Properties

Label 351.2.bf.a.314.8
Level $351$
Weight $2$
Character 351.314
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(206,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.206"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 314.8
Character \(\chi\) \(=\) 351.314
Dual form 351.2.bf.a.332.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03000 - 0.275986i) q^{2} +(-0.747329 + 0.431471i) q^{4} +(-2.22216 + 0.595426i) q^{5} +(-3.66177 - 3.66177i) q^{7} +(-2.15868 + 2.15868i) q^{8} +(-2.12448 + 1.22657i) q^{10} +(0.708887 + 2.64560i) q^{11} +(-2.69526 - 2.39491i) q^{13} +(-4.78220 - 2.76100i) q^{14} +(-0.764725 + 1.32454i) q^{16} +(0.0716242 - 0.124057i) q^{17} +(0.552200 + 2.06084i) q^{19} +(1.40377 - 1.40377i) q^{20} +(1.46030 + 2.52931i) q^{22} -0.843617 q^{23} +(0.253329 - 0.146260i) q^{25} +(-3.43707 - 1.72289i) q^{26} +(4.31649 + 1.15660i) q^{28} +(-0.523977 - 0.302518i) q^{29} +(-0.905716 - 3.38018i) q^{31} +(1.15816 - 4.32230i) q^{32} +(0.0395346 - 0.147545i) q^{34} +(10.3173 + 5.95671i) q^{35} +(0.973046 - 3.63146i) q^{37} +(1.13753 + 1.97025i) q^{38} +(3.51160 - 6.08227i) q^{40} +(5.53029 + 5.53029i) q^{41} +0.216584i q^{43} +(-1.67127 - 1.67127i) q^{44} +(-0.868921 + 0.232827i) q^{46} +(-10.1867 - 2.72952i) q^{47} +19.8171i q^{49} +(0.220562 - 0.220562i) q^{50} +(3.04758 + 0.626857i) q^{52} +8.00631i q^{53} +(-3.15052 - 5.45686i) q^{55} +15.8092 q^{56} +(-0.623185 - 0.166982i) q^{58} +(-7.19256 - 1.92724i) q^{59} -1.35088 q^{61} +(-1.86577 - 3.23160i) q^{62} -7.83049i q^{64} +(7.41528 + 3.71703i) q^{65} +(5.41892 - 5.41892i) q^{67} +0.123615i q^{68} +(12.2708 + 3.28794i) q^{70} +(-7.04646 + 1.88809i) q^{71} +(-3.76736 - 3.76736i) q^{73} -4.00893i q^{74} +(-1.30187 - 1.30187i) q^{76} +(7.09179 - 12.2833i) q^{77} +(1.62641 + 2.81703i) q^{79} +(0.910674 - 3.39868i) q^{80} +(7.22246 + 4.16989i) q^{82} +(3.94150 - 14.7099i) q^{83} +(-0.0852937 + 0.318321i) q^{85} +(0.0597743 + 0.223081i) q^{86} +(-7.24128 - 4.18075i) q^{88} +(-14.2431 - 3.81643i) q^{89} +(1.09983 + 18.6390i) q^{91} +(0.630459 - 0.363996i) q^{92} -11.2456 q^{94} +(-2.45415 - 4.25071i) q^{95} +(-0.384858 + 0.384858i) q^{97} +(5.46924 + 20.4115i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} - 6 q^{4} + 6 q^{5} + 2 q^{7} + 30 q^{8} - 12 q^{10} - 6 q^{11} - 2 q^{13} + 12 q^{14} + 14 q^{16} - 4 q^{19} + 6 q^{20} + 2 q^{22} + 12 q^{23} - 48 q^{26} + 6 q^{29} + 6 q^{31} - 30 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03000 0.275986i 0.728317 0.195152i 0.124437 0.992227i \(-0.460287\pi\)
0.603880 + 0.797076i \(0.293621\pi\)
\(3\) 0 0
\(4\) −0.747329 + 0.431471i −0.373664 + 0.215735i
\(5\) −2.22216 + 0.595426i −0.993779 + 0.266282i −0.718837 0.695178i \(-0.755325\pi\)
