Properties

Label 351.2.e.c.118.4
Level $351$
Weight $2$
Character 351.118
Analytic conductor $2.803$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 3 x^{10} - x^{9} - 2 x^{8} + 9 x^{7} + 24 x^{6} + 27 x^{5} - 18 x^{4} - 27 x^{3} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.4
Root \(1.70010 - 0.331167i\) of defining polynomial
Character \(\chi\) \(=\) 351.118
Dual form 351.2.e.c.235.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.129090 - 0.223591i) q^{2} +(0.966671 - 1.67432i) q^{4} +(1.73641 - 3.00755i) q^{5} +(2.21165 + 3.83070i) q^{7} -1.01551 q^{8} -0.896615 q^{10} +(0.0632497 + 0.109552i) q^{11} +(0.500000 - 0.866025i) q^{13} +(0.571006 - 0.989012i) q^{14} +(-1.80225 - 3.12159i) q^{16} -0.346319 q^{17} -0.863955 q^{19} +(-3.35707 - 5.81462i) q^{20} +(0.0163299 - 0.0282841i) q^{22} +(-4.05879 + 7.03003i) q^{23} +(-3.53023 - 6.11454i) q^{25} -0.258181 q^{26} +8.55177 q^{28} +(-1.25024 - 2.16549i) q^{29} +(3.01390 - 5.22023i) q^{31} +(-1.48082 + 2.56485i) q^{32} +(0.0447064 + 0.0774338i) q^{34} +15.3613 q^{35} -2.44616 q^{37} +(0.111528 + 0.193173i) q^{38} +(-1.76335 + 3.05421i) q^{40} +(2.36645 - 4.09881i) q^{41} +(3.36581 + 5.82976i) q^{43} +0.244567 q^{44} +2.09580 q^{46} +(0.107498 + 0.186192i) q^{47} +(-6.28282 + 10.8822i) q^{49} +(-0.911438 + 1.57866i) q^{50} +(-0.966671 - 1.67432i) q^{52} +4.02070 q^{53} +0.439310 q^{55} +(-2.24596 - 3.89012i) q^{56} +(-0.322789 + 0.559087i) q^{58} +(-6.87049 + 11.9000i) q^{59} +(1.36331 + 2.36132i) q^{61} -1.55626 q^{62} -6.44436 q^{64} +(-1.73641 - 3.00755i) q^{65} +(-2.00833 + 3.47853i) q^{67} +(-0.334776 + 0.579850i) q^{68} +(-1.98300 - 3.43466i) q^{70} -8.55239 q^{71} -9.17500 q^{73} +(0.315775 + 0.546939i) q^{74} +(-0.835161 + 1.44654i) q^{76} +(-0.279773 + 0.484581i) q^{77} +(-0.216092 - 0.374282i) q^{79} -12.5178 q^{80} -1.22194 q^{82} +(-0.520310 - 0.901203i) q^{83} +(-0.601351 + 1.04157i) q^{85} +(0.868988 - 1.50513i) q^{86} +(-0.0642309 - 0.111251i) q^{88} +10.8984 q^{89} +4.42331 q^{91} +(7.84703 + 13.5915i) q^{92} +(0.0277539 - 0.0480712i) q^{94} +(-1.50018 + 2.59839i) q^{95} +(-0.0894355 - 0.154907i) q^{97} +3.24421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} - 3 q^{5} + 12 q^{8} - 12 q^{10} - 7 q^{11} + 6 q^{13} - 13 q^{14} - 6 q^{16} + 28 q^{17} - 6 q^{19} - 17 q^{20} + 3 q^{22} - 17 q^{23} - 3 q^{25} - 4 q^{26} + 30 q^{28} - 14 q^{29}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.129090 0.223591i −0.0912807 0.158103i 0.816770 0.576964i \(-0.195763\pi\)
−0.908050 + 0.418861i \(0.862429\pi\)
\(3\) 0 0
\(4\) 0.966671 1.67432i 0.483336 0.837162i
\(5\) 1.73641 3.00755i 0.776546 1.34502i −0.157376 0.987539i \(-0.550303\pi\)
0.933922 0.357478i \(-0.116363\pi\)
\(6\) 0 0
\(7\) 2.21165 + 3.83070i 0.835927 + 1.44787i 0.893274 + 0.449513i \(0.148402\pi\)
−0.0573473 + 0.998354i \(0.518264\pi\)
\(8\) −1.01551 −0.359038
\(9\) 0 0
\(10\) −0.896615 −0.283534
\(11\) 0.0632497 + 0.109552i 0.0190705 + 0.0330311i 0.875403 0.483394i \(-0.160596\pi\)
−0.856333 + 0.516425i \(0.827263\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 0.571006 0.989012i 0.152608 0.264325i
\(15\) 0 0
\(16\) −1.80225 3.12159i −0.450562 0.780397i
\(17\) −0.346319 −0.0839947 −0.0419973 0.999118i \(-0.513372\pi\)
−0.0419973 + 0.999118i \(0.513372\pi\)
\(18\) 0 0
\(19\) −0.863955 −0.198205 −0.0991024 0.995077i \(-0.531597\pi\)
−0.0991024 + 0.995077i \(0.531597\pi\)
\(20\) −3.35707 5.81462i −0.750665 1.30019i
\(21\) 0 0
\(22\) 0.0163299 0.0282841i 0.00348154 0.00603020i
\(23\) −4.05879 + 7.03003i −0.846316 + 1.46586i 0.0381573 + 0.999272i \(0.487851\pi\)
−0.884473 + 0.466591i \(0.845482\pi\)
\(24\) 0 0
\(25\) −3.53023 6.11454i −0.706047 1.22291i
\(26\) −0.258181 −0.0506334
\(27\) 0 0
\(28\) 8.55177 1.61613
\(29\) −1.25024 2.16549i −0.232165 0.402121i 0.726280 0.687399i \(-0.241247\pi\)
−0.958445 + 0.285278i \(0.907914\pi\)
\(30\) 0 0
\(31\) 3.01390 5.22023i 0.541313 0.937582i −0.457516 0.889201i \(-0.651261\pi\)
0.998829 0.0483803i \(-0.0154059\pi\)
\(32\) −1.48082 + 2.56485i −0.261774 + 0.453406i
\(33\) 0 0
\(34\) 0.0447064 + 0.0774338i 0.00766709 + 0.0132798i
\(35\) 15.3613 2.59654
\(36\) 0 0
\(37\) −2.44616 −0.402146 −0.201073 0.979576i \(-0.564443\pi\)
−0.201073 + 0.979576i \(0.564443\pi\)
\(38\) 0.111528 + 0.193173i 0.0180923 + 0.0313367i
\(39\) 0 0
\(40\) −1.76335 + 3.05421i −0.278810 + 0.482912i
\(41\) 2.36645 4.09881i 0.369577 0.640127i −0.619922 0.784663i \(-0.712836\pi\)
0.989499 + 0.144537i \(0.0461692\pi\)
\(42\) 0 0
\(43\) 3.36581 + 5.82976i 0.513281 + 0.889030i 0.999881 + 0.0154046i \(0.00490364\pi\)
−0.486600 + 0.873625i \(0.661763\pi\)
\(44\) 0.244567 0.0368698
\(45\) 0 0
\(46\) 2.09580 0.309009
\(47\) 0.107498 + 0.186192i 0.0156802 + 0.0271589i 0.873759 0.486359i \(-0.161675\pi\)
−0.858079 + 0.513518i \(0.828342\pi\)
\(48\) 0 0
\(49\) −6.28282 + 10.8822i −0.897546 + 1.55460i
\(50\) −0.911438 + 1.57866i −0.128897 + 0.223256i
\(51\) 0 0
\(52\) −0.966671 1.67432i −0.134053 0.232187i
\(53\) 4.02070 0.552285 0.276142 0.961117i \(-0.410944\pi\)
0.276142 + 0.961117i \(0.410944\pi\)
\(54\) 0 0
\(55\) 0.439310 0.0592365
\(56\) −2.24596 3.89012i −0.300130 0.519840i
\(57\) 0 0
\(58\) −0.322789 + 0.559087i −0.0423843 + 0.0734117i
\(59\) −6.87049 + 11.9000i −0.894461 + 1.54925i −0.0599909 + 0.998199i \(0.519107\pi\)
−0.834470 + 0.551053i \(0.814226\pi\)
\(60\) 0 0
\(61\) 1.36331 + 2.36132i 0.174554 + 0.302336i 0.940007 0.341156i \(-0.110818\pi\)
−0.765453 + 0.643492i \(0.777485\pi\)
\(62\) −1.55626 −0.197646
\(63\) 0 0
\(64\) −6.44436 −0.805545
\(65\) −1.73641 3.00755i −0.215375 0.373041i
\(66\) 0 0
\(67\) −2.00833 + 3.47853i −0.245356 + 0.424970i −0.962232 0.272232i \(-0.912238\pi\)
0.716875 + 0.697201i \(0.245572\pi\)
\(68\) −0.334776 + 0.579850i −0.0405976 + 0.0703171i
\(69\) 0 0
