\) −7.29533 12.6359i −0.453310 0.785156i
\(260\) 10.8930 + 4.60304i 0.675553 + 0.285469i
\(261\) 0 0
\(262\) −26.1604 + 45.3112i −1.61620 + 2.79934i
\(263\) −16.3224 −1.00648 −0.503241 0.864146i \(-0.667859\pi\)
−0.503241 + 0.864146i \(0.667859\pi\)
\(264\) 0 0
\(265\) −0.806578 + 1.39703i −0.0495477 + 0.0858191i
\(266\) 14.7601 0.904997
\(267\) 0 0
\(268\) −12.5098 21.6676i −0.764157 1.32356i
\(269\) −15.1854 26.3019i −0.925870 1.60365i −0.790156 0.612906i \(-0.790000\pi\)
−0.135714 0.990748i \(-0.543333\pi\)
\(270\) 0 0
\(271\) −11.5518 + 20.0082i −0.701719 + 1.21541i 0.266143 + 0.963933i \(0.414251\pi\)
−0.967863 + 0.251480i \(0.919083\pi\)
\(272\) 1.18882 + 2.05909i 0.0720825 + 0.124851i
\(273\) 0 0
\(274\) 18.8550 32.6578i 1.13907 1.97293i
\(275\) −11.6084 20.1063i −0.700010 1.21245i
\(276\) 0 0
\(277\) 6.84420 11.8545i 0.411228 0.712268i −0.583796 0.811900i \(-0.698433\pi\)
0.995024 + 0.0996320i \(0.0317665\pi\)
\(278\) 9.28030 0.556595
\(279\) 0 0
\(280\) −4.07550 7.05897i −0.243558 0.421854i
\(281\) 13.2269 + 22.9096i 0.789049 + 1.36667i 0.926550 + 0.376171i \(0.122760\pi\)
−0.137501 + 0.990502i \(0.543907\pi\)
\(282\) 0 0
\(283\) −3.30018 5.71608i −0.196175 0.339786i 0.751110 0.660177i \(-0.229519\pi\)
−0.947285 + 0.320392i \(0.896185\pi\)
\(284\) 3.97929 + 6.89233i 0.236127 + 0.408984i
\(285\) 0 0
\(286\) 5.99555 + 48.1864i 0.354524 + 2.84932i
\(287\) 13.3156 0.785996
\(288\) 0 0
\(289\) 8.47844 14.6851i 0.498732 0.863829i
\(290\) −5.88490 + 10.1929i −0.345573 + 0.598550i
\(291\) 0 0
\(292\) 15.3605 0.898907
\(293\) 0.494901 0.0289124 0.0144562 0.999896i \(-0.495398\pi\)
0.0144562 + 0.999896i \(0.495398\pi\)
\(294\) 0 0
\(295\) −0.967898 + 1.67645i −0.0563532 + 0.0976066i
\(296\) −38.2564 + 66.2620i −2.22361 + 3.85140i
\(297\) 0 0
\(298\) 32.8625 1.90367
\(299\) −9.21110 + 6.96441i −0.532691 + 0.402762i
\(300\) 0 0
\(301\) −4.64264 8.04129i −0.267597 0.463492i
\(302\) 1.37457 + 2.38083i 0.0790977 + 0.137001i
\(303\) 0 0
\(304\) −20.5512 35.5957i −1.17869 2.04156i
\(305\) −2.60940 4.51961i −0.149414 0.258792i
\(306\) 0 0
\(307\) 3.08744 0.176210 0.0881048 0.996111i \(-0.471919\pi\)
0.0881048 + 0.996111i \(0.471919\pi\)
\(308\) 19.8393 34.3626i 1.13045 1.95799i
\(309\) 0 0
\(310\) 2.72304 + 4.71644i 0.154658 + 0.267876i
\(311\) −4.13808 + 7.16736i −0.234649 + 0.406424i −0.959171 0.282828i \(-0.908727\pi\)
0.724522 + 0.689252i \(0.242061\pi\)
\(312\) 0 0
\(313\) 14.4586 + 25.0429i 0.817246 + 1.41551i 0.907704 + 0.419611i \(0.137833\pi\)
−0.0904586 + 0.995900i \(0.528833\pi\)
\(314\) 1.34007 2.32107i 0.0756246 0.130986i
\(315\) 0 0
\(316\) 16.3515 + 28.3217i 0.919846 + 1.59322i
\(317\) 1.41121 + 2.44429i 0.0792615 + 0.137285i 0.902932 0.429784i \(-0.141410\pi\)
−0.823670 + 0.567069i \(0.808077\pi\)
\(318\) 0 0
\(319\) −34.6299 −1.93890
\(320\) −4.78941 + 8.29551i −0.267736 + 0.463733i
\(321\) 0 0
\(322\) 13.1687 0.733862
\(323\) 0.372717 0.645564i 0.0207385 0.0359202i
\(324\) 0 0
\(325\) 13.1697 9.95749i 0.730525 0.552342i
\(326\) −9.37340 16.2352i −0.519144 0.899185i
\(327\) 0 0
\(328\) −34.9132 60.4715i −1.92776 3.33898i
\(329\) −4.42266 −0.243829
\(330\) 0 0
\(331\) 6.07904 10.5292i 0.334134 0.578737i −0.649184 0.760631i \(-0.724889\pi\)
0.983318 + 0.181894i \(0.0582228\pi\)
\(332\) −6.30077 10.9133i −0.345800 0.598943i
\(333\) 0 0
\(334\) −24.5125 42.4569i −1.34127 2.32314i
\(335\) 3.21028 0.175396
\(336\) 0 0
\(337\) −10.2611 + 17.7727i −0.558956 + 0.968139i 0.438628 + 0.898668i \(0.355464\pi\)
−0.997584 + 0.0694709i \(0.977869\pi\)
\(338\) −33.4788 + 8.46214i −1.82101 + 0.460280i
\(339\) 0 0
\(340\) −0.681073 −0.0369364
\(341\) −8.01192 + 13.8771i −0.433870 + 0.751484i
\(342\) 0 0
\(343\) −17.9619 −0.969854
\(344\) −24.3458 + 42.1682i −1.31264 + 2.27355i
\(345\) 0 0
\(346\) 2.33708 4.04794i 0.125642 0.217619i
\(347\) −21.6959 −1.16470 −0.582348 0.812940i \(-0.697866\pi\)
−0.582348 + 0.812940i \(0.697866\pi\)
\(348\) 0 0
\(349\) −34.4486 −1.84399 −0.921995 0.387201i \(-0.873442\pi\)
−0.921995 + 0.387201i \(0.873442\pi\)