−0.274942 + 0.961461i \(0.588659\pi\)
\(6\) 0 0
\(7\) −3.66177 3.66177i −1.38402 1.38402i −0.837350 0.546668i \(-0.815896\pi\)
−0.546668 0.837350i \(-0.684104\pi\)
\(8\) −2.15868 + 2.15868i −0.763210 + 0.763210i
\(9\) 0 0
\(10\) −2.12448 + 1.22657i −0.671821 + 0.387876i
\(11\) 0.708887 + 2.64560i 0.213737 + 0.797679i 0.986607 + 0.163114i \(0.0521539\pi\)
−0.772870 + 0.634565i \(0.781179\pi\)
\(12\) 0 0
\(13\) −2.69526 2.39491i −0.747531 0.664227i
\(14\) −4.78220 2.76100i −1.27810 0.737909i
\(15\) 0 0
\(16\) −0.764725 + 1.32454i −0.191181 + 0.331136i
\(17\) 0.0716242 0.124057i 0.0173714 0.0300882i −0.857209 0.514969i \(-0.827804\pi\)
0.874580 + 0.484880i \(0.161137\pi\)
\(18\) 0 0
\(19\) 0.552200 + 2.06084i 0.126683 + 0.472789i 0.999894 0.0145541i \(-0.00463288\pi\)
−0.873211 + 0.487343i \(0.837966\pi\)
\(20\) 1.40377 1.40377i 0.313894 0.313894i
\(21\) 0 0
\(22\) 1.46030 + 2.52931i 0.311337 + 0.539252i
\(23\) −0.843617 −0.175906 −0.0879531 0.996125i \(-0.528033\pi\)
−0.0879531 + 0.996125i \(0.528033\pi\)
\(24\) 0 0
\(25\) 0.253329 0.146260i 0.0506658 0.0292519i
\(26\) −3.43707 1.72289i −0.674064 0.337886i
\(27\) 0 0
\(28\) 4.31649 + 1.15660i 0.815739 + 0.218577i
\(29\) −0.523977 0.302518i −0.0973001 0.0561762i 0.450560 0.892746i \(-0.351224\pi\)
−0.547860 + 0.836570i \(0.684558\pi\)
\(30\) 0 0
\(31\) −0.905716 3.38018i −0.162671 0.607098i −0.998326 0.0578423i \(-0.981578\pi\)
0.835654 0.549256i \(-0.185089\pi\)
\(32\) 1.15816 4.32230i 0.204735 0.764083i
\(33\) 0 0
\(34\) 0.0395346 0.147545i 0.00678013 0.0253038i
\(35\) 10.3173 + 5.95671i 1.74395 + 1.00687i
\(36\) 0 0
\(37\) 0.973046 3.63146i 0.159968 0.597008i −0.838661 0.544654i \(-0.816661\pi\)
0.998629 0.0523539i \(-0.0166724\pi\)
\(38\) 1.13753 + 1.97025i 0.184531 + 0.319617i
\(39\) 0 0
\(40\) 3.51160 6.08227i 0.555233 0.961691i
\(41\) 5.53029 + 5.53029i 0.863686 + 0.863686i 0.991764 0.128078i \(-0.0408807\pi\)
−0.128078 + 0.991764i \(0.540881\pi\)
\(42\) 0 0
\(43\) 0.216584i 0.0330288i 0.999864 + 0.0165144i \(0.00525693\pi\)
−0.999864 + 0.0165144i \(0.994743\pi\)
\(44\) −1.67127 1.67127i −0.251953 0.251953i
\(45\) 0 0
\(46\) −0.868921 + 0.232827i −0.128115 + 0.0343284i
\(47\) −10.1867 2.72952i −1.48588 0.398141i −0.577539 0.816363i \(-0.695987\pi\)
−0.908345 + 0.418222i \(0.862653\pi\)
\(48\) 0 0
\(49\) 19.8171i 2.83101i
\(50\) 0.220562 0.220562i 0.0311922 0.0311922i
\(51\) 0 0
\(52\) 3.04758 + 0.626857i 0.422623 + 0.0869294i
\(53\) 8.00631i 1.09975i 0.835246 + 0.549876i \(0.185325\pi\)
−0.835246 + 0.549876i \(0.814675\pi\)
\(54\) 0 0
\(55\) −3.15052 5.45686i −0.424816 0.735802i
\(56\) 15.8092 2.11259
\(57\) 0 0
\(58\) −0.623185 0.166982i −0.0818282 0.0219258i
\(59\) −7.19256 1.92724i −0.936392 0.250906i −0.241814 0.970323i \(-0.577742\pi\)