\(70\) −1.98300 3.43466i −0.237014 0.410520i
\(71\) −8.55239 −1.01498 −0.507491 0.861657i \(-0.669427\pi\)
−0.507491 + 0.861657i \(0.669427\pi\)
\(72\) 0 0
\(73\) −9.17500 −1.07385 −0.536926 0.843629i \(-0.680415\pi\)
−0.536926 + 0.843629i \(0.680415\pi\)
\(74\) 0.315775 + 0.546939i 0.0367081 + 0.0635803i
\(75\) 0 0
\(76\) −0.835161 + 1.44654i −0.0957995 + 0.165930i
\(77\) −0.279773 + 0.484581i −0.0318831 + 0.0552231i
\(78\) 0 0
\(79\) −0.216092 0.374282i −0.0243122 0.0421100i 0.853613 0.520907i \(-0.174406\pi\)
−0.877926 + 0.478797i \(0.841073\pi\)
\(80\) −12.5178 −1.39953
\(81\) 0 0
\(82\) −1.22194 −0.134941
\(83\) −0.520310 0.901203i −0.0571114 0.0989198i 0.836056 0.548644i \(-0.184856\pi\)
−0.893168 + 0.449724i \(0.851522\pi\)
\(84\) 0 0
\(85\) −0.601351 + 1.04157i −0.0652257 + 0.112974i
\(86\) 0.868988 1.50513i 0.0937053 0.162302i
\(87\) 0 0
\(88\) −0.0642309 0.111251i −0.00684704 0.0118594i
\(89\) 10.8984 1.15523 0.577614 0.816310i \(-0.303984\pi\)
0.577614 + 0.816310i \(0.303984\pi\)
\(90\) 0 0
\(91\) 4.42331 0.463689
\(92\) 7.84703 + 13.5915i 0.818109 + 1.41701i
\(93\) 0 0
\(94\) 0.0277539 0.0480712i 0.00286260 0.00495817i
\(95\) −1.50018 + 2.59839i −0.153915 + 0.266589i
\(96\) 0 0
\(97\) −0.0894355 0.154907i −0.00908080 0.0157284i 0.861449 0.507844i \(-0.169557\pi\)
−0.870530 + 0.492115i \(0.836224\pi\)
\(98\) 3.24421 0.327715
\(99\) 0 0
\(100\) −13.6503 −1.36503
\(101\) 6.46044 + 11.1898i 0.642838 + 1.11343i 0.984796 + 0.173713i \(0.0555766\pi\)
−0.341958 + 0.939715i \(0.611090\pi\)
\(102\) 0 0
\(103\) 3.06676 5.31178i 0.302177 0.523385i −0.674452 0.738319i \(-0.735620\pi\)
0.976629 + 0.214933i \(0.0689535\pi\)
\(104\) −0.507757 + 0.879460i −0.0497896 + 0.0862382i
\(105\) 0 0
\(106\) −0.519033 0.898991i −0.0504129 0.0873178i
\(107\) 15.9671 1.54360 0.771801 0.635864i \(-0.219356\pi\)
0.771801 + 0.635864i \(0.219356\pi\)
\(108\) 0 0
\(109\) −3.73167 −0.357429 −0.178715 0.983901i \(-0.557194\pi\)
−0.178715 + 0.983901i \(0.557194\pi\)
\(110\) −0.0567106 0.0982257i −0.00540715 0.00936545i
\(111\) 0 0
\(112\) 7.97190 13.8077i 0.753274 1.30471i
\(113\) −7.85519 + 13.6056i −0.738954 + 1.27991i 0.214013 + 0.976831i \(0.431347\pi\)
−0.952967 + 0.303075i \(0.901987\pi\)
\(114\) 0 0
\(115\) 14.0954 + 24.4140i 1.31441 + 2.27662i
\(116\) −4.83430 −0.448854
\(117\) 0 0
\(118\) 3.54765 0.326588
\(119\) −0.765937 1.32664i −0.0702134 0.121613i
\(120\) 0 0
\(121\) 5.49200 9.51242i 0.499273 0.864766i
\(122\) 0.351980 0.609647i 0.0318668 0.0551949i
\(123\) 0 0
\(124\) −5.82691 10.0925i −0.523272 0.906333i
\(125\) −7.15563 −0.640019
\(126\) 0 0
\(127\) 14.0100 1.24319 0.621594 0.783340i \(-0.286486\pi\)
0.621594 + 0.783340i \(0.286486\pi\)
\(128\) 3.79354 + 6.57061i 0.335305 + 0.580765i
\(129\) 0 0
\(130\) −0.448307 + 0.776491i −0.0393192 + 0.0681028i
\(131\) 2.92767 5.07088i 0.255792 0.443045i −0.709318 0.704888i \(-0.750997\pi\)
0.965110 + 0.261844i \(0.0843305\pi\)
\(132\) 0 0
\(133\) −1.91077 3.30955i −0.165685 0.286974i
\(134\) 1.03702 0.0895852
\(135\) 0 0
\(136\) 0.351691 0.0301573
\(137\) −8.47896 14.6860i −0.724406 1.25471i −0.959218 0.282667i \(-0.908781\pi\)
0.234812 0.972041i \(-0.424553\pi\)
\(138\) 0 0
\(139\) −5.36604 + 9.29425i −0.455142 + 0.788328i −0.998696 0.0510454i \(-0.983745\pi\)
0.543555 + 0.839374i \(0.317078\pi\)
\(140\) 14.8494 25.7199i 1.25500 2.17373i
\(141\) 0 0
\(142\) 1.10403 + 1.91224i 0.0926483 + 0.160472i
\(143\) 0.126499 0.0105784
\(144\) 0 0
\(145\) −8.68375 −0.721146
\(146\) 1.18440 + 2.05145i 0.0980220 + 0.169779i
\(147\) 0 0
\(148\) −2.36463 + 4.09566i −0.194371 + 0.336661i
\(149\) 2.98801 5.17539i 0.244787 0.423984i −0.717284 0.696781i \(-0.754615\pi\)
0.962072 + 0.272796i \(0.0879485\pi\)
\(150\) 0 0
\(151\) −9.59560 16.6201i −0.780879 1.35252i −0.931430 0.363920i \(-0.881438\pi\)
0.150551 0.988602i \(-0.451895\pi\)
\(152\) 0.877358 0.0711631
\(153\) 0 0
\(154\) 0.144464 0.0116412
\(155\) −10.4667 18.1289i −0.840709 1.45615i
\(156\) 0 0
\(157\) −9.50028 + 16.4550i −0.758205 + 1.31325i 0.185560 + 0.982633i \(0.440590\pi\)
−0.943765 + 0.330617i \(0.892743\pi\)
\(158\) −0.0557907 + 0.0966323i −0.00443847 + 0.00768765i
\(159\) 0 0
\(160\) 5.14262 + 8.90727i 0.406560 + 0.704182i
\(161\) −35.9065 −2.82983
\(162\) 0 0
\(163\) 4.70788 0.368750 0.184375 0.982856i \(-0.440974\pi\)
0.184375 + 0.982856i \(0.440974\pi\)
\(164\) −4.57516 7.92440i −0.357260 0.618792i
\(165\) 0 0
\(166\) −0.134334 + 0.232673i −0.0104263 + 0.0180589i
\(167\) 8.06308 13.9657i 0.623940 1.08070i −0.364805 0.931084i \(-0.618864\pi\)
0.988745 0.149612i \(-0.0478023\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0.310515 0.0238154
\(171\) 0 0
\(172\) 13.0145 0.992349
\(173\) 5.96073 + 10.3243i 0.453186 + 0.784940i 0.998582 0.0532379i \(-0.0169542\pi\)
−0.545396 + 0.838178i \(0.683621\pi\)
\(174\) 0 0
\(175\) 15.6153 27.0465i 1.18041 2.04452i
\(176\) 0.227984 0.394879i 0.0171849 0.0297651i
\(177\) 0 0
\(178\) −1.40688 2.43678i −0.105450 0.182645i
\(179\) 3.82703 0.286046 0.143023 0.989719i \(-0.454318\pi\)
0.143023 + 0.989719i \(0.454318\pi\)
\(180\) 0 0
\(181\) 11.3406 0.842940 0.421470 0.906842i \(-0.361514\pi\)
0.421470 + 0.906842i \(0.361514\pi\)
\(182\) −0.571006 0.989012i −0.0423258 0.0733104i
\(183\) 0 0
\(184\) 4.12175 7.13909i 0.303860 0.526301i
\(185\) −4.24753 + 7.35693i −0.312284 + 0.540892i
\(186\) 0 0
\(187\) −0.0219046 0.0379398i −0.00160182 0.00277444i
\(188\) 0.415661 0.0303152
\(189\) 0 0
\(190\) 0.774635 0.0561979
\(191\) 3.19558 + 5.53491i 0.231224 + 0.400492i 0.958169 0.286204i \(-0.0923935\pi\)
−0.726944 + 0.686696i \(0.759060\pi\)
\(192\) 0 0
\(193\) −6.14567 + 10.6446i −0.442375 + 0.766215i −0.997865 0.0653075i \(-0.979197\pi\)
0.555491 + 0.831523i \(0.312531\pi\)
\(194\) −0.0230905 + 0.0399940i −0.00165780 + 0.00287140i
\(195\) 0 0
\(196\) 12.1469 + 21.0390i 0.867632 + 1.50278i