\(350\) −18.8282 −1.00641
\(351\) 0 0
\(352\) −71.8926 −3.83189
\(353\) 1.42723 0.0759639 0.0379819 0.999278i \(-0.487907\pi\)
0.0379819 + 0.999278i \(0.487907\pi\)
\(354\) 0 0
\(355\) −1.02117 −0.0541981
\(356\) 8.91218 15.4364i 0.472345 0.818125i
\(357\) 0 0
\(358\) 12.3216 21.3417i 0.651218 1.12794i
\(359\) −8.30365 −0.438250 −0.219125 0.975697i \(-0.570320\pi\)
−0.219125 + 0.975697i \(0.570320\pi\)
\(360\) 0 0
\(361\) 3.05680 5.29453i 0.160884 0.278659i
\(362\) −47.0200 −2.47132
\(363\) 0 0
\(364\) 25.9918 + 10.9834i 1.36234 + 0.575684i
\(365\) −0.985461 + 1.70687i −0.0515814 + 0.0893416i
\(366\) 0 0
\(367\) −30.9192 −1.61397 −0.806984 0.590573i \(-0.798902\pi\)
−0.806984 + 0.590573i \(0.798902\pi\)
\(368\) −18.3355 31.7580i −0.955802 1.65550i
\(369\) 0 0
\(370\) −8.12137 14.0666i −0.422210 0.731289i
\(371\) −1.92458 + 3.33347i −0.0999193 + 0.173065i
\(372\) 0 0
\(373\) 14.2576 0.738230 0.369115 0.929384i \(-0.379661\pi\)
0.369115 + 0.929384i \(0.379661\pi\)
\(374\) −1.39831 2.42194i −0.0723047 0.125235i
\(375\) 0 0
\(376\) 11.5961 + 20.0851i 0.598024 + 1.03581i
\(377\) −3.04072 24.4384i −0.156605 1.25864i
\(378\) 0 0
\(379\) 3.17631 5.50154i 0.163156 0.282595i −0.772843 0.634598i \(-0.781166\pi\)
0.935999 + 0.352003i \(0.114499\pi\)
\(380\) 11.7738 0.603984
\(381\) 0 0
\(382\) 0.722094 1.25070i 0.0369455 0.0639915i
\(383\) −29.1159 −1.48775 −0.743877 0.668316i \(-0.767015\pi\)
−0.743877 + 0.668316i \(0.767015\pi\)
\(384\) 0 0
\(385\) 2.54559 + 4.40910i 0.129735 + 0.224708i
\(386\) 32.8085 + 56.8261i 1.66991 + 2.89237i
\(387\) 0 0
\(388\) 23.7283 41.0987i 1.20462 2.08647i
\(389\) −15.8354 27.4277i −0.802887 1.39064i −0.917708 0.397255i \(-0.869963\pi\)
0.114821 0.993386i \(-0.463371\pi\)
\(390\) 0 0
\(391\) 0.332532 0.575962i 0.0168169 0.0291277i
\(392\) 18.6856 + 32.3644i 0.943766 + 1.63465i
\(393\) 0 0
\(394\) −23.9421 + 41.4689i −1.20618 + 2.08917i
\(395\) −4.19616 −0.211132
\(396\) 0 0
\(397\) 7.89246 + 13.6701i 0.396111 + 0.686085i 0.993242 0.116059i \(-0.0370261\pi\)
−0.597131 + 0.802144i \(0.703693\pi\)
\(398\) −22.8199 39.5253i −1.14386 1.98122i
\(399\) 0 0
\(400\) 26.2155 + 45.4065i 1.31077 + 2.27033i
\(401\) −0.379497 0.657309i −0.0189512 0.0328244i 0.856394 0.516322i \(-0.172699\pi\)
−0.875345 + 0.483498i \(0.839366\pi\)
\(402\) 0 0
\(403\) −10.4966 4.43553i −0.522871 0.220950i
\(404\) 21.1700 1.05324
\(405\) 0 0
\(406\) −14.0420 + 24.3215i −0.696893 + 1.20705i
\(407\) 23.8953 41.3879i 1.18445 2.05152i
\(408\) 0 0
\(409\) −26.9714 −1.33365 −0.666824 0.745215i \(-0.732347\pi\)
−0.666824 + 0.745215i \(0.732347\pi\)
\(410\) 14.8233 0.732071
\(411\) 0 0
\(412\) 10.2738 17.7948i 0.506155 0.876686i
\(413\) −2.30951 + 4.00019i −0.113644 + 0.196836i
\(414\) 0 0
\(415\) 1.61691 0.0793712
\(416\) −6.31262 50.7347i −0.309501 2.48747i
\(417\) 0 0
\(418\) 24.1727 + 41.8683i 1.18233 + 2.04785i
\(419\) 5.30079 + 9.18123i 0.258960 + 0.448533i 0.965964 0.258678i \(-0.0832867\pi\)
−0.707003 + 0.707210i \(0.749953\pi\)
\(420\) 0 0
\(421\) −8.35573 14.4725i −0.407233 0.705349i 0.587345 0.809336i \(-0.300173\pi\)
−0.994579 + 0.103988i \(0.966840\pi\)
\(422\) −3.59025 6.21849i −0.174771 0.302711i
\(423\) 0 0
\(424\) 20.1848 0.980262
\(425\) −0.475444 + 0.823492i −0.0230624 + 0.0399452i
\(426\) 0 0
\(427\) −6.22631 10.7843i −0.301312 0.521888i
\(428\) −25.5728 + 44.2933i −1.23611 + 2.14100i
\(429\) 0 0
\(430\) −5.16832 8.95180i −0.249239 0.431694i
\(431\) 4.15171 7.19098i 0.199981 0.346377i −0.748541 0.663089i \(-0.769245\pi\)
0.948522 + 0.316711i \(0.102579\pi\)
\(432\) 0 0
\(433\) 0.0394092 + 0.0682587i 0.00189388 + 0.00328030i 0.866971 0.498359i \(-0.166064\pi\)
−0.865077 + 0.501639i \(0.832730\pi\)
\(434\) 6.49746 + 11.2539i 0.311888 + 0.540206i
\(435\) 0 0
\(436\) −22.1238 −1.05954
\(437\) −5.74852 + 9.95673i −0.274989 + 0.476295i
\(438\) 0 0
\(439\) 25.7420 1.22860 0.614298 0.789074i \(-0.289439\pi\)
0.614298 + 0.789074i \(0.289439\pi\)
\(440\) 13.3490 23.1211i 0.636387 1.10226i
\(441\) 0 0