−0.694578 + 0.719417i \(0.744409\pi\)
\(60\) 0 0
\(61\) −1.35088 −0.172963 −0.0864815 0.996253i \(-0.527562\pi\)
−0.0864815 + 0.996253i \(0.527562\pi\)
\(62\) −1.86577 3.23160i −0.236953 0.410414i
\(63\) 0 0
\(64\) 7.83049i 0.978811i
\(65\) 7.41528 + 3.71703i 0.919753 + 0.461041i
\(66\) 0 0
\(67\) 5.41892 5.41892i 0.662026 0.662026i −0.293831 0.955857i \(-0.594930\pi\)
0.955857 + 0.293831i \(0.0949303\pi\)
\(68\) 0.123615i 0.0149905i
\(69\) 0 0
\(70\) 12.2708 + 3.28794i 1.46664 + 0.392985i
\(71\) −7.04646 + 1.88809i −0.836261 + 0.224075i −0.651443 0.758697i \(-0.725836\pi\)
−0.184818 + 0.982773i \(0.559169\pi\)
\(72\) 0 0
\(73\) −3.76736 3.76736i −0.440936 0.440936i 0.451391 0.892326i \(-0.350928\pi\)
−0.892326 + 0.451391i \(0.850928\pi\)
\(74\) 4.00893i 0.466029i
\(75\) 0 0
\(76\) −1.30187 1.30187i −0.149334 0.149334i
\(77\) 7.09179 12.2833i 0.808185 1.39982i
\(78\) 0 0
\(79\) 1.62641 + 2.81703i 0.182986 + 0.316941i 0.942896 0.333087i \(-0.108090\pi\)
−0.759910 + 0.650028i \(0.774757\pi\)
\(80\) 0.910674 3.39868i 0.101816 0.379984i
\(81\) 0 0
\(82\) 7.22246 + 4.16989i 0.797587 + 0.460487i
\(83\) 3.94150 14.7099i 0.432636 1.61462i −0.314025 0.949415i \(-0.601677\pi\)
0.746661 0.665205i \(-0.231656\pi\)
\(84\) 0 0
\(85\) −0.0852937 + 0.318321i −0.00925141 + 0.0345267i
\(86\) 0.0597743 + 0.223081i 0.00644563 + 0.0240554i
\(87\) 0 0
\(88\) −7.24128 4.18075i −0.771923 0.445670i
\(89\) −14.2431 3.81643i −1.50977 0.404541i −0.593409 0.804901i \(-0.702218\pi\)
−0.916358 + 0.400361i \(0.868885\pi\)
\(90\) 0 0
\(91\) 1.09983 + 18.6390i 0.115293 + 1.95390i
\(92\) 0.630459 0.363996i 0.0657299 0.0379492i
\(93\) 0 0
\(94\) −11.2456 −1.15989
\(95\) −2.45415 4.25071i −0.251791 0.436114i
\(96\) 0 0
\(97\) −0.384858 + 0.384858i −0.0390764 + 0.0390764i −0.726375 0.687299i \(-0.758796\pi\)
0.687299 + 0.726375i \(0.258796\pi\)
\(98\) 5.46924 + 20.4115i 0.552476 + 2.06187i
\(99\) 0 0
\(100\) −0.126213 + 0.218608i −0.0126213 + 0.0218608i
\(101\) −1.75545 + 3.04053i −0.174674 + 0.302544i −0.940048 0.341041i \(-0.889220\pi\)
0.765375 + 0.643585i \(0.222554\pi\)
\(102\) 0 0
\(103\) −0.661851 0.382120i −0.0652141 0.0376514i 0.467038 0.884237i \(-0.345321\pi\)
−0.532253 + 0.846586i \(0.678654\pi\)
\(104\) 10.9881 0.648369i 1.07747 0.0635778i
\(105\) 0 0
\(106\) 2.20963 + 8.24647i 0.214619 + 0.800968i
\(107\) 5.29840 3.05903i 0.512216 0.295728i −0.221528 0.975154i \(-0.571104\pi\)
0.733744 + 0.679426i \(0.237771\pi\)
\(108\) 0 0
\(109\) −3.64352 + 3.64352i −0.348986 + 0.348986i −0.859732 0.510746i \(-0.829369\pi\)
0.510746 + 0.859732i \(0.329369\pi\)
\(110\) −4.75104 4.75104i −0.452994 0.452994i
\(111\) 0 0
\(112\) 7.65041 2.04992i 0.722896 0.193699i