\(197\) 6.01862 0.428809 0.214404 0.976745i \(-0.431219\pi\)
0.214404 + 0.976745i \(0.431219\pi\)
\(198\) 0 0
\(199\) −11.0716 −0.784846 −0.392423 0.919785i \(-0.628363\pi\)
−0.392423 + 0.919785i \(0.628363\pi\)
\(200\) 3.58500 + 6.20940i 0.253498 + 0.439071i
\(201\) 0 0
\(202\) 1.66796 2.88900i 0.117357 0.203269i
\(203\) 5.53022 9.57862i 0.388145 0.672287i
\(204\) 0 0
\(205\) −8.21825 14.2344i −0.573987 0.994175i
\(206\) −1.58355 −0.110331
\(207\) 0 0
\(208\) −3.60450 −0.249927
\(209\) −0.0546449 0.0946478i −0.00377987 0.00654692i
\(210\) 0 0
\(211\) −5.03787 + 8.72584i −0.346821 + 0.600712i −0.985683 0.168610i \(-0.946072\pi\)
0.638862 + 0.769321i \(0.279406\pi\)
\(212\) 3.88669 6.73195i 0.266939 0.462352i
\(213\) 0 0
\(214\) −2.06120 3.57011i −0.140901 0.244048i
\(215\) 23.3777 1.59435
\(216\) 0 0
\(217\) 26.6628 1.80999
\(218\) 0.481722 + 0.834368i 0.0326264 + 0.0565105i
\(219\) 0 0
\(220\) 0.424668 0.735547i 0.0286311 0.0495905i
\(221\) −0.173159 + 0.299921i −0.0116480 + 0.0201749i
\(222\) 0 0
\(223\) −8.78466 15.2155i −0.588264 1.01890i −0.994460 0.105117i \(-0.966478\pi\)
0.406196 0.913786i \(-0.366855\pi\)
\(224\) −13.1002 −0.875297
\(225\) 0 0
\(226\) 4.05612 0.269809
\(227\) −11.6006 20.0928i −0.769958 1.33361i −0.937585 0.347756i \(-0.886944\pi\)
0.167627 0.985850i \(-0.446390\pi\)
\(228\) 0 0
\(229\) 4.57963 7.93215i 0.302630 0.524171i −0.674101 0.738640i \(-0.735469\pi\)
0.976731 + 0.214468i \(0.0688019\pi\)
\(230\) 3.63917 6.30323i 0.239960 0.415623i
\(231\) 0 0
\(232\) 1.26964 + 2.19908i 0.0833560 + 0.144377i
\(233\) −20.1888 −1.32261 −0.661307 0.750116i \(-0.729998\pi\)
−0.661307 + 0.750116i \(0.729998\pi\)
\(234\) 0 0
\(235\) 0.746643 0.0487056
\(236\) 13.2830 + 23.0068i 0.864650 + 1.49762i
\(237\) 0 0
\(238\) −0.197750 + 0.342513i −0.0128182 + 0.0222018i
\(239\) 3.84883 6.66638i 0.248960 0.431212i −0.714277 0.699863i \(-0.753244\pi\)
0.963238 + 0.268651i \(0.0865778\pi\)
\(240\) 0 0
\(241\) −1.55399 2.69159i −0.100101 0.173381i 0.811625 0.584179i \(-0.198583\pi\)
−0.911726 + 0.410798i \(0.865250\pi\)
\(242\) −2.83586 −0.182296
\(243\) 0 0
\(244\) 5.27149 0.337472
\(245\) 21.8191 + 37.7918i 1.39397 + 2.41443i
\(246\) 0 0
\(247\) −0.431977 + 0.748207i −0.0274861 + 0.0476073i
\(248\) −3.06066 + 5.30122i −0.194352 + 0.336628i
\(249\) 0 0
\(250\) 0.923722 + 1.59993i 0.0584213 + 0.101189i
\(251\) −9.63549 −0.608187 −0.304093 0.952642i \(-0.598354\pi\)
−0.304093 + 0.952642i \(0.598354\pi\)
\(252\) 0 0
\(253\) −1.02687 −0.0645587
\(254\) −1.80856 3.13251i −0.113479 0.196551i
\(255\) 0 0
\(256\) −5.46494 + 9.46556i −0.341559 + 0.591597i
\(257\) 2.12898 3.68750i 0.132802 0.230020i −0.791954 0.610581i \(-0.790936\pi\)
0.924756 + 0.380561i \(0.124269\pi\)
\(258\) 0 0
\(259\) −5.41005 9.37048i −0.336164 0.582253i
\(260\) −6.71415 −0.416394
\(261\) 0 0
\(262\) −1.51174 −0.0933954
\(263\) −9.94611 17.2272i −0.613303 1.06227i −0.990680 0.136213i \(-0.956507\pi\)
0.377376 0.926060i \(-0.376826\pi\)
\(264\) 0 0
\(265\) 6.98157 12.0924i 0.428875 0.742832i
\(266\) −0.493324 + 0.854462i −0.0302476 + 0.0523904i
\(267\) 0 0
\(268\) 3.88279 + 6.72519i 0.237179 + 0.410806i
\(269\) −5.80864 −0.354159 −0.177080 0.984197i \(-0.556665\pi\)
−0.177080 + 0.984197i \(0.556665\pi\)
\(270\) 0 0
\(271\) −18.1178 −1.10058 −0.550290 0.834974i \(-0.685483\pi\)
−0.550290 + 0.834974i \(0.685483\pi\)
\(272\) 0.624153 + 1.08106i 0.0378448 + 0.0655492i
\(273\) 0 0
\(274\) −2.18910 + 3.79164i −0.132249 + 0.229061i
\(275\) 0.446573 0.773486i 0.0269293 0.0466430i
\(276\) 0 0
\(277\) −5.60978 9.71642i −0.337059 0.583803i 0.646819 0.762643i \(-0.276099\pi\)
−0.983878 + 0.178840i \(0.942766\pi\)
\(278\) 2.77082 0.166183
\(279\) 0 0
\(280\) −15.5996 −0.932257
\(281\) −4.51700 7.82368i −0.269462 0.466721i 0.699261 0.714866i \(-0.253512\pi\)
−0.968723 + 0.248145i \(0.920179\pi\)
\(282\) 0 0
\(283\) 9.31076 16.1267i 0.553467 0.958633i −0.444554 0.895752i \(-0.646638\pi\)
0.998021 0.0628813i \(-0.0200289\pi\)
\(284\) −8.26735 + 14.3195i −0.490577 + 0.849705i
\(285\) 0 0
\(286\) −0.0163299 0.0282841i −0.000965605 0.00167248i
\(287\) 20.9351 1.23576
\(288\) 0 0
\(289\) −16.8801 −0.992945
\(290\) 1.12099 + 1.94161i 0.0658267 + 0.114015i
\(291\) 0 0
\(292\) −8.86921 + 15.3619i −0.519031 + 0.898989i
\(293\) −1.75915 + 3.04694i −0.102771 + 0.178004i −0.912825 0.408350i \(-0.866104\pi\)
0.810054 + 0.586355i \(0.199437\pi\)
\(294\) 0 0
\(295\) 23.8599 + 41.3266i 1.38918 + 2.40613i
\(296\) 2.48410 0.144386
\(297\) 0 0
\(298\) −1.54289 −0.0893774
\(299\) 4.05879 + 7.03003i 0.234726 + 0.406557i
\(300\) 0 0
\(301\) −14.8880 + 25.7868i −0.858131 + 1.48633i
\(302\) −2.47740 + 4.29098i −0.142558 + 0.246918i
\(303\) 0 0
\(304\) 1.55706 + 2.69691i 0.0893037 + 0.154678i
\(305\) 9.46905 0.542196
\(306\) 0 0
\(307\) 15.8342 0.903707 0.451853 0.892092i \(-0.350763\pi\)
0.451853 + 0.892092i \(0.350763\pi\)
\(308\) 0.540897 + 0.936861i 0.0308205 + 0.0533826i
\(309\) 0 0
\(310\) −2.70231 + 4.68054i −0.153481 + 0.265837i
\(311\) −8.04473 + 13.9339i −0.456175 + 0.790117i −0.998755 0.0498865i \(-0.984114\pi\)
0.542580 + 0.840004i \(0.317447\pi\)
\(312\) 0 0
\(313\) −2.23621 3.87323i −0.126398 0.218928i 0.795880 0.605454i \(-0.207008\pi\)
−0.922279 + 0.386526i \(0.873675\pi\)
\(314\) 4.90558 0.276838
\(315\) 0 0
\(316\) −0.835558 −0.0470038
\(317\) 6.48094 + 11.2253i 0.364006 + 0.630477i 0.988616 0.150460i \(-0.0480754\pi\)
−0.624610 + 0.780937i \(0.714742\pi\)
\(318\) 0 0
\(319\) 0.158155 0.273933i 0.00885500 0.0153373i
\(320\) −11.1900 + 19.3817i −0.625543 + 1.08347i
\(321\) 0 0
\(322\) 4.63519 + 8.02838i 0.258309 + 0.447404i
\(323\) 0.299204 0.0166481
\(324\) 0 0
\(325\) −7.06047 −0.391644
\(326\) −0.607743 1.05264i −0.0336597 0.0583004i
\(327\) 0 0
\(328\) −2.40316 + 4.16240i −0.132692 + 0.229830i