\(442\) 1.58638 1.19945i 0.0754566 0.0570519i
\(443\) 14.1715 + 24.5458i 0.673309 + 1.16621i 0.976960 + 0.213422i \(0.0684609\pi\)
−0.303651 + 0.952783i \(0.598206\pi\)
\(444\) 0 0
\(445\) 1.14353 + 1.98065i 0.0542085 + 0.0938919i
\(446\) 13.8769 0.657092
\(447\) 0 0
\(448\) −11.4281 + 19.7940i −0.539925 + 0.935178i
\(449\) −2.18709 3.78815i −0.103215 0.178774i 0.809792 0.586716i \(-0.199580\pi\)
−0.913008 + 0.407943i \(0.866246\pi\)
\(450\) 0 0
\(451\) 21.8071 + 37.7710i 1.02686 + 1.77857i
\(452\) 67.8201 3.18999
\(453\) 0 0
\(454\) −7.39920 + 12.8158i −0.347262 + 0.601475i
\(455\) −2.88799 + 2.18358i −0.135391 + 0.102368i
\(456\) 0 0
\(457\) −13.5568 −0.634161 −0.317080 0.948399i \(-0.602703\pi\)
−0.317080 + 0.948399i \(0.602703\pi\)
\(458\) 30.3999 52.6542i 1.42050 2.46037i
\(459\) 0 0
\(460\) 10.5044 0.489770
\(461\) 1.00295 1.73716i 0.0467120 0.0809076i −0.841724 0.539908i \(-0.818459\pi\)
0.888436 + 0.459000i \(0.151792\pi\)
\(462\) 0 0
\(463\) −20.7451 + 35.9315i −0.964104 + 1.66988i −0.252102 + 0.967701i \(0.581122\pi\)
−0.712002 + 0.702177i \(0.752211\pi\)
\(464\) 78.2057 3.63061
\(465\) 0 0
\(466\) −40.9392 −1.89647
\(467\) 25.0664 1.15993 0.579967 0.814640i \(-0.303065\pi\)
0.579967 + 0.814640i \(0.303065\pi\)
\(468\) 0 0
\(469\) 7.66008 0.353710
\(470\) −4.92344 −0.227101
\(471\) 0 0
\(472\) 24.2219 1.11490
\(473\) 15.2066 26.3386i 0.699201 1.21105i
\(474\) 0 0
\(475\) 8.21906 14.2358i 0.377116 0.653184i
\(476\) −1.62512 −0.0744870
\(477\) 0 0
\(478\) 15.8610 27.4720i 0.725465 1.25654i
\(479\) 6.11222 0.279274 0.139637 0.990203i \(-0.455406\pi\)
0.139637 + 0.990203i \(0.455406\pi\)
\(480\) 0 0
\(481\) 31.3056 + 13.2288i 1.42741 + 0.603183i
\(482\) 23.6759 41.0078i 1.07841 1.86785i
\(483\) 0 0
\(484\) 74.3497 3.37953
\(485\) 3.04460 + 5.27341i 0.138248 + 0.239453i
\(486\) 0 0
\(487\) −5.55082 9.61430i −0.251532 0.435666i 0.712416 0.701757i \(-0.247601\pi\)
−0.963948 + 0.266092i \(0.914268\pi\)
\(488\) −32.6505 + 56.5523i −1.47802 + 2.56000i
\(489\) 0 0
\(490\) −7.93346 −0.358397
\(491\) 1.13858 + 1.97207i 0.0513832 + 0.0889984i 0.890573 0.454840i \(-0.150304\pi\)
−0.839190 + 0.543839i \(0.816970\pi\)
\(492\) 0 0
\(493\) 0.709169 + 1.22832i 0.0319394 + 0.0553206i
\(494\) −27.4240 + 20.7350i −1.23387 + 0.932912i
\(495\) 0 0
\(496\) 18.0935 31.3389i 0.812424 1.40716i
\(497\) −2.43662 −0.109298
\(498\) 0 0
\(499\) −5.67665 + 9.83225i −0.254122 + 0.440152i −0.964657 0.263510i \(-0.915120\pi\)
0.710535 + 0.703662i \(0.248453\pi\)
\(500\) −31.4180 −1.40506
\(501\) 0 0
\(502\) −2.07090 3.58690i −0.0924288 0.160091i
\(503\) 17.2266 + 29.8374i 0.768097 + 1.33038i 0.938594 + 0.345025i \(0.112129\pi\)
−0.170497 + 0.985358i \(0.554537\pi\)
\(504\) 0 0
\(505\) −1.35817 + 2.35241i −0.0604377 + 0.104681i
\(506\) 21.5665 + 37.3543i 0.958748 + 1.66060i
\(507\) 0 0
\(508\) 31.5097 54.5764i 1.39802 2.42144i
\(509\) 0.684664 + 1.18587i 0.0303472 + 0.0525629i 0.880800 0.473488i \(-0.157005\pi\)
−0.850453 + 0.526051i \(0.823672\pi\)
\(510\) 0 0
\(511\) −2.35142 + 4.07278i −0.104021 + 0.180169i
\(512\) −23.5252 −1.03968
\(513\) 0 0
\(514\) 26.3013 + 45.5552i 1.16010 + 2.00935i
\(515\) 1.31824 + 2.28326i 0.0580887 + 0.100613i
\(516\) 0 0
\(517\) −7.24304 12.5453i −0.318549 0.551743i
\(518\) −19.3785 33.5645i −0.851441 1.47474i
\(519\) 0 0
\(520\) 17.4887 + 7.39022i 0.766931 + 0.324082i
\(521\) 4.08021 0.178757 0.0893785 0.995998i \(-0.471512\pi\)
0.0893785 + 0.995998i \(0.471512\pi\)
\(522\) 0 0
\(523\) 3.04053 5.26635i 0.132953 0.230281i −0.791861 0.610702i \(-0.790887\pi\)
0.924814 + 0.380420i \(0.124221\pi\)
\(524\) −49.7926 + 86.2432i −2.17520 + 3.76755i
\(525\) 0 0
\(526\) −43.3570 −1.89045
\(527\) 0.656289 0.0285884
\(528\) 0 0
\(529\) 6.37126 11.0353i 0.277011 0.479798i
\(530\) −2.14250 + 3.71092i −0.0930642 + 0.161192i
\(531\) 0 0
\(532\) 28.0936 1.21801
\(533\) −24.7403 + 18.7058i −1.07162 + 0.810240i
\(534\) 0 0
\(535\) −3.28126 5.68331i −0.141861 0.245711i
\(536\) −20.0845 34.7875i −0.867520 1.50259i
\(537\) 0 0
\(538\) −40.3367 69.8653i −1.73904 3.01211i