\(113\) −8.06300 + 4.65517i −0.758503 + 0.437922i −0.828758 0.559607i \(-0.810952\pi\)
0.0702550 + 0.997529i \(0.477619\pi\)
\(114\) 0 0
\(115\) 1.87465 0.502311i 0.174812 0.0468407i
\(116\) 0.522111 0.0484768
\(117\) 0 0
\(118\) −7.94020 −0.730955
\(119\) −0.716538 + 0.191996i −0.0656849 + 0.0176002i
\(120\) 0 0
\(121\) 3.02959 1.74914i 0.275418 0.159012i
\(122\) −1.39140 + 0.372826i −0.125972 + 0.0337541i
\(123\) 0 0
\(124\) 2.13532 + 2.13532i 0.191757 + 0.191757i
\(125\) 7.65781 7.65781i 0.684936 0.684936i
\(126\) 0 0
\(127\) 0.310458 0.179243i 0.0275487 0.0159052i −0.486162 0.873868i \(-0.661604\pi\)
0.513711 + 0.857963i \(0.328270\pi\)
\(128\) 0.155207 + 0.579240i 0.0137185 + 0.0511981i
\(129\) 0 0
\(130\) 8.66356 + 1.78201i 0.759844 + 0.156293i
\(131\) 10.1169 + 5.84101i 0.883920 + 0.510331i 0.871949 0.489597i \(-0.162856\pi\)
0.0119710 + 0.999928i \(0.496189\pi\)
\(132\) 0 0
\(133\) 5.52428 9.56833i 0.479016 0.829680i
\(134\) 4.08591 7.07701i 0.352969 0.611361i
\(135\) 0 0
\(136\) 0.113185 + 0.422413i 0.00970556 + 0.0362216i
\(137\) −11.1179 + 11.1179i −0.949866 + 0.949866i −0.998802 0.0489364i \(-0.984417\pi\)
0.0489364 + 0.998802i \(0.484417\pi\)
\(138\) 0 0
\(139\) −6.88251 11.9208i −0.583767 1.01111i −0.995028 0.0995958i \(-0.968245\pi\)
0.411261 0.911517i \(-0.365088\pi\)
\(140\) −10.2806 −0.868868
\(141\) 0 0
\(142\) −6.73673 + 3.88945i −0.565334 + 0.326396i
\(143\) 4.42533 8.82830i 0.370065 0.738260i
\(144\) 0 0
\(145\) 1.34449 + 0.360254i 0.111654 + 0.0299175i
\(146\) −4.92010 2.84062i −0.407191 0.235092i
\(147\) 0 0
\(148\) 0.839681 + 3.13373i 0.0690214 + 0.257591i
\(149\) −3.42366 + 12.7773i −0.280477 + 1.04676i 0.671604 + 0.740910i \(0.265606\pi\)
−0.952081 + 0.305845i \(0.901061\pi\)
\(150\) 0 0
\(151\) 2.97615 11.1072i 0.242196 0.903888i −0.732576 0.680685i \(-0.761682\pi\)
0.974772 0.223203i \(-0.0716511\pi\)
\(152\) −5.64072 3.25667i −0.457523 0.264151i
\(153\) 0 0
\(154\) 3.91448 14.6090i 0.315438 1.17723i
\(155\) 4.02529 + 6.97201i 0.323319 + 0.560005i
\(156\) 0 0
\(157\) −4.68972 + 8.12283i −0.374280 + 0.648272i −0.990219 0.139522i \(-0.955443\pi\)
0.615939 + 0.787794i \(0.288777\pi\)
\(158\) 2.45266 + 2.45266i 0.195123 + 0.195123i
\(159\) 0 0
\(160\) 10.2944i 0.813847i
\(161\) 3.08913 + 3.08913i 0.243457 + 0.243457i
\(162\) 0 0
\(163\) −14.3617 + 3.84819i −1.12489 + 0.301414i −0.772861 0.634575i \(-0.781175\pi\)
−0.352030 + 0.935989i \(0.614508\pi\)
\(164\) −6.51910 1.74679i −0.509056 0.136401i
\(165\) 0 0
\(166\) 16.2389i 1.26038i
\(167\) −1.52630 + 1.52630i −0.118109 + 0.118109i −0.763691 0.645582i \(-0.776615\pi\)
0.645582 + 0.763691i \(0.276615\pi\)
\(168\) 0 0
\(169\) 1.52885 + 12.9098i 0.117604 + 0.993061i
\(170\) 0.351409i 0.0269518i
\(171\) 0 0