\(329\) −0.475497 + 0.823585i −0.0262150 + 0.0454057i
\(330\) 0 0
\(331\) −7.08304 12.2682i −0.389319 0.674320i 0.603039 0.797712i \(-0.293956\pi\)
−0.992358 + 0.123391i \(0.960623\pi\)
\(332\) −2.01187 −0.110416
\(333\) 0 0
\(334\) −4.16346 −0.227815
\(335\) 6.97456 + 12.0803i 0.381061 + 0.660017i
\(336\) 0 0
\(337\) 13.0374 22.5815i 0.710194 1.23009i −0.254590 0.967049i \(-0.581941\pi\)
0.964784 0.263043i \(-0.0847260\pi\)
\(338\) −0.129090 + 0.223591i −0.00702159 + 0.0121617i
\(339\) 0 0
\(340\) 1.16262 + 2.01371i 0.0630518 + 0.109209i
\(341\) 0.762514 0.0412925
\(342\) 0 0
\(343\) −24.6186 −1.32928
\(344\) −3.41803 5.92020i −0.184288 0.319196i
\(345\) 0 0
\(346\) 1.53894 2.66553i 0.0827342 0.143300i
\(347\) 12.5166 21.6793i 0.671924 1.16381i −0.305433 0.952213i \(-0.598801\pi\)
0.977358 0.211594i \(-0.0678654\pi\)
\(348\) 0 0
\(349\) −5.96790 10.3367i −0.319454 0.553311i 0.660920 0.750456i \(-0.270166\pi\)
−0.980374 + 0.197145i \(0.936833\pi\)
\(350\) −8.06314 −0.430993
\(351\) 0 0
\(352\) −0.374646 −0.0199687
\(353\) −7.42385 12.8585i −0.395132 0.684388i 0.597986 0.801506i \(-0.295968\pi\)
−0.993118 + 0.117118i \(0.962634\pi\)
\(354\) 0 0
\(355\) −14.8505 + 25.7217i −0.788180 + 1.36517i
\(356\) 10.5352 18.2475i 0.558363 0.967113i
\(357\) 0 0
\(358\) −0.494033 0.855690i −0.0261105 0.0452246i
\(359\) −35.0911 −1.85204 −0.926019 0.377477i \(-0.876792\pi\)
−0.926019 + 0.377477i \(0.876792\pi\)
\(360\) 0 0
\(361\) −18.2536 −0.960715
\(362\) −1.46396 2.53566i −0.0769442 0.133271i
\(363\) 0 0
\(364\) 4.27588 7.40605i 0.224117 0.388182i
\(365\) −15.9316 + 27.5943i −0.833896 + 1.44435i
\(366\) 0 0
\(367\) 6.82647 + 11.8238i 0.356339 + 0.617197i 0.987346 0.158580i \(-0.0506916\pi\)
−0.631007 + 0.775777i \(0.717358\pi\)
\(368\) 29.2598 1.52527
\(369\) 0 0
\(370\) 2.19326 0.114022
\(371\) 8.89239 + 15.4021i 0.461670 + 0.799635i
\(372\) 0 0
\(373\) 8.89873 15.4130i 0.460759 0.798057i −0.538240 0.842791i \(-0.680911\pi\)
0.998999 + 0.0447342i \(0.0142441\pi\)
\(374\) −0.00565534 + 0.00979533i −0.000292431 + 0.000506505i
\(375\) 0 0
\(376\) −0.109166 0.189081i −0.00562979 0.00975109i
\(377\) −2.50049 −0.128782
\(378\) 0 0
\(379\) 21.8610 1.12292 0.561461 0.827503i \(-0.310240\pi\)
0.561461 + 0.827503i \(0.310240\pi\)
\(380\) 2.90036 + 5.02357i 0.148785 + 0.257704i
\(381\) 0 0
\(382\) 0.825038 1.42901i 0.0422126 0.0731144i
\(383\) −4.25617 + 7.37190i −0.217480 + 0.376687i −0.954037 0.299689i \(-0.903117\pi\)
0.736557 + 0.676376i \(0.236450\pi\)
\(384\) 0 0
\(385\) 0.971601 + 1.68286i 0.0495174 + 0.0857666i
\(386\) 3.17338 0.161521
\(387\) 0 0
\(388\) −0.345819 −0.0175563
\(389\) −6.27691 10.8719i −0.318252 0.551229i 0.661871 0.749618i \(-0.269763\pi\)
−0.980123 + 0.198389i \(0.936429\pi\)
\(390\) 0 0
\(391\) 1.40564 2.43463i 0.0710860 0.123125i
\(392\) 6.38029 11.0510i 0.322253 0.558159i
\(393\) 0 0
\(394\) −0.776946 1.34571i −0.0391420 0.0677959i
\(395\) −1.50089 −0.0755182
\(396\) 0 0
\(397\) 5.98359 0.300308 0.150154 0.988663i \(-0.452023\pi\)
0.150154 + 0.988663i \(0.452023\pi\)
\(398\) 1.42924 + 2.47551i 0.0716413 + 0.124086i
\(399\) 0 0
\(400\) −12.7247 + 22.0399i −0.636236 + 1.10199i
\(401\) 11.2778 19.5337i 0.563185 0.975466i −0.434031 0.900898i \(-0.642909\pi\)
0.997216 0.0745676i \(-0.0237577\pi\)
\(402\) 0 0
\(403\) −3.01390 5.22023i −0.150133 0.260038i
\(404\) 24.9805 1.24283
\(405\) 0 0
\(406\) −2.85559 −0.141721
\(407\) −0.154719 0.267981i −0.00766912 0.0132833i
\(408\) 0 0
\(409\) −1.36458 + 2.36351i −0.0674739 + 0.116868i −0.897789 0.440426i \(-0.854827\pi\)
0.830315 + 0.557295i \(0.188161\pi\)
\(410\) −2.12179 + 3.67505i −0.104788 + 0.181498i
\(411\) 0 0
\(412\) −5.92909 10.2695i −0.292105 0.505941i
\(413\) −60.7805 −2.99082
\(414\) 0 0
\(415\) −3.61388 −0.177398
\(416\) 1.48082 + 2.56485i 0.0726031 + 0.125752i
\(417\) 0 0
\(418\) −0.0141083 + 0.0244362i −0.000690058 + 0.00119521i
\(419\) −16.2360 + 28.1216i −0.793180 + 1.37383i 0.130809 + 0.991408i \(0.458243\pi\)
−0.923989 + 0.382420i \(0.875091\pi\)
\(420\) 0 0
\(421\) −6.69111 11.5894i −0.326105 0.564830i 0.655630 0.755082i \(-0.272403\pi\)
−0.981735 + 0.190252i \(0.939070\pi\)
\(422\) 2.60136 0.126632
\(423\) 0 0
\(424\) −4.08307 −0.198291
\(425\) 1.22259 + 2.11758i 0.0593041 + 0.102718i
\(426\) 0 0
\(427\) −6.03033 + 10.4448i −0.291828 + 0.505461i
\(428\) 15.4350 26.7342i 0.746078 1.29225i
\(429\) 0 0
\(430\) −3.01784 5.22705i −0.145533 0.252071i
\(431\) 14.6522 0.705772 0.352886 0.935666i \(-0.385200\pi\)
0.352886 + 0.935666i \(0.385200\pi\)
\(432\) 0 0
\(433\) 6.62721 0.318483 0.159242 0.987240i \(-0.449095\pi\)
0.159242 + 0.987240i \(0.449095\pi\)
\(434\) −3.44192 5.96157i −0.165217 0.286165i
\(435\) 0 0
\(436\) −3.60730 + 6.24802i −0.172758 + 0.299226i
\(437\) 3.50661 6.07363i 0.167744 0.290541i
\(438\) 0 0
\(439\) 15.9958 + 27.7055i 0.763438 + 1.32231i 0.941069 + 0.338216i \(0.109823\pi\)
−0.177631 + 0.984097i \(0.556843\pi\)
\(440\) −0.446125 −0.0212682
\(441\) 0 0
\(442\) 0.0894128 0.00425293
\(443\) −10.5559 18.2834i −0.501527 0.868670i −0.999998 0.00176387i \(-0.999439\pi\)
0.498472 0.866906i \(-0.333895\pi\)
\(444\) 0 0
\(445\) 18.9241 32.7775i 0.897087 1.55380i
\(446\) −2.26803 + 3.92834i −0.107394 + 0.186012i
\(447\) 0 0
\(448\) −14.2527 24.6864i −0.673377 1.16632i
\(449\) 7.87220 0.371512 0.185756 0.982596i \(-0.440527\pi\)
0.185756 + 0.982596i \(0.440527\pi\)
\(450\) 0 0
\(451\) 0.598709 0.0281921
\(452\) 15.1868 + 26.3043i 0.714326 + 1.23725i
\(453\) 0 0
\(454\) −2.99505 + 5.18758i −0.140565 + 0.243465i
\(455\) 7.68067 13.3033i 0.360075 0.623669i
\(456\) 0 0
\(457\) 12.6044 + 21.8315i 0.589609 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(458\) −2.36474 −0.110497
\(459\) 0 0
\(460\) 54.5026 2.54120
\(461\) 5.65188 + 9.78934i 0.263234 + 0.455935i 0.967099 0.254398i \(-0.0818775\pi\)