\(539\) −11.6712 20.2151i −0.502714 0.870727i
\(540\) 0 0
\(541\) −25.5909 −1.10024 −0.550120 0.835086i \(-0.685418\pi\)
−0.550120 + 0.835086i \(0.685418\pi\)
\(542\) −30.6847 + 53.1475i −1.31802 + 2.28288i
\(543\) 0 0
\(544\) 1.47225 + 2.55002i 0.0631223 + 0.109331i
\(545\) 1.41936 2.45841i 0.0607988 0.105307i
\(546\) 0 0
\(547\) −11.9024 20.6155i −0.508909 0.881457i −0.999947 0.0103185i \(-0.996715\pi\)
0.491037 0.871139i \(-0.336618\pi\)
\(548\) 35.8876 62.1592i 1.53304 2.65531i
\(549\) 0 0
\(550\) −30.8351 53.4079i −1.31481 2.27732i
\(551\) −12.2595 21.2341i −0.522272 0.904602i
\(552\) 0 0
\(553\) −10.0125 −0.425774
\(554\) 18.1802 31.4889i 0.772401 1.33784i
\(555\) 0 0
\(556\) 17.6637 0.749107
\(557\) −11.0730 + 19.1790i −0.469178 + 0.812639i −0.999379 0.0352323i \(-0.988783\pi\)
0.530202 + 0.847872i \(0.322116\pi\)
\(558\) 0 0
\(559\) 19.9224 + 8.41863i 0.842630 + 0.356070i
\(560\) −5.74878 9.95719i −0.242930 0.420768i
\(561\) 0 0
\(562\) 35.1343 + 60.8544i 1.48205 + 2.56699i
\(563\) 20.7225 0.873347 0.436674 0.899620i \(-0.356156\pi\)
0.436674 + 0.899620i \(0.356156\pi\)
\(564\) 0 0
\(565\) −4.35103 + 7.53620i −0.183049 + 0.317050i
\(566\) −8.76621 15.1835i −0.368471 0.638211i
\(567\) 0 0
\(568\) 6.38877 + 11.0657i 0.268067 + 0.464306i
\(569\) 44.5426 1.86732 0.933661 0.358159i \(-0.116595\pi\)
0.933661 + 0.358159i \(0.116595\pi\)
\(570\) 0 0
\(571\) 16.8188 29.1310i 0.703845 1.21910i −0.263261 0.964725i \(-0.584798\pi\)
0.967107 0.254371i \(-0.0818685\pi\)
\(572\) 11.4117 + 91.7158i 0.477145 + 3.83483i
\(573\) 0 0
\(574\) 35.3700 1.47632
\(575\) 7.33291 12.7010i 0.305804 0.529667i
\(576\) 0 0
\(577\) 30.4547 1.26784 0.633922 0.773397i \(-0.281444\pi\)
0.633922 + 0.773397i \(0.281444\pi\)
\(578\) 22.5211 39.0078i 0.936756 1.62251i
\(579\) 0 0
\(580\) −11.2010 + 19.4008i −0.465098 + 0.805573i
\(581\) 3.85813 0.160062
\(582\) 0 0
\(583\) −12.6076 −0.522155
\(584\) 24.6615 1.02050
\(585\) 0 0
\(586\) 1.31460 0.0543055
\(587\) −42.0287 −1.73471 −0.867354 0.497691i \(-0.834181\pi\)
−0.867354 + 0.497691i \(0.834181\pi\)
\(588\) 0 0
\(589\) −11.3453 −0.467477
\(590\) −2.57101 + 4.45313i −0.105847 + 0.183332i
\(591\) 0 0
\(592\) −53.9634 + 93.4673i −2.21788 + 3.84148i
\(593\) 6.55587 0.269217 0.134609 0.990899i \(-0.457022\pi\)
0.134609 + 0.990899i \(0.457022\pi\)
\(594\) 0 0
\(595\) 0.104260 0.180583i 0.00427424 0.00740320i
\(596\) 62.5489 2.56210
\(597\) 0 0
\(598\) −24.4673 + 18.4994i −1.00054 + 0.756499i
\(599\) −11.5220 + 19.9566i −0.470774 + 0.815405i −0.999441 0.0334242i \(-0.989359\pi\)
0.528667 + 0.848829i \(0.322692\pi\)
\(600\) 0 0
\(601\) 5.81390 0.237154 0.118577 0.992945i \(-0.462167\pi\)
0.118577 + 0.992945i \(0.462167\pi\)
\(602\) −12.3322 21.3600i −0.502622 0.870567i
\(603\) 0 0
\(604\) 2.61629 + 4.53155i 0.106455 + 0.184386i
\(605\) −4.76994 + 8.26177i −0.193925 + 0.335889i
\(606\) 0 0
\(607\) 32.8020 1.33139 0.665696 0.746223i \(-0.268135\pi\)
0.665696 + 0.746223i \(0.268135\pi\)
\(608\) −25.4510 44.0825i −1.03218 1.78778i
\(609\) 0 0
\(610\) −6.93130 12.0054i −0.280640 0.486083i
\(611\) 8.21727 6.21298i 0.332435 0.251350i
\(612\) 0 0
\(613\) 1.48010 2.56360i 0.0597805 0.103543i −0.834586 0.550877i \(-0.814293\pi\)
0.894367 + 0.447334i \(0.147627\pi\)
\(614\) 8.20112 0.330970
\(615\) 0 0
\(616\) 31.8521 55.1695i 1.28336 2.22284i
\(617\) 45.4995 1.83174 0.915871 0.401472i \(-0.131501\pi\)
0.915871 + 0.401472i \(0.131501\pi\)
\(618\) 0 0
\(619\) 24.4251 + 42.3055i 0.981728 + 1.70040i 0.655659 + 0.755057i \(0.272391\pi\)
0.326069 + 0.945346i \(0.394276\pi\)
\(620\) 5.18290 + 8.97705i 0.208150 + 0.360527i
\(621\) 0 0
\(622\) −10.9919 + 19.0385i −0.440735 + 0.763376i
\(623\) 2.72859 + 4.72605i 0.109318 + 0.189345i
\(624\) 0 0
\(625\) −9.43227 + 16.3372i −0.377291 + 0.653487i
\(626\) 38.4060 + 66.5212i 1.53501 + 2.65872i
\(627\) 0 0
\(628\) 2.55063 4.41782i 0.101781 0.176290i
\(629\) −1.95736 −0.0780450
\(630\) 0 0
\(631\) −10.2771 17.8004i −0.409123 0.708622i 0.585669 0.810551i \(-0.300832\pi\)