\(172\) −0.0934497 0.161860i −0.00712547 0.0123417i
\(173\) −12.0841 −0.918738 −0.459369 0.888246i \(-0.651924\pi\)
−0.459369 + 0.888246i \(0.651924\pi\)
\(174\) 0 0
\(175\) −1.46320 0.392063i −0.110608 0.0296372i
\(176\) −4.04632 1.08421i −0.305003 0.0817252i
\(177\) 0 0
\(178\) −15.7236 −1.17853
\(179\) −1.54606 2.67786i −0.115558 0.200152i 0.802445 0.596727i \(-0.203532\pi\)
−0.918003 + 0.396574i \(0.870199\pi\)
\(180\) 0 0
\(181\) 20.3888i 1.51549i −0.652550 0.757745i \(-0.726301\pi\)
0.652550 0.757745i \(-0.273699\pi\)
\(182\) 6.27692 + 18.8945i 0.465277 + 1.40056i
\(183\) 0 0
\(184\) 1.82110 1.82110i 0.134253 0.134253i
\(185\) 8.64905i 0.635891i
\(186\) 0 0
\(187\) 0.378978 + 0.101547i 0.0277136 + 0.00742584i
\(188\) 8.79053 2.35541i 0.641115 0.171786i
\(189\) 0 0
\(190\) −3.70090 3.70090i −0.268492 0.268492i
\(191\) 9.45616i 0.684224i 0.939659 + 0.342112i \(0.111142\pi\)
−0.939659 + 0.342112i \(0.888858\pi\)
\(192\) 0 0
\(193\) −0.280723 0.280723i −0.0202069 0.0202069i 0.696931 0.717138i \(-0.254548\pi\)
−0.717138 + 0.696931i \(0.754548\pi\)
\(194\) −0.290186 + 0.502617i −0.0208341 + 0.0360858i
\(195\) 0 0
\(196\) −8.55047 14.8099i −0.610748 1.05785i
\(197\) 0.713601 2.66320i 0.0508420 0.189745i −0.935834 0.352440i \(-0.885352\pi\)
0.986676 + 0.162695i \(0.0520187\pi\)
\(198\) 0 0
\(199\) 13.4785 + 7.78181i 0.955465 + 0.551638i 0.894774 0.446519i \(-0.147336\pi\)
0.0606908 + 0.998157i \(0.480670\pi\)
\(200\) −0.231129 + 0.862586i −0.0163433 + 0.0609940i
\(201\) 0 0
\(202\) −0.968960 + 3.61621i −0.0681758 + 0.254435i
\(203\) 0.810930 + 3.02643i 0.0569161 + 0.212414i
\(204\) 0 0
\(205\) −15.5821 8.99630i −1.08830 0.628329i
\(206\) −0.787163 0.210920i −0.0548443 0.0146955i
\(207\) 0 0
\(208\) 5.23329 1.73854i 0.362863 0.120546i
\(209\) −5.06071 + 2.92180i −0.350057 + 0.202105i
\(210\) 0 0
\(211\) 9.22383 0.634994 0.317497 0.948259i \(-0.397158\pi\)
0.317497 + 0.948259i \(0.397158\pi\)
\(212\) −3.45449 5.98335i −0.237255 0.410938i
\(213\) 0 0
\(214\) 4.61308 4.61308i 0.315343 0.315343i
\(215\) −0.128960 0.481284i −0.00879498 0.0328233i
\(216\) 0 0
\(217\) −9.06090 + 15.6939i −0.615094 + 1.06537i
\(218\) −2.74725 + 4.75837i −0.186067 + 0.322277i
\(219\) 0 0
\(220\) 4.70894 + 2.71871i 0.317477 + 0.183295i
\(221\) −0.490150 + 0.162832i −0.0329711 + 0.0109533i
\(222\) 0 0
\(223\) 0.500502 + 1.86790i 0.0335161 + 0.125084i 0.980657 0.195734i \(-0.0627090\pi\)
−0.947141 + 0.320818i \(0.896042\pi\)
\(224\) −20.0682 + 11.5864i −1.34086 + 0.774146i
\(225\) 0 0
\(226\) −7.02009 + 7.02009i −0.466969 + 0.466969i
\(227\) 13.5565 + 13.5565i 0.899775 + 0.899775i 0.995416 0.0956412i \(-0.0304902\pi\)
−0.0956412 + 0.995416i \(0.530490\pi\)
\(228\) 0 0