−0.703865 + 0.710333i \(0.748544\pi\)
\(462\) 0 0
\(463\) −15.1397 + 26.2227i −0.703602 + 1.21867i 0.263592 + 0.964634i \(0.415093\pi\)
−0.967194 + 0.254040i \(0.918241\pi\)
\(464\) −4.50651 + 7.80550i −0.209209 + 0.362361i
\(465\) 0 0
\(466\) 2.60618 + 4.51404i 0.120729 + 0.209109i
\(467\) 30.8192 1.42614 0.713070 0.701093i \(-0.247304\pi\)
0.713070 + 0.701093i \(0.247304\pi\)
\(468\) 0 0
\(469\) −17.7669 −0.820400
\(470\) −0.0963843 0.166943i −0.00444588 0.00770049i
\(471\) 0 0
\(472\) 6.97707 12.0846i 0.321146 0.556241i
\(473\) −0.425773 + 0.737461i −0.0195771 + 0.0339085i
\(474\) 0 0
\(475\) 3.04996 + 5.28269i 0.139942 + 0.242386i
\(476\) −2.96164 −0.135746
\(477\) 0 0
\(478\) −1.98739 −0.0909011
\(479\) −6.39593 11.0781i −0.292237 0.506170i 0.682101 0.731258i \(-0.261066\pi\)
−0.974338 + 0.225088i \(0.927733\pi\)
\(480\) 0 0
\(481\) −1.22308 + 2.11843i −0.0557675 + 0.0965922i
\(482\) −0.401210 + 0.694917i −0.0182746 + 0.0316526i
\(483\) 0 0
\(484\) −10.6179 18.3908i −0.482633 0.835944i
\(485\) −0.621187 −0.0282066
\(486\) 0 0
\(487\) 7.29411 0.330528 0.165264 0.986249i \(-0.447152\pi\)
0.165264 + 0.986249i \(0.447152\pi\)
\(488\) −1.38446 2.39795i −0.0626715 0.108550i
\(489\) 0 0
\(490\) 5.63327 9.75711i 0.254485 0.440782i
\(491\) 2.41978 4.19118i 0.109203 0.189146i −0.806244 0.591582i \(-0.798503\pi\)
0.915448 + 0.402437i \(0.131837\pi\)
\(492\) 0 0
\(493\) 0.432983 + 0.749949i 0.0195006 + 0.0337760i
\(494\) 0.223057 0.0100358
\(495\) 0 0
\(496\) −21.7272 −0.975581
\(497\) −18.9149 32.7616i −0.848451 1.46956i
\(498\) 0 0
\(499\) 1.05749 1.83163i 0.0473398 0.0819949i −0.841385 0.540437i \(-0.818259\pi\)
0.888724 + 0.458442i \(0.151592\pi\)
\(500\) −6.91714 + 11.9808i −0.309344 + 0.535799i
\(501\) 0 0
\(502\) 1.24385 + 2.15441i 0.0555157 + 0.0961560i
\(503\) −2.80951 −0.125270 −0.0626349 0.998037i \(-0.519950\pi\)
−0.0626349 + 0.998037i \(0.519950\pi\)
\(504\) 0 0
\(505\) 44.8719 1.99677
\(506\) 0.132559 + 0.229599i 0.00589296 + 0.0102069i
\(507\) 0 0
\(508\) 13.5431 23.4573i 0.600877 1.04075i
\(509\) −8.57868 + 14.8587i −0.380243 + 0.658601i −0.991097 0.133143i \(-0.957493\pi\)
0.610853 + 0.791744i \(0.290826\pi\)
\(510\) 0 0
\(511\) −20.2919 35.1466i −0.897662 1.55480i
\(512\) 17.9961 0.795321
\(513\) 0 0
\(514\) −1.09932 −0.0484890
\(515\) −10.6503 18.4468i −0.469308 0.812865i
\(516\) 0 0
\(517\) −0.0135984 + 0.0235532i −0.000598059 + 0.00103587i
\(518\) −1.39677 + 2.41928i −0.0613706 + 0.106297i
\(519\) 0 0
\(520\) 1.76335 + 3.05421i 0.0773279 + 0.133936i
\(521\) 38.3213 1.67889 0.839444 0.543447i \(-0.182881\pi\)
0.839444 + 0.543447i \(0.182881\pi\)
\(522\) 0 0
\(523\) 2.55236 0.111607 0.0558034 0.998442i \(-0.482228\pi\)
0.0558034 + 0.998442i \(0.482228\pi\)
\(524\) −5.66019 9.80374i −0.247267 0.428279i
\(525\) 0 0
\(526\) −2.56789 + 4.44772i −0.111965 + 0.193930i
\(527\) −1.04377 + 1.80787i −0.0454674 + 0.0787518i
\(528\) 0 0
\(529\) −21.4475 37.1482i −0.932502 1.61514i
\(530\) −3.60501 −0.156592
\(531\) 0 0
\(532\) −7.38834 −0.320325
\(533\) −2.36645 4.09881i −0.102502 0.177539i
\(534\) 0 0
\(535\) 27.7255 48.0220i 1.19868 2.07617i
\(536\) 2.03948 3.53249i 0.0880923 0.152580i
\(537\) 0 0
\(538\) 0.749840 + 1.29876i 0.0323279 + 0.0559935i
\(539\) −1.58955 −0.0684667
\(540\) 0 0
\(541\) 36.7134 1.57843 0.789216 0.614115i \(-0.210487\pi\)
0.789216 + 0.614115i \(0.210487\pi\)
\(542\) 2.33884 + 4.05098i 0.100462 + 0.174005i
\(543\) 0 0
\(544\) 0.512836 0.888257i 0.0219876 0.0380837i
\(545\) −6.47970 + 11.2232i −0.277560 + 0.480748i
\(546\) 0 0
\(547\) 3.05186 + 5.28597i 0.130488 + 0.226012i 0.923865 0.382719i \(-0.125012\pi\)
−0.793377 + 0.608731i \(0.791679\pi\)
\(548\) −32.7855 −1.40053
\(549\) 0 0
\(550\) −0.230593 −0.00983251
\(551\) 1.08016 + 1.87088i 0.0460162 + 0.0797023i
\(552\) 0 0
\(553\) 0.955840 1.65556i 0.0406464 0.0704017i
\(554\) −1.44834 + 2.50859i −0.0615339 + 0.106580i
\(555\) 0 0
\(556\) 10.3744 + 17.9690i 0.439972 + 0.762054i
\(557\) −13.9705 −0.591948 −0.295974 0.955196i \(-0.595644\pi\)
−0.295974 + 0.955196i \(0.595644\pi\)
\(558\) 0 0
\(559\) 6.73162 0.284717
\(560\) −27.6850 47.9518i −1.16990 2.02633i
\(561\) 0 0
\(562\) −1.16620 + 2.01992i −0.0491933 + 0.0852053i
\(563\) −7.16514 + 12.4104i −0.301975 + 0.523035i −0.976583 0.215140i \(-0.930979\pi\)
0.674609 + 0.738176i \(0.264312\pi\)
\(564\) 0 0
\(565\) 27.2796 + 47.2497i 1.14766 + 1.98781i
\(566\) −4.80772 −0.202083
\(567\) 0 0
\(568\) 8.68507 0.364417
\(569\) −8.61432 14.9204i −0.361131 0.625497i 0.627016 0.779006i \(-0.284276\pi\)
−0.988147 + 0.153509i \(0.950943\pi\)
\(570\) 0 0
\(571\) 2.40564 4.16669i 0.100673 0.174371i −0.811289 0.584645i \(-0.801234\pi\)
0.911962 + 0.410275i \(0.134567\pi\)
\(572\) 0.122283 0.211801i 0.00511293 0.00885585i
\(573\) 0 0
\(574\) −2.70251 4.68089i −0.112801 0.195377i
\(575\) 57.3139 2.39015
\(576\) 0 0
\(577\) −34.1265 −1.42071 −0.710353 0.703845i \(-0.751465\pi\)
−0.710353 + 0.703845i \(0.751465\pi\)
\(578\) 2.17905 + 3.77423i 0.0906367 + 0.156987i
\(579\) 0 0
\(580\) −8.39433 + 14.5394i −0.348556 + 0.603716i
\(581\) 2.30149 3.98630i 0.0954819 0.165379i
\(582\) 0 0
\(583\) 0.254308 + 0.440474i 0.0105324 + 0.0182426i
\(584\) 9.31734 0.385554
\(585\) 0 0
\(586\) 0.908359 0.0375240
\(587\) −5.05262 8.75140i −0.208544 0.361209i 0.742712 0.669611i \(-0.233539\pi\)
−0.951256 + 0.308402i \(0.900206\pi\)
\(588\) 0 0
\(589\) −2.60388 + 4.51005i −0.107291 + 0.185833i
\(590\) 6.16018 10.6697i 0.253611 0.439266i
\(591\) 0 0
\(592\) 4.40858 + 7.63589i 0.181192 + 0.313833i
\(593\) 38.0081 1.56081 0.780403 0.625277i \(-0.215014\pi\)
0.780403 + 0.625277i \(0.215014\pi\)
\(594\) 0 0
\(595\) −5.31992 −0.218096
\(596\) −5.77685 10.0058i −0.236629 0.409853i
\(597\) 0 0
\(598\) 1.04790 1.81502i 0.0428519 0.0742216i