−0.994792 + 0.101929i \(0.967499\pi\)
\(632\) 26.2525 + 45.4707i 1.04427 + 1.80873i
\(633\) 0 0
\(634\) 3.74858 + 6.49273i 0.148875 + 0.257859i
\(635\) 4.04303 + 7.00274i 0.160443 + 0.277895i
\(636\) 0 0
\(637\) 13.2410 10.0114i 0.524629 0.396666i
\(638\) −91.9869 −3.64180
\(639\) 0 0
\(640\) −3.52334 + 6.10260i −0.139272 + 0.241227i
\(641\) 2.91485 5.04866i 0.115129 0.199410i −0.802702 0.596380i \(-0.796605\pi\)
0.917832 + 0.396970i \(0.129938\pi\)
\(642\) 0 0
\(643\) 44.2628 1.74555 0.872777 0.488119i \(-0.162317\pi\)
0.872777 + 0.488119i \(0.162317\pi\)
\(644\) 25.0647 0.987686
\(645\) 0 0
\(646\) 0.990041 1.71480i 0.0389527 0.0674680i
\(647\) −8.63857 + 14.9624i −0.339617 + 0.588234i −0.984361 0.176165i \(-0.943631\pi\)
0.644744 + 0.764399i \(0.276964\pi\)
\(648\) 0 0
\(649\) −15.1292 −0.593875
\(650\) 34.9826 26.4499i 1.37213 1.03745i
\(651\) 0 0
\(652\) −17.8409 30.9013i −0.698703 1.21019i
\(653\) −3.47689 6.02216i −0.136061 0.235665i 0.789941 0.613183i \(-0.210111\pi\)
−0.926002 + 0.377518i \(0.876778\pi\)
\(654\) 0 0
\(655\) −6.38892 11.0659i −0.249636 0.432382i
\(656\) −49.2476 85.2994i −1.92280 3.33038i
\(657\) 0 0
\(658\) −11.7479 −0.457979
\(659\) 8.92277 15.4547i 0.347582 0.602030i −0.638237 0.769840i \(-0.720336\pi\)
0.985819 + 0.167810i \(0.0536695\pi\)
\(660\) 0 0
\(661\) 2.20696 + 3.82256i 0.0858407 + 0.148680i 0.905749 0.423814i \(-0.139309\pi\)
−0.819908 + 0.572495i \(0.805976\pi\)
\(662\) 16.1477 27.9686i 0.627596 1.08703i
\(663\) 0 0
\(664\) −10.1159 17.5213i −0.392574 0.679959i
\(665\) −1.80236 + 3.12177i −0.0698924 + 0.121057i
\(666\) 0 0
\(667\) −10.9377 18.9447i −0.423511 0.733542i
\(668\) −46.6560 80.8105i −1.80517 3.12665i
\(669\) 0 0
\(670\) 8.52742 0.329443
\(671\) 20.3938 35.3231i 0.787293 1.36363i
\(672\) 0 0
\(673\) 28.2309 1.08822 0.544110 0.839014i \(-0.316867\pi\)
0.544110 + 0.839014i \(0.316867\pi\)
\(674\) −27.2563 + 47.2093i −1.04987 + 1.81843i
\(675\) 0 0
\(676\) −63.7220 + 16.1064i −2.45085 + 0.619478i
\(677\) 6.30338 + 10.9178i 0.242259 + 0.419604i 0.961357 0.275304i \(-0.0887784\pi\)
−0.719099 + 0.694908i \(0.755445\pi\)
\(678\) 0 0
\(679\) 7.26475 + 12.5829i 0.278796 + 0.482888i
\(680\) −1.09347 −0.0419326
\(681\) 0 0
\(682\) −21.2819 + 36.8614i −0.814927 + 1.41150i
\(683\) 12.3897 + 21.4597i 0.474081 + 0.821132i 0.999560 0.0296749i \(-0.00944720\pi\)
−0.525479 + 0.850807i \(0.676114\pi\)
\(684\) 0 0
\(685\) 4.60477 + 7.97570i 0.175939 + 0.304736i
\(686\) −47.7120 −1.82165
\(687\) 0 0
\(688\) −34.3415 + 59.4812i −1.30926 + 2.26770i
\(689\) −1.10703 8.89723i −0.0421744 0.338957i
\(690\) 0 0
\(691\) 16.8086 0.639430 0.319715 0.947514i \(-0.396413\pi\)
0.319715 + 0.947514i \(0.396413\pi\)
\(692\) 4.44829 7.70466i 0.169099 0.292887i
\(693\) 0 0
\(694\) −57.6304 −2.18762
\(695\) −1.13322 + 1.96280i −0.0429855 + 0.0744531i
\(696\) 0 0
\(697\) 0.893154 1.54699i 0.0338306 0.0585964i
\(698\) −91.5052 −3.46352
\(699\) 0 0
\(700\) −35.8366 −1.35450
\(701\) −11.1825 −0.422358 −0.211179 0.977447i \(-0.567730\pi\)
−0.211179 + 0.977447i \(0.567730\pi\)
\(702\) 0 0
\(703\) 33.8371 1.27619
\(704\) −74.8634 −2.82152
\(705\) 0 0
\(706\) 3.79113 0.142681
\(707\) −3.24073 + 5.61312i −0.121880 + 0.211103i
\(708\) 0 0
\(709\) 13.1682 22.8079i 0.494541 0.856570i −0.505439 0.862862i \(-0.668670\pi\)
0.999980 + 0.00629240i \(0.00200295\pi\)
\(710\) −2.71252 −0.101799
\(711\) 0 0
\(712\) 14.3086 24.7832i 0.536237 0.928789i
\(713\) −10.1221 −0.379077
\(714\) 0 0
\(715\) −10.9236 4.61600i −0.408520 0.172629i
\(716\) 23.4524 40.6208i 0.876458 1.51807i
\(717\) 0 0
\(718\) −22.0569 −0.823154
\(719\) 7.74314 + 13.4115i 0.288770 + 0.500165i 0.973516 0.228617i \(-0.0734203\pi\)
−0.684746 + 0.728782i \(0.740087\pi\)
\(720\) 0 0
\(721\) 3.14547 + 5.44812i 0.117143 + 0.202898i
\(722\) 8.11972 14.0638i 0.302185 0.523399i
\(723\) 0 0
\(724\) −89.4956 −3.32608
\(725\) 15.6384 + 27.0866i 0.580797 + 1.00597i
\(726\) 0 0
\(727\) 11.8967 + 20.6057i 0.441225 + 0.764225i 0.997781 0.0665857i \(-0.0212106\pi\)