\(229\) −18.2579 + 4.89219i −1.20652 + 0.323285i −0.805394 0.592739i \(-0.798046\pi\)
−0.401122 + 0.916025i \(0.631380\pi\)
\(230\) 1.79225 1.03476i 0.118177 0.0682298i
\(231\) 0 0
\(232\) 1.78414 0.478059i 0.117135 0.0313861i
\(233\) −15.0092 −0.983286 −0.491643 0.870797i \(-0.663603\pi\)
−0.491643 + 0.870797i \(0.663603\pi\)
\(234\) 0 0
\(235\) 24.2617 1.58266
\(236\) 6.20676 1.66310i 0.404026 0.108258i
\(237\) 0 0
\(238\) −0.685042 + 0.395509i −0.0444047 + 0.0256371i
\(239\) −6.64956 + 1.78174i −0.430124 + 0.115251i −0.467384 0.884054i \(-0.654804\pi\)
0.0372603 + 0.999306i \(0.488137\pi\)
\(240\) 0 0
\(241\) 0.721284 + 0.721284i 0.0464620 + 0.0464620i 0.729956 0.683494i \(-0.239540\pi\)
−0.683494 + 0.729956i \(0.739540\pi\)
\(242\) 2.63773 2.63773i 0.169560 0.169560i
\(243\) 0 0
\(244\) 1.00956 0.582867i 0.0646301 0.0373142i
\(245\) −11.7996 44.0366i −0.753848 2.81340i
\(246\) 0 0
\(247\) 3.44719 6.87696i 0.219340 0.437571i
\(248\) 9.25189 + 5.34158i 0.587496 + 0.339191i
\(249\) 0 0
\(250\) 5.77406 10.0010i 0.365184 0.632517i
\(251\) 14.6482 25.3714i 0.924586 1.60143i 0.132359 0.991202i \(-0.457745\pi\)
0.792226 0.610228i \(-0.208922\pi\)
\(252\) 0 0
\(253\) −0.598029 2.23187i −0.0375977 0.140317i
\(254\) 0.270302 0.270302i 0.0169602 0.0169602i
\(255\) 0 0
\(256\) 8.15022 + 14.1166i 0.509389 + 0.882287i
\(257\) 18.1845 1.13432 0.567159 0.823609i \(-0.308043\pi\)
0.567159 + 0.823609i \(0.308043\pi\)
\(258\) 0 0
\(259\) −16.8606 + 9.73448i −1.04767 + 0.604871i
\(260\) −7.14545 + 0.421629i −0.443142 + 0.0261483i
\(261\) 0 0
\(262\) 12.0324 + 3.22408i 0.743366 + 0.199184i
\(263\) −16.9338 9.77671i −1.04418 0.602858i −0.123166 0.992386i \(-0.539305\pi\)
−0.921015 + 0.389528i \(0.872638\pi\)
\(264\) 0 0
\(265\) −4.76716 17.7913i −0.292845 1.09291i
\(266\) 3.04925 11.3800i 0.186962 0.697750i
\(267\) 0 0
\(268\) −1.71161 + 6.38782i −0.104553 + 0.390198i
\(269\) 23.9955 + 13.8538i 1.46303 + 0.844683i 0.999150 0.0412138i \(-0.0131225\pi\)
0.463883 + 0.885896i \(0.346456\pi\)
\(270\) 0 0
\(271\) 2.16310 8.07278i 0.131399 0.490387i −0.868588 0.495535i \(-0.834972\pi\)
0.999987 + 0.00514827i \(0.00163875\pi\)
\(272\) 0.109546 + 0.189739i 0.00664218 + 0.0115046i
\(273\) 0 0
\(274\) −8.38299 + 14.5198i −0.506435 + 0.877171i
\(275\) 0.566526 + 0.566526i 0.0341628 + 0.0341628i
\(276\) 0 0
\(277\) 15.7692i 0.947479i 0.880665 + 0.473740i \(0.157096\pi\)
−0.880665 + 0.473740i \(0.842904\pi\)
\(278\) −10.3789 10.3789i −0.622488 0.622488i
\(279\) 0 0
\(280\) −35.1305 + 9.41319i −2.09945 + 0.562546i
\(281\) −13.2097 3.53952i −0.788022 0.211150i −0.157704 0.987486i \(-0.550409\pi\)
−0.630319 + 0.776337i \(0.717076\pi\)
\(282\) 0 0
\(283\) 13.4590i 0.800056i 0.916503 + 0.400028i \(0.131000\pi\)