\(599\) −14.6376 + 25.3531i −0.598078 + 1.03590i 0.395027 + 0.918670i \(0.370735\pi\)
−0.993105 + 0.117231i \(0.962598\pi\)
\(600\) 0 0
\(601\) 22.8635 + 39.6007i 0.932621 + 1.61535i 0.778823 + 0.627244i \(0.215817\pi\)
0.153798 + 0.988102i \(0.450849\pi\)
\(602\) 7.68760 0.313323
\(603\) 0 0
\(604\) −37.1032 −1.50971
\(605\) −19.0727 33.0349i −0.775416 1.34306i
\(606\) 0 0
\(607\) −19.4032 + 33.6074i −0.787552 + 1.36408i 0.139910 + 0.990164i \(0.455319\pi\)
−0.927462 + 0.373916i \(0.878015\pi\)
\(608\) 1.27936 2.21592i 0.0518849 0.0898674i
\(609\) 0 0
\(610\) −1.22236 2.11719i −0.0494920 0.0857227i
\(611\) 0.214996 0.00869781
\(612\) 0 0
\(613\) −36.9472 −1.49228 −0.746142 0.665787i \(-0.768096\pi\)
−0.746142 + 0.665787i \(0.768096\pi\)
\(614\) −2.04405 3.54039i −0.0824910 0.142879i
\(615\) 0 0
\(616\) 0.284113 0.492098i 0.0114472 0.0198272i
\(617\) 3.13825 5.43561i 0.126341 0.218830i −0.795915 0.605408i \(-0.793010\pi\)
0.922256 + 0.386579i \(0.126343\pi\)
\(618\) 0 0
\(619\) −7.04204 12.1972i −0.283043 0.490246i 0.689089 0.724676i \(-0.258011\pi\)
−0.972133 + 0.234431i \(0.924677\pi\)
\(620\) −40.4716 −1.62538
\(621\) 0 0
\(622\) 4.15399 0.166560
\(623\) 24.1035 + 41.7485i 0.965686 + 1.67262i
\(624\) 0 0
\(625\) 5.22607 9.05182i 0.209043 0.362073i
\(626\) −0.577347 + 0.999994i −0.0230754 + 0.0399678i
\(627\) 0 0
\(628\) 18.3673 + 31.8131i 0.732935 + 1.26948i
\(629\) 0.847150 0.0337781
\(630\) 0 0
\(631\) 7.83048 0.311727 0.155863 0.987779i \(-0.450184\pi\)
0.155863 + 0.987779i \(0.450184\pi\)
\(632\) 0.219444 + 0.380088i 0.00872901 + 0.0151191i
\(633\) 0 0
\(634\) 1.67325 2.89816i 0.0664534 0.115101i
\(635\) 24.3271 42.1358i 0.965392 1.67211i
\(636\) 0 0
\(637\) 6.28282 + 10.8822i 0.248935 + 0.431167i
\(638\) −0.0816653 −0.00323316
\(639\) 0 0
\(640\) 26.3486 1.04152
\(641\) −15.7922 27.3529i −0.623754 1.08037i −0.988780 0.149376i \(-0.952273\pi\)
0.365026 0.930997i \(-0.381060\pi\)
\(642\) 0 0
\(643\) −15.7929 + 27.3540i −0.622809 + 1.07874i 0.366151 + 0.930556i \(0.380675\pi\)
−0.988960 + 0.148182i \(0.952658\pi\)
\(644\) −34.7098 + 60.1192i −1.36776 + 2.36903i
\(645\) 0 0
\(646\) −0.0386243 0.0668993i −0.00151965 0.00263212i
\(647\) 33.6109 1.32138 0.660691 0.750658i \(-0.270263\pi\)
0.660691 + 0.750658i \(0.270263\pi\)
\(648\) 0 0
\(649\) −1.73823 −0.0682313
\(650\) 0.911438 + 1.57866i 0.0357495 + 0.0619200i
\(651\) 0 0
\(652\) 4.55098 7.88252i 0.178230 0.308703i
\(653\) 11.3303 19.6246i 0.443389 0.767972i −0.554550 0.832151i \(-0.687110\pi\)
0.997938 + 0.0641790i \(0.0204429\pi\)
\(654\) 0 0
\(655\) −10.1673 17.6102i −0.397268 0.688089i
\(656\) −17.0597 −0.666071
\(657\) 0 0
\(658\) 0.245528 0.00957169
\(659\) 7.75617 + 13.4341i 0.302137 + 0.523317i 0.976620 0.214973i \(-0.0689665\pi\)
−0.674482 + 0.738291i \(0.735633\pi\)
\(660\) 0 0
\(661\) 13.8979 24.0719i 0.540566 0.936287i −0.458306 0.888795i \(-0.651544\pi\)
0.998872 0.0474928i \(-0.0151231\pi\)
\(662\) −1.82870 + 3.16741i −0.0710746 + 0.123105i
\(663\) 0 0
\(664\) 0.528381 + 0.915183i 0.0205052 + 0.0355160i
\(665\) −13.2715 −0.514647
\(666\) 0 0
\(667\) 20.2979 0.785939
\(668\) −15.5887 27.0004i −0.603145 1.04468i
\(669\) 0 0
\(670\) 1.80070 3.11890i 0.0695670 0.120494i
\(671\) −0.172458 + 0.298706i −0.00665766 + 0.0115314i
\(672\) 0 0
\(673\) −18.1337 31.4085i −0.699004 1.21071i −0.968812 0.247796i \(-0.920294\pi\)
0.269809 0.962914i \(-0.413040\pi\)
\(674\) −6.73202 −0.259308
\(675\) 0 0
\(676\) −1.93334 −0.0743593
\(677\) 2.57859 + 4.46625i 0.0991033 + 0.171652i 0.911314 0.411713i \(-0.135069\pi\)
−0.812210 + 0.583365i \(0.801736\pi\)
\(678\) 0 0
\(679\) 0.395601 0.685201i 0.0151818 0.0262956i
\(680\) 0.610680 1.05773i 0.0234185 0.0405621i
\(681\) 0 0
\(682\) −0.0984332 0.170491i −0.00376920 0.00652845i
\(683\) 8.03083 0.307291 0.153646 0.988126i \(-0.450899\pi\)
0.153646 + 0.988126i \(0.450899\pi\)
\(684\) 0 0
\(685\) −58.8917 −2.25014
\(686\) 3.17802 + 5.50449i 0.121337 + 0.210163i
\(687\) 0 0
\(688\) 12.1321 21.0134i 0.462531 0.801127i
\(689\) 2.01035 3.48202i 0.0765881 0.132655i
\(690\) 0 0
\(691\) 11.1712 + 19.3491i 0.424973 + 0.736075i 0.996418 0.0845656i \(-0.0269503\pi\)
−0.571445 + 0.820640i \(0.693617\pi\)
\(692\) 23.0482 0.876163
\(693\) 0 0
\(694\) −6.46307 −0.245335
\(695\) 18.6353 + 32.2773i 0.706877 + 1.22435i
\(696\) 0 0
\(697\) −0.819546 + 1.41950i −0.0310425 + 0.0537672i
\(698\) −1.54080 + 2.66874i −0.0583200 + 0.101013i
\(699\) 0 0
\(700\) −30.1897 52.2902i −1.14106 1.97638i
\(701\) 17.7526 0.670507 0.335253 0.942128i \(-0.391178\pi\)
0.335253 + 0.942128i \(0.391178\pi\)
\(702\) 0 0
\(703\) 2.11337 0.0797072
\(704\) −0.407604 0.705991i −0.0153622 0.0266080i
\(705\) 0 0
\(706\) −1.91669 + 3.31981i −0.0721357 + 0.124943i
\(707\) −28.5765 + 49.4960i −1.07473 + 1.86149i
\(708\) 0 0
\(709\) −9.36197 16.2154i −0.351596 0.608983i 0.634933 0.772567i \(-0.281028\pi\)
−0.986529 + 0.163585i \(0.947694\pi\)
\(710\) 7.66820 0.287782
\(711\) 0 0
\(712\) −11.0675 −0.414771
\(713\) 24.4656 + 42.3757i 0.916244 + 1.58698i
\(714\) 0 0
\(715\) 0.219655 0.380453i 0.00821462 0.0142281i
\(716\) 3.69948 6.40769i 0.138256 0.239467i
\(717\) 0 0
\(718\) 4.52992 + 7.84606i 0.169055 + 0.292812i
\(719\) −25.9370 −0.967287 −0.483643 0.875265i \(-0.660687\pi\)
−0.483643 + 0.875265i \(0.660687\pi\)
\(720\) 0 0
\(721\) 27.1304 1.01039
\(722\) 2.35636 + 4.08134i 0.0876947 + 0.151892i
\(723\) 0 0
\(724\) 10.9626 18.9878i 0.407423 0.705678i
\(725\) −8.82731 + 15.2894i −0.327838 + 0.567832i
\(726\) 0 0
\(727\) 18.6904 + 32.3727i 0.693189 + 1.20064i 0.970788 + 0.239941i \(0.0771280\pi\)
−0.277599 + 0.960697i \(0.589539\pi\)
\(728\) −4.49193 −0.166482
\(729\) 0 0
\(730\) 8.22644 0.304474
\(731\) −1.16564 2.01895i −0.0431129 0.0746737i
\(732\) 0 0
\(733\) −15.5642 + 26.9579i −0.574875 + 0.995713i 0.421180 + 0.906977i \(0.361616\pi\)