−0.556555 + 0.830811i \(0.687877\pi\)
\(728\) 41.7300 + 17.6339i 1.54662 + 0.653554i
\(729\) 0 0
\(730\) −2.61767 + 4.53393i −0.0968842 + 0.167808i
\(731\) −1.24563 −0.0460715
\(732\) 0 0
\(733\) 2.12642 3.68306i 0.0785410 0.136037i −0.824080 0.566474i \(-0.808307\pi\)
0.902621 + 0.430437i \(0.141641\pi\)
\(734\) −82.1302 −3.03148
\(735\) 0 0
\(736\) −22.7070 39.3297i −0.836991 1.44971i
\(737\) 12.5450 + 21.7286i 0.462101 + 0.800382i
\(738\) 0 0
\(739\) −2.29397 + 3.97326i −0.0843849 + 0.146159i −0.905129 0.425137i \(-0.860226\pi\)
0.820744 + 0.571296i \(0.193559\pi\)
\(740\) −15.4578 26.7738i −0.568241 0.984223i
\(741\) 0 0
\(742\) −5.11224 + 8.85465i −0.187676 + 0.325065i
\(743\) 11.1086 + 19.2406i 0.407533 + 0.705868i 0.994613 0.103661i \(-0.0330557\pi\)
−0.587079 + 0.809529i \(0.699722\pi\)
\(744\) 0 0
\(745\) −4.01285 + 6.95046i −0.147020 + 0.254645i
\(746\) 37.8722 1.38660
\(747\) 0 0
\(748\) −2.66147 4.60980i −0.0973129 0.168551i
\(749\) −7.82945 13.5610i −0.286082 0.495508i
\(750\) 0 0
\(751\) 4.83340 + 8.37170i 0.176373 + 0.305488i 0.940636 0.339418i \(-0.110230\pi\)
−0.764262 + 0.644905i \(0.776897\pi\)
\(752\) 16.3572 + 28.3314i 0.596484 + 1.03314i
\(753\) 0 0
\(754\) −8.07703 64.9153i −0.294148 2.36408i
\(755\) −0.671398 −0.0244347
\(756\) 0 0
\(757\) 9.26864 16.0538i 0.336875 0.583484i −0.646969 0.762517i \(-0.723964\pi\)
0.983843 + 0.179033i \(0.0572968\pi\)
\(758\) 8.43719 14.6136i 0.306453 0.530791i
\(759\) 0 0
\(760\) 18.9029 0.685682
\(761\) −23.1466 −0.839065 −0.419533 0.907740i \(-0.637806\pi\)
−0.419533 + 0.907740i \(0.637806\pi\)
\(762\) 0 0
\(763\) 3.38675 5.86603i 0.122609 0.212365i
\(764\) 1.37440 2.38053i 0.0497240 0.0861245i
\(765\) 0 0
\(766\) −77.3402 −2.79442
\(767\) −1.32844 10.6767i −0.0479673 0.385514i
\(768\) 0 0
\(769\) −20.9179 36.2309i −0.754318 1.30652i −0.945712 0.325005i \(-0.894634\pi\)
0.191394 0.981513i \(-0.438699\pi\)
\(770\) 6.76182 + 11.7118i 0.243679 + 0.422065i
\(771\) 0 0
\(772\) 62.4462 + 108.160i 2.24749 + 3.89277i
\(773\) 8.76453 + 15.1806i 0.315238 + 0.546009i 0.979488 0.201502i \(-0.0645823\pi\)
−0.664250 + 0.747511i \(0.731249\pi\)
\(774\) 0 0
\(775\) 14.4723 0.519861
\(776\) 38.0960 65.9843i 1.36757 2.36870i
\(777\) 0 0
\(778\) −42.0634 72.8559i −1.50804 2.61201i
\(779\) −15.4401 + 26.7430i −0.553198 + 0.958168i
\(780\) 0 0
\(781\) −3.99049 6.91173i −0.142791 0.247321i
\(782\) 0.883299 1.52992i 0.0315867 0.0547098i
\(783\) 0 0
\(784\) 26.3574 + 45.6524i 0.941336 + 1.63044i
\(785\) 0.327273 + 0.566854i 0.0116809 + 0.0202319i
\(786\) 0 0
\(787\) −19.5951 −0.698489 −0.349245 0.937032i \(-0.613562\pi\)
−0.349245 + 0.937032i \(0.613562\pi\)
\(788\) −45.5702 + 78.9300i −1.62337 + 2.81176i
\(789\) 0 0
\(790\) −11.1462 −0.396564
\(791\) −10.3820 + 17.9822i −0.369142 + 0.639373i
\(792\) 0 0
\(793\) 26.7182 + 11.2903i 0.948793 + 0.400932i
\(794\) 20.9646 + 36.3118i 0.744006 + 1.28866i
\(795\) 0 0
\(796\) −43.4344 75.2306i −1.53949 2.66648i
\(797\) 10.7281 0.380010 0.190005 0.981783i \(-0.439150\pi\)
0.190005 + 0.981783i \(0.439150\pi\)
\(798\) 0 0
\(799\) −0.296653 + 0.513819i −0.0104948 + 0.0181776i
\(800\) 32.4658 + 56.2323i 1.14784 + 1.98811i
\(801\) 0 0
\(802\) −1.00805 1.74600i −0.0355956 0.0616534i
\(803\) −15.4038 −0.543587
\(804\) 0 0
\(805\) −1.60803 + 2.78519i −0.0566757 + 0.0981652i
\(806\) −27.8818 11.7820i −0.982096 0.415005i
\(807\) 0 0
\(808\) 33.9885 1.19571
\(809\) 21.3013 36.8949i 0.748914 1.29716i −0.199430 0.979912i \(-0.563909\pi\)
0.948344 0.317245i \(-0.102758\pi\)
\(810\) 0 0
\(811\) −12.5260 −0.439847 −0.219923 0.975517i \(-0.570581\pi\)
−0.219923 + 0.975517i \(0.570581\pi\)
\(812\) −26.7269 + 46.2923i −0.937930 + 1.62454i
\(813\) 0 0
\(814\) 63.4727 109.938i 2.22472 3.85332i
\(815\) 4.57836 0.160373
\(816\) 0 0
\(817\) 21.5335 0.753360
\(818\) −71.6436 −2.50496
\(819\) 0 0
\(820\) 28.2140 0.985276
\(821\) −38.9488 −1.35932 −0.679661 0.733527i \(-0.737873\pi\)
−0.679661 + 0.733527i \(0.737873\pi\)
\(822\) 0 0
\(823\) 39.5846 1.37983 0.689916 0.723890i \(-0.257648\pi\)