−0.916503 + 0.400028i \(0.869000\pi\)
\(284\) 4.45137 4.45137i 0.264140 0.264140i
\(285\) 0 0
\(286\) 2.12158 10.3144i 0.125452 0.609906i
\(287\) 40.5013i 2.39071i
\(288\) 0 0
\(289\) 8.48974 + 14.7047i 0.499396 + 0.864980i
\(290\) 1.48424 0.0871576
\(291\) 0 0
\(292\) 4.44096 + 1.18995i 0.259888 + 0.0696367i
\(293\) −6.88486 1.84479i −0.402218 0.107774i 0.0520382 0.998645i \(-0.483428\pi\)
−0.454256 + 0.890871i \(0.650095\pi\)
\(294\) 0 0
\(295\) 17.1305 0.997379
\(296\) 5.73867 + 9.93966i 0.333553 + 0.577731i
\(297\) 0 0
\(298\) 14.1054i 0.817105i
\(299\) 2.27377 + 2.02038i 0.131495 + 0.116842i
\(300\) 0 0
\(301\) 0.793080 0.793080i 0.0457124 0.0457124i
\(302\) 12.2617i 0.705581i
\(303\) 0 0
\(304\) −3.15195 0.844562i −0.180777 0.0484390i
\(305\) 3.00188 0.804351i 0.171887 0.0460570i
\(306\) 0 0
\(307\) −8.37481 8.37481i −0.477976 0.477976i 0.426508 0.904484i \(-0.359744\pi\)
−0.904484 + 0.426508i \(0.859744\pi\)
\(308\) 12.2396i 0.697416i
\(309\) 0 0
\(310\) 6.07021 + 6.07021i 0.344765 + 0.344765i
\(311\) 1.34766 2.33421i 0.0764186 0.132361i −0.825284 0.564718i \(-0.808985\pi\)
0.901702 + 0.432357i \(0.142318\pi\)
\(312\) 0 0
\(313\) 1.67357 + 2.89871i 0.0945958 + 0.163845i 0.909440 0.415836i \(-0.136511\pi\)
−0.814844 + 0.579680i \(0.803177\pi\)
\(314\) −2.58860 + 9.66077i −0.146083 + 0.545189i
\(315\) 0 0
\(316\) −2.43093 1.40350i −0.136751 0.0789530i
\(317\) 0.825569 3.08107i 0.0463686 0.173050i −0.938858 0.344304i \(-0.888115\pi\)
0.985227 + 0.171254i \(0.0547818\pi\)
\(318\) 0 0
\(319\) 0.428902 1.60069i 0.0240139 0.0896212i
\(320\) 4.66247 + 17.4006i 0.260640 + 0.972723i
\(321\) 0 0
\(322\) 4.03434 + 2.32923i 0.224825 + 0.129803i
\(323\) 0.295212 + 0.0791017i 0.0164260 + 0.00440134i
\(324\) 0 0
\(325\) −1.03307 0.212492i −0.0573042 0.0117869i
\(326\) −13.7304 + 7.92724i −0.760456 + 0.439049i
\(327\) 0 0
\(328\) −23.8763 −1.31835
\(329\) 27.3065 + 47.2962i 1.50545 + 2.60752i
\(330\) 0 0
\(331\) 21.8083 21.8083i 1.19869 1.19869i 0.224137 0.974558i \(-0.428044\pi\)
0.974558 0.224137i \(-0.0719564\pi\)
\(332\) 3.40128 + 12.6938i 0.186670 + 0.696661i
\(333\) 0 0
\(334\) −1.15084 + 1.99332i −0.0629714 + 0.109070i
\(335\) −8.81513 + 15.2683i −0.481622 + 0.834194i
\(336\) 0 0
\(337\) 4.37979 + 2.52867i 0.238582 + 0.137745i 0.614525 0.788897i \(-0.289348\pi\)
−0.375943 + 0.926643i \(0.622681\pi\)
\(338\) 5.13764 + 12.8751i 0.279451 + 0.700312i
\(339\) 0 0
\(340\) −0.0736035 0.274692i −0.00399171 0.0148973i
\(341\) 8.30056 4.79233i 0.449500 0.259519i
\(342\) 0 0
\(343\) 46.9330 46.9330i 2.53415 2.53415i
\(344\) −0.467536 0.467536i −0.0252079 0.0252079i
\(345\) 0 0
\(346\) −12.4466 + 3.33505i −0.669132 + 0.179293i
\(347\) 8.60125 4.96593i 0.461739 0.266585i −0.251036 0.967978i \(-0.580771\pi\)