−0.996055 + 0.0887358i \(0.971717\pi\)
\(734\) 1.76246 3.05268i 0.0650537 0.112676i
\(735\) 0 0
\(736\) −12.0207 20.8204i −0.443088 0.767450i
\(737\) −0.508105 −0.0187163
\(738\) 0 0
\(739\) 23.1713 0.852369 0.426184 0.904636i \(-0.359858\pi\)
0.426184 + 0.904636i \(0.359858\pi\)
\(740\) 8.21193 + 14.2235i 0.301876 + 0.522865i
\(741\) 0 0
\(742\) 2.29584 3.97652i 0.0842830 0.145982i
\(743\) 7.95031 13.7703i 0.291669 0.505185i −0.682536 0.730852i \(-0.739123\pi\)
0.974204 + 0.225667i \(0.0724562\pi\)
\(744\) 0 0
\(745\) −10.3768 17.9732i −0.380177 0.658486i
\(746\) −4.59496 −0.168233
\(747\) 0 0
\(748\) −0.0846981 −0.00309687
\(749\) 35.3138 + 61.1653i 1.29034 + 2.23493i
\(750\) 0 0
\(751\) 4.97369 8.61468i 0.181492 0.314354i −0.760897 0.648873i \(-0.775241\pi\)
0.942389 + 0.334519i \(0.108574\pi\)
\(752\) 0.387477 0.671129i 0.0141298 0.0244736i
\(753\) 0 0
\(754\) 0.322789 + 0.559087i 0.0117553 + 0.0203608i
\(755\) −66.6476 −2.42555
\(756\) 0 0
\(757\) −43.8603 −1.59413 −0.797064 0.603894i \(-0.793615\pi\)
−0.797064 + 0.603894i \(0.793615\pi\)
\(758\) −2.82204 4.88791i −0.102501 0.177537i
\(759\) 0 0
\(760\) 1.52345 2.63870i 0.0552614 0.0957156i
\(761\) 23.8404 41.2927i 0.864213 1.49686i −0.00361442 0.999993i \(-0.501151\pi\)
0.867827 0.496867i \(-0.165516\pi\)
\(762\) 0 0
\(763\) −8.25316 14.2949i −0.298784 0.517510i
\(764\) 12.3563 0.447036
\(765\) 0 0
\(766\) 2.19772 0.0794069
\(767\) 6.87049 + 11.9000i 0.248079 + 0.429685i
\(768\) 0 0
\(769\) −7.85242 + 13.6008i −0.283165 + 0.490457i −0.972163 0.234307i \(-0.924718\pi\)
0.688997 + 0.724764i \(0.258051\pi\)
\(770\) 0.250849 0.434482i 0.00903996 0.0156577i
\(771\) 0 0
\(772\) 11.8817 + 20.5797i 0.427631 + 0.740678i
\(773\) 11.8142 0.424929 0.212464 0.977169i \(-0.431851\pi\)
0.212464 + 0.977169i \(0.431851\pi\)
\(774\) 0 0
\(775\) −42.5591 −1.52877
\(776\) 0.0908229 + 0.157310i 0.00326035 + 0.00564710i
\(777\) 0 0
\(778\) −1.62058 + 2.80692i −0.0581005 + 0.100633i
\(779\) −2.04451 + 3.54119i −0.0732520 + 0.126876i
\(780\) 0 0
\(781\) −0.540937 0.936930i −0.0193562 0.0335260i
\(782\) −0.725816 −0.0259551
\(783\) 0 0
\(784\) 45.2929 1.61760
\(785\) 32.9928 + 57.1451i 1.17756 + 2.03960i
\(786\) 0 0
\(787\) −7.21696 + 12.5001i −0.257257 + 0.445582i −0.965506 0.260381i \(-0.916152\pi\)
0.708249 + 0.705962i \(0.249485\pi\)
\(788\) 5.81803 10.0771i 0.207259 0.358983i
\(789\) 0 0
\(790\) 0.193751 + 0.335586i 0.00689335 + 0.0119396i
\(791\) −69.4918 −2.47084
\(792\) 0 0
\(793\) 2.72662 0.0968250
\(794\) −0.772423 1.33788i −0.0274123 0.0474795i
\(795\) 0 0
\(796\) −10.7026 + 18.5375i −0.379344 + 0.657043i
\(797\) −16.5103 + 28.5967i −0.584826 + 1.01295i 0.410071 + 0.912054i \(0.365504\pi\)
−0.994897 + 0.100895i \(0.967829\pi\)
\(798\) 0 0
\(799\) −0.0372286 0.0644818i −0.00131705 0.00228120i
\(800\) 20.9106 0.739300
\(801\) 0 0
\(802\) −5.82341 −0.205632
\(803\) −0.580316 1.00514i −0.0204789 0.0354705i
\(804\) 0 0
\(805\) −62.3485 + 107.991i −2.19749 + 3.80617i
\(806\) −0.778132 + 1.34776i −0.0274085 + 0.0474730i
\(807\) 0 0
\(808\) −6.56067 11.3634i −0.230803 0.399763i
\(809\) −33.4952 −1.17763 −0.588815 0.808268i \(-0.700405\pi\)
−0.588815 + 0.808268i \(0.700405\pi\)
\(810\) 0 0
\(811\) 4.18463 0.146942 0.0734710 0.997297i \(-0.476592\pi\)
0.0734710 + 0.997297i \(0.476592\pi\)
\(812\) −10.6918 18.5188i −0.375209 0.649881i
\(813\) 0 0
\(814\) −0.0399454 + 0.0691874i −0.00140008 + 0.00242502i
\(815\) 8.17481 14.1592i 0.286351 0.495975i
\(816\) 0 0
\(817\) −2.90791 5.03665i −0.101735 0.176210i
\(818\) 0.704614 0.0246363
\(819\) 0 0
\(820\) −31.7774 −1.10971
\(821\) 19.0814 + 33.0499i 0.665944 + 1.15345i 0.979028 + 0.203724i \(0.0653044\pi\)
−0.313084 + 0.949725i \(0.601362\pi\)
\(822\) 0 0
\(823\) −22.2367 + 38.5150i −0.775121 + 1.34255i 0.159605 + 0.987181i \(0.448978\pi\)
−0.934726 + 0.355368i \(0.884355\pi\)
\(824\) −3.11433 + 5.39418i −0.108493 + 0.187915i
\(825\) 0 0
\(826\) 7.84618 + 13.5900i 0.273004 + 0.472856i
\(827\) 38.7632 1.34793 0.673964 0.738764i \(-0.264590\pi\)
0.673964 + 0.738764i \(0.264590\pi\)
\(828\) 0 0
\(829\) −8.74501 −0.303727 −0.151863 0.988402i \(-0.548527\pi\)
−0.151863 + 0.988402i \(0.548527\pi\)
\(830\) 0.466517 + 0.808032i 0.0161930 + 0.0280472i
\(831\) 0 0
\(832\) −3.22218 + 5.58098i −0.111709 + 0.193486i
\(833\) 2.17586 3.76870i 0.0753891 0.130578i
\(834\) 0 0
\(835\) −28.0016 48.5002i −0.969036 1.67842i
\(836\) −0.211295 −0.00730778
\(837\) 0 0
\(838\) 8.38364 0.289608
\(839\) −17.5080 30.3247i −0.604442 1.04692i −0.992139 0.125138i \(-0.960063\pi\)
0.387697 0.921787i \(-0.373271\pi\)
\(840\) 0 0
\(841\) 11.3738 19.7000i 0.392199 0.679309i
\(842\) −1.72752 + 2.99215i −0.0595342 + 0.103116i
\(843\) 0 0
\(844\) 9.73992 + 16.8700i 0.335262 + 0.580691i
\(845\) −3.47282 −0.119469
\(846\) 0 0
\(847\) 48.5856 1.66942
\(848\) −7.24630 12.5510i −0.248839 0.431002i
\(849\) 0 0
\(850\) 0.315648 0.546719i 0.0108266 0.0187523i
\(851\) 9.92843 17.1965i 0.340342 0.589490i
\(852\) 0 0
\(853\) 15.2934 + 26.4889i 0.523635 + 0.906963i 0.999622 + 0.0275101i \(0.00875785\pi\)
−0.475986 + 0.879453i \(0.657909\pi\)
\(854\) 3.11383 0.106553
\(855\) 0 0
\(856\) −16.2148 −0.554212
\(857\) −16.5262 28.6243i −0.564526 0.977787i −0.997094 0.0761860i \(-0.975726\pi\)
0.432568 0.901601i \(-0.357608\pi\)
\(858\) 0 0
\(859\) 2.95877 5.12474i 0.100952 0.174854i −0.811125 0.584873i \(-0.801144\pi\)
0.912077 + 0.410019i \(0.134478\pi\)
\(860\) 22.5986 39.1419i 0.770604 1.33473i
\(861\) 0 0
\(862\) −1.89146 3.27610i −0.0644233 0.111584i
\(863\) −23.2448 −0.791262 −0.395631 0.918410i \(-0.629474\pi\)
−0.395631 + 0.918410i \(0.629474\pi\)
\(864\) 0 0
\(865\) 41.4010 1.40768
\(866\) −0.855509 1.48178i −0.0290714 0.0503531i
\(867\) 0 0
\(868\) 25.7742 44.6422i 0.874834 1.51526i
\(869\) 0.0273355 0.0473464i 0.000927292 0.00160612i
\(870\) 0 0