0.689916 + 0.723890i \(0.257648\pi\)
\(824\) 16.4947 28.5697i 0.574620 0.995271i
\(825\) 0 0
\(826\) −6.13472 + 10.6256i −0.213454 + 0.369713i
\(827\) 19.0344 0.661890 0.330945 0.943650i \(-0.392633\pi\)
0.330945 + 0.943650i \(0.392633\pi\)
\(828\) 0 0
\(829\) −5.06015 + 8.76445i −0.175746 + 0.304402i −0.940419 0.340017i \(-0.889567\pi\)
0.764673 + 0.644419i \(0.222901\pi\)
\(830\) 4.29498 0.149081
\(831\) 0 0
\(832\) −6.57348 52.8312i −0.227894 1.83159i
\(833\) −0.478018 + 0.827951i −0.0165623 + 0.0286868i
\(834\) 0 0
\(835\) 11.9729 0.414341
\(836\) 46.0092 + 79.6902i 1.59126 + 2.75614i
\(837\) 0 0
\(838\) 14.0804 + 24.3880i 0.486399 + 0.842468i
\(839\) 13.6152 23.5823i 0.470050 0.814151i −0.529363 0.848395i \(-0.677569\pi\)
0.999413 + 0.0342445i \(0.0109025\pi\)
\(840\) 0 0
\(841\) 17.6524 0.608703
\(842\) −22.1952 38.4432i −0.764897 1.32484i
\(843\) 0 0
\(844\) −6.83351 11.8360i −0.235219 0.407411i
\(845\) 2.29836 8.11413i 0.0790658 0.279135i
\(846\) 0 0
\(847\) −11.3816 + 19.7135i −0.391076 + 0.677363i
\(848\) 28.4722 0.977738
\(849\) 0 0
\(850\) −1.26291 + 2.18743i −0.0433176 + 0.0750282i
\(851\) 30.1890 1.03486
\(852\) 0 0
\(853\) −4.43767 7.68627i −0.151943 0.263173i 0.779999 0.625781i \(-0.215220\pi\)
−0.931942 + 0.362608i \(0.881886\pi\)
\(854\) −16.5388 28.6461i −0.565948 0.980250i
\(855\) 0 0
\(856\) −41.0572 + 71.1132i −1.40331 + 2.43060i
\(857\) 18.5179 + 32.0740i 0.632560 + 1.09563i 0.987027 + 0.160557i \(0.0513291\pi\)
−0.354467 + 0.935069i \(0.615338\pi\)
\(858\) 0 0
\(859\) −23.2978 + 40.3530i −0.794912 + 1.37683i 0.127983 + 0.991776i \(0.459150\pi\)
−0.922895 + 0.385052i \(0.874184\pi\)
\(860\) −9.83714 17.0384i −0.335444 0.581006i
\(861\) 0 0
\(862\) 11.0281 19.1013i 0.375620 0.650593i
\(863\) 38.8584 1.32275 0.661377 0.750053i \(-0.269972\pi\)
0.661377 + 0.750053i \(0.269972\pi\)
\(864\) 0 0
\(865\) 0.570764 + 0.988591i 0.0194065 + 0.0336131i
\(866\) 0.104682 + 0.181315i 0.00355724 + 0.00616132i
\(867\) 0 0
\(868\) 12.3670 + 21.4202i 0.419762 + 0.727050i
\(869\) −16.3976 28.4014i −0.556249 0.963452i
\(870\) 0 0
\(871\) −14.2324 + 10.7609i −0.482245 + 0.364620i
\(872\) −35.5199 −1.20286
\(873\) 0 0
\(874\) −15.2697 + 26.4479i −0.516506 + 0.894614i
\(875\) 4.80952 8.33034i 0.162592 0.281617i
\(876\) 0 0
\(877\) −16.2126 −0.547460 −0.273730 0.961807i \(-0.588258\pi\)
−0.273730 + 0.961807i \(0.588258\pi\)
\(878\) 68.3780 2.30764
\(879\) 0 0
\(880\) 18.8297 32.6140i 0.634749 1.09942i
\(881\) 17.4979 30.3072i 0.589518 1.02107i −0.404778 0.914415i \(-0.632651\pi\)
0.994296 0.106660i \(-0.0340156\pi\)
\(882\) 0 0
\(883\) −22.3562 −0.752346 −0.376173 0.926549i \(-0.622760\pi\)
−0.376173 + 0.926549i \(0.622760\pi\)
\(884\) 3.01945 2.28297i 0.101555 0.0767847i
\(885\) 0 0
\(886\) 37.6436 + 65.2006i 1.26466 + 2.19046i
\(887\) −6.93763 12.0163i −0.232943 0.403469i 0.725730 0.687980i \(-0.241502\pi\)
−0.958673 + 0.284511i \(0.908169\pi\)
\(888\) 0 0
\(889\) 9.64712 + 16.7093i 0.323554 + 0.560412i
\(890\) 3.03754 + 5.26117i 0.101819 + 0.176355i
\(891\) 0 0
\(892\) 26.4127 0.884363
\(893\) 5.12829 8.88246i 0.171612 0.297240i
\(894\) 0 0
\(895\) 3.00920 + 5.21208i 0.100586 + 0.174221i
\(896\) −8.40707 + 14.5615i −0.280861 + 0.486465i
\(897\) 0 0
\(898\) −5.80953 10.0624i −0.193866 0.335787i
\(899\) 10.7934 18.6947i 0.359981 0.623505i
\(900\) 0 0
\(901\) 0.258185 + 0.447190i 0.00860141 + 0.0148981i
\(902\) 57.9259 + 100.331i 1.92872 + 3.34064i
\(903\) 0 0
\(904\) 108.886 3.62149
\(905\) 5.74163 9.94479i 0.190858 0.330576i
\(906\) 0 0
\(907\) −47.0793 −1.56324 −0.781621 0.623754i \(-0.785607\pi\)
−0.781621 + 0.623754i \(0.785607\pi\)
\(908\) −14.0833 + 24.3930i −0.467371 + 0.809509i
\(909\) 0 0
\(910\) −7.67132 + 5.80020i −0.254302 + 0.192275i
\(911\) −18.3507 31.7844i −0.607987 1.05306i −0.991572 0.129558i \(-0.958644\pi\)
0.383585 0.923505i \(-0.374689\pi\)
\(912\) 0 0
\(913\) 6.31851 + 10.9440i 0.209112 + 0.362193i
\(914\) −36.0107 −1.19113
\(915\) 0 0
\(916\) 57.8618 100.220i 1.91181 3.31135i
\(917\) −15.2447 26.4045i −0.503423 0.871955i
\(918\) 0 0
\(919\) −3.87476 6.71128i −0.127817 0.221385i 0.795014 0.606591i \(-0.207464\pi\)
−0.922830 + 0.385206i \(0.874130\pi\)
\(920\) 16.8649 0.556019
\(921\) 0 0
\(922\) 2.66412 4.61439i 0.0877381 0.151967i
\(923\) 4.52723 3.42299i 0.149015 0.112669i
\(924\) 0 0
\(925\) −43.1632 −1.41920
\(926\) −55.1048 + 95.4443i −1.81085 + 3.13649i
\(927\) 0 0
\(928\) 96.8515 3.17931
\(929\) −9.51347 + 16.4778i −0.312127 + 0.540619i −0.978823 0.204711i \(-0.934375\pi\)
0.666696 + 0.745330i \(0.267708\pi\)
\(930\) 0 0
\(931\) 8.26356 14.3129i 0.270827 0.469086i
\(932\) −77.9218 −2.55241
\(933\) 0 0
\(934\) 66.5835 2.17868
\(935\) 0.682990 0.0223362
\(936\) 0 0
\(937\) −19.2901 −0.630179 −0.315090 0.949062i \(-0.602035\pi\)
−0.315090 + 0.949062i \(0.602035\pi\)
\(938\) 20.3473 0.664364
\(939\) 0 0
\(940\) −9.37103 −0.305649
\(941\) −19.9180 + 34.4989i −0.649307 + 1.12463i 0.333981 + 0.942580i \(0.391608\pi\)
−0.983289 + 0.182053i \(0.941726\pi\)
\(942\) 0 0
\(943\) −13.7754 + 23.8597i −0.448589 + 0.776978i
\(944\) 34.1668 1.11203
\(945\) 0 0
\(946\) 40.3931 69.9629i 1.31329 2.27469i
\(947\) 16.2284 0.527351 0.263675 0.964611i \(-0.415065\pi\)
0.263675 + 0.964611i \(0.415065\pi\)
\(948\) 0 0
\(949\) −1.35255 10.8705i −0.0439055 0.352870i
\(950\) 21.8322 37.8144i 0.708329 1.22686i
\(951\) 0 0
\(952\) −2.60913 −0.0845625
\(953\) −4.95942 8.58997i −0.160651 0.278256i 0.774451 0.632634i \(-0.218026\pi\)
−0.935102 + 0.354377i \(0.884693\pi\)
\(954\) 0 0
\(955\) 0.176350 + 0.305448i 0.00570656 + 0.00988405i
\(956\) 30.1891 52.2890i 0.976384 1.69115i
\(957\) 0 0
\(958\) 16.2358 0.524555
\(959\) 10.9875 + 19.0309i 0.354805 + 0.614540i
\(960\) 0 0
\(961\) 10.5057 + 18.1964i 0.338894 + 0.586981i
\(962\) 83.1567 + 35.1395i 2.68108 + 1.13294i
\(963\) 0 0
\(964\) 45.0635 78.0523i 1.45140 2.51389i
\(965\) −16.0251 −0.515865
\(966\) 0 0
\(967\) 17.1795 29.7558i 0.552456 0.956882i −0.445640 0.895212i \(-0.647024\pi\)
0.998097 0.0616702i \(-0.0196427\pi\)
\(968\) 119.369 3.83666
\(969\) 0 0
\(970\) 8.08733 + 14.0077i 0.259669 + 0.449759i
\(971\) −28.7211 49.7464i −0.921705 1.59644i −0.796777 0.604273i \(-0.793463\pi\)
−0.124928 0.992166i \(-0.539870\pi\)
\(972\) 0 0
\(973\) −2.70399 + 4.68344i −0.0866859 + 0.150144i
\(974\) −14.7446 25.5383i −0.472446 0.818300i
\(975\) 0 0
\(976\) −46.0558 + 79.7711i −1.47421 + 2.55341i
\(977\) −8.57672 14.8553i −0.274394 0.475264i 0.695588 0.718441i \(-0.255144\pi\)
−0.969982 + 0.243177i \(0.921810\pi\)
\(978\) 0 0
\(979\) −8.93727 + 15.4798i −0.285636 + 0.494737i
\(980\) −15.1002 −0.482358
\(981\) 0 0
\(982\) 3.02438 + 5.23839i 0.0965119 + 0.167164i
\(983\) 30.5798 + 52.9658i 0.975346 + 1.68935i 0.678790 + 0.734333i \(0.262505\pi\)
0.296556 + 0.955016i \(0.404162\pi\)
\(984\) 0 0
\(985\) −5.84715 10.1276i −0.186306 0.322691i
\(986\) 1.88376 + 3.26276i 0.0599910 + 0.103907i
\(987\) 0 0
\(988\) −52.1976 + 39.4660i −1.66063 + 1.25558i
\(989\) 19.2118 0.610900
\(990\) 0 0
\(991\) 11.0154 19.0792i 0.349915 0.606071i −0.636319 0.771426i \(-0.719544\pi\)
0.986234 + 0.165355i \(0.0528770\pi\)
\(992\) 22.4074 38.8107i 0.711436 1.23224i
\(993\) 0 0
\(994\) −6.47237 −0.205291
\(995\) 11.1462 0.353359
\(996\) 0 0
\(997\) −16.4450 + 28.4835i −0.520818 + 0.902083i 0.478889 + 0.877875i \(0.341040\pi\)
−0.999707 + 0.0242074i \(0.992294\pi\)
\(998\) −15.0788 + 26.1173i −0.477311 + 0.826727i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.h.a.334.12 24
3.2 odd 2 117.2.h.a.22.1 yes 24
9.2 odd 6 117.2.f.a.61.12 24
9.7 even 3 351.2.f.a.100.1 24
13.3 even 3 351.2.f.a.172.1 24
39.29 odd 6 117.2.f.a.94.12 yes 24
117.16 even 3 inner 351.2.h.a.289.12 24
117.29 odd 6 117.2.h.a.16.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.12 24 9.2 odd 6
117.2.f.a.94.12 yes 24 39.29 odd 6
117.2.h.a.16.1 yes 24 117.29 odd 6
117.2.h.a.22.1 yes 24 3.2 odd 2
351.2.f.a.100.1 24 9.7 even 3
351.2.f.a.172.1 24 13.3 even 3
351.2.h.a.289.12 24 117.16 even 3 inner
351.2.h.a.334.12 24 1.1 even 1 trivial