\(871\) 2.00833 + 3.47853i 0.0680496 + 0.117865i
\(872\) 3.78956 0.128331
\(873\) 0 0
\(874\) −1.81068 −0.0612471
\(875\) −15.8258 27.4110i −0.535009 0.926662i
\(876\) 0 0
\(877\) 4.42022 7.65604i 0.149260 0.258526i −0.781694 0.623662i \(-0.785644\pi\)
0.930954 + 0.365136i \(0.118978\pi\)
\(878\) 4.12981 7.15303i 0.139374 0.241403i
\(879\) 0 0
\(880\) −0.791746 1.37134i −0.0266897 0.0462280i
\(881\) −9.48167 −0.319445 −0.159723 0.987162i \(-0.551060\pi\)
−0.159723 + 0.987162i \(0.551060\pi\)
\(882\) 0 0
\(883\) −13.6316 −0.458739 −0.229369 0.973339i \(-0.573666\pi\)
−0.229369 + 0.973339i \(0.573666\pi\)
\(884\) 0.334776 + 0.579850i 0.0112598 + 0.0195025i
\(885\) 0 0
\(886\) −2.72533 + 4.72042i −0.0915594 + 0.158586i
\(887\) −25.0936 + 43.4634i −0.842560 + 1.45936i 0.0451636 + 0.998980i \(0.485619\pi\)
−0.887724 + 0.460377i \(0.847714\pi\)
\(888\) 0 0
\(889\) 30.9853 + 53.6681i 1.03921 + 1.79997i
\(890\) −9.77167 −0.327547
\(891\) 0 0
\(892\) −33.9675 −1.13732
\(893\) −0.0928735 0.160862i −0.00310789 0.00538303i
\(894\) 0 0
\(895\) 6.64530 11.5100i 0.222128 0.384737i
\(896\) −16.7800 + 29.0638i −0.560581 + 0.970954i
\(897\) 0 0
\(898\) −1.01623 1.76015i −0.0339119 0.0587371i
\(899\) −15.0725 −0.502695
\(900\) 0 0
\(901\) −1.39244 −0.0463890
\(902\) −0.0772876 0.133866i −0.00257339 0.00445725i
\(903\) 0 0
\(904\) 7.97705 13.8167i 0.265313 0.459535i
\(905\) 19.6919 34.1074i 0.654582 1.13377i
\(906\) 0 0
\(907\) −27.6176 47.8351i −0.917028 1.58834i −0.803905 0.594758i \(-0.797248\pi\)
−0.113124 0.993581i \(-0.536086\pi\)
\(908\) −44.8558 −1.48859
\(909\) 0 0
\(910\) −3.96600 −0.131472
\(911\) 1.94875 + 3.37533i 0.0645649 + 0.111830i 0.896501 0.443042i \(-0.146101\pi\)
−0.831936 + 0.554872i \(0.812767\pi\)
\(912\) 0 0
\(913\) 0.0658189 0.114002i 0.00217829 0.00377290i
\(914\) 3.25422 5.63647i 0.107640 0.186438i
\(915\) 0 0
\(916\) −8.85399 15.3356i −0.292544 0.506701i
\(917\) 25.9000 0.855293
\(918\) 0 0
\(919\) 47.2360 1.55817 0.779087 0.626916i \(-0.215683\pi\)
0.779087 + 0.626916i \(0.215683\pi\)
\(920\) −14.3141 24.7928i −0.471922 0.817393i
\(921\) 0 0
\(922\) 1.45921 2.52742i 0.0480564 0.0832361i
\(923\) −4.27620 + 7.40659i −0.140753 + 0.243791i
\(924\) 0 0
\(925\) 8.63550 + 14.9571i 0.283934 + 0.491787i
\(926\) 7.81756 0.256901
\(927\) 0 0
\(928\) 7.40555 0.243099
\(929\) 20.7302 + 35.9057i 0.680136 + 1.17803i 0.974939 + 0.222472i \(0.0714124\pi\)
−0.294804 + 0.955558i \(0.595254\pi\)
\(930\) 0 0
\(931\) 5.42808 9.40171i 0.177898 0.308128i
\(932\) −19.5159 + 33.8026i −0.639266 + 1.10724i
\(933\) 0 0
\(934\) −3.97846 6.89089i −0.130179 0.225477i
\(935\) −0.152141 −0.00497555
\(936\) 0 0
\(937\) 40.5189 1.32369 0.661847 0.749639i \(-0.269773\pi\)
0.661847 + 0.749639i \(0.269773\pi\)
\(938\) 2.29354 + 3.97252i 0.0748866 + 0.129707i
\(939\) 0 0
\(940\) 0.721758 1.25012i 0.0235411 0.0407745i
\(941\) 26.3131 45.5757i 0.857783 1.48572i −0.0162551 0.999868i \(-0.505174\pi\)
0.874039 0.485857i \(-0.161492\pi\)
\(942\) 0 0
\(943\) 19.2098 + 33.2724i 0.625558 + 1.08350i
\(944\) 49.5293 1.61204
\(945\) 0 0
\(946\) 0.219853 0.00714804
\(947\) −29.4464 51.0027i −0.956880 1.65737i −0.730006 0.683441i \(-0.760483\pi\)
−0.226875 0.973924i \(-0.572851\pi\)
\(948\) 0 0
\(949\) −4.58750 + 7.94578i −0.148917 + 0.257931i
\(950\) 0.787442 1.36389i 0.0255480 0.0442504i
\(951\) 0 0
\(952\) 0.777819 + 1.34722i 0.0252093 + 0.0436637i
\(953\) 48.3782 1.56712 0.783562 0.621313i \(-0.213400\pi\)
0.783562 + 0.621313i \(0.213400\pi\)
\(954\) 0 0
\(955\) 22.1954 0.718225
\(956\) −7.44112 12.8884i −0.240663 0.416840i
\(957\) 0 0
\(958\) −1.65131 + 2.86014i −0.0533513 + 0.0924071i
\(959\) 37.5050 64.9606i 1.21110 2.09769i
\(960\) 0 0
\(961\) −2.66723 4.61978i −0.0860396 0.149025i
\(962\) 0.631550 0.0203620
\(963\) 0 0
\(964\) −6.00879 −0.193530
\(965\) 21.3428 + 36.9668i 0.687048 + 1.19000i
\(966\) 0 0
\(967\) 3.33999 5.78503i 0.107407 0.186034i −0.807312 0.590125i \(-0.799079\pi\)
0.914719 + 0.404091i \(0.132412\pi\)
\(968\) −5.57720 + 9.65999i −0.179258 + 0.310484i
\(969\) 0 0
\(970\) 0.0801892 + 0.138892i 0.00257472 + 0.00445955i
\(971\) 10.4893 0.336618 0.168309 0.985734i \(-0.446169\pi\)
0.168309 + 0.985734i \(0.446169\pi\)
\(972\) 0 0
\(973\) −47.4713 −1.52186
\(974\) −0.941599 1.63090i −0.0301708 0.0522573i
\(975\) 0 0
\(976\) 4.91405 8.51138i 0.157295 0.272443i
\(977\) 14.5581 25.2153i 0.465754 0.806709i −0.533482 0.845812i \(-0.679117\pi\)
0.999235 + 0.0391027i \(0.0124499\pi\)
\(978\) 0 0
\(979\) 0.689321 + 1.19394i 0.0220308 + 0.0381584i
\(980\) 84.3676 2.69503
\(981\) 0 0
\(982\) −1.24948 −0.0398726
\(983\) 26.9267 + 46.6385i 0.858829 + 1.48754i 0.873047 + 0.487637i \(0.162141\pi\)
−0.0142175 + 0.999899i \(0.504526\pi\)
\(984\) 0 0
\(985\) 10.4508 18.1013i 0.332990 0.576755i
\(986\) 0.111788 0.193622i 0.00356005 0.00616619i
\(987\) 0 0
\(988\) 0.835161 + 1.44654i 0.0265700 + 0.0460206i
\(989\) −54.6445 −1.73759
\(990\) 0 0
\(991\) −16.0335 −0.509322 −0.254661 0.967030i \(-0.581964\pi\)
−0.254661 + 0.967030i \(0.581964\pi\)
\(992\) 8.92609 + 15.4604i 0.283404 + 0.490870i
\(993\) 0 0
\(994\) −4.88347 + 8.45842i −0.154894 + 0.268285i
\(995\) −19.2249 + 33.2984i −0.609469 + 1.05563i
\(996\) 0 0
\(997\) 17.0632 + 29.5544i 0.540397 + 0.935996i 0.998881 + 0.0472930i \(0.0150595\pi\)
−0.458484 + 0.888703i \(0.651607\pi\)
\(998\) −0.546048 −0.0172848
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.c.118.4 12
3.2 odd 2 117.2.e.c.40.3 12
9.2 odd 6 117.2.e.c.79.3 yes 12
9.4 even 3 1053.2.a.m.1.3 6
9.5 odd 6 1053.2.a.l.1.4 6
9.7 even 3 inner 351.2.e.c.235.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.c.40.3 12 3.2 odd 2
117.2.e.c.79.3 yes 12 9.2 odd 6
351.2.e.c.118.4 12 1.1 even 1 trivial
351.2.e.c.235.4 12 9.7 even 3 inner
1053.2.a.l.1.4 6 9.5 odd 6
1053.2.a.m.1.3 6 9.4 even 3