0.712775 + 0.701393i \(0.247438\pi\)
\(348\) 0 0
\(349\) 22.9183 6.14095i 1.22679 0.328717i 0.413461 0.910522i \(-0.364320\pi\)
0.813329 + 0.581804i \(0.197653\pi\)
\(350\) −1.61529 −0.0863411
\(351\) 0 0
\(352\) 12.2561 0.653252
\(353\) 20.2838 5.43504i 1.07960 0.289278i 0.325168 0.945656i \(-0.394579\pi\)
0.754432 + 0.656378i \(0.227913\pi\)
\(354\) 0 0
\(355\) 14.5341 8.39128i 0.771392 0.445363i
\(356\) 12.2910 3.29335i 0.651420 0.174547i
\(357\) 0 0
\(358\) −2.33149 2.33149i −0.123223 0.123223i
\(359\) −8.32119 + 8.32119i −0.439175 + 0.439175i −0.891734 0.452559i \(-0.850511\pi\)
0.452559 + 0.891734i \(0.350511\pi\)
\(360\) 0 0
\(361\) 12.5124 7.22401i 0.658545 0.380211i
\(362\) −5.62704 21.0004i −0.295751 1.10376i
\(363\) 0 0
\(364\) −8.86411 13.4549i −0.464606 0.705229i
\(365\) 10.6148 + 6.12849i 0.555607 + 0.320780i
\(366\) 0 0
\(367\) 2.83530 4.91088i 0.148001 0.256346i −0.782487 0.622667i \(-0.786049\pi\)
0.930489 + 0.366321i \(0.119383\pi\)
\(368\) 0.645135 1.11741i 0.0336300 0.0582489i
\(369\) 0 0
\(370\) 2.38702 + 8.90848i 0.124095 + 0.463130i
\(371\) 29.3172 29.3172i 1.52208 1.52208i
\(372\) 0 0
\(373\) 13.4553 + 23.3053i 0.696690 + 1.20670i 0.969608 + 0.244665i \(0.0786779\pi\)
−0.272918 + 0.962037i \(0.587989\pi\)
\(374\) 0.418371 0.0216335
\(375\) 0 0
\(376\) 27.8820 16.0977i 1.43791 0.830176i
\(377\) 0.687751 + 2.07024i 0.0354210 + 0.106623i
\(378\) 0 0
\(379\) −26.3773 7.06778i −1.35491 0.363047i −0.492966 0.870049i \(-0.664087\pi\)
−0.861945 + 0.507001i \(0.830754\pi\)
\(380\) 3.66812 + 2.11779i 0.188170 + 0.108640i
\(381\) 0 0
\(382\) 2.60977 + 9.73981i 0.133528 + 0.498332i
\(383\) 4.34016 16.1977i 0.221772 0.827663i −0.761901 0.647694i \(-0.775734\pi\)
0.983672 0.179969i \(-0.0575997\pi\)
\(384\) 0 0
\(385\) −8.44527 + 31.5182i −0.430411 + 1.60632i
\(386\) −0.366619 0.211667i −0.0186604 0.0107736i
\(387\) 0 0
\(388\) 0.121560 0.453670i 0.00617130 0.0230316i
\(389\) 0.566623 + 0.981420i 0.0287289 + 0.0497600i 0.880032 0.474914i \(-0.157521\pi\)
−0.851303 + 0.524674i \(0.824187\pi\)
\(390\) 0 0
\(391\) −0.0604234 + 0.104656i −0.00305574 + 0.00529270i
\(392\) −42.7787 42.7787i −2.16065 2.16065i
\(393\) 0 0
\(394\) 2.94002i 0.148116i
\(395\) −5.29148 5.29148i −0.266243 0.266243i
\(396\) 0 0
\(397\) 17.9346 4.80557i 0.900114 0.241185i 0.221049 0.975263i \(-0.429052\pi\)
0.679065 + 0.734078i \(0.262385\pi\)
\(398\) 16.0305 + 4.29535i 0.803534 + 0.215306i
\(399\) 0 0
\(400\) 0.447394i 0.0223697i
\(401\) −12.3178 + 12.3178i −0.615124 + 0.615124i −0.944277 0.329153i \(-0.893237\pi\)
0.329153 + 0.944277i \(0.393237\pi\)
\(402\) 0 0
\(403\) −5.65407 + 11.2796i −0.281649 + 0.561875i
\(404\) 3.02970i 0.150733i
\(405\) 0 0
\(406\) 1.67051 + 2.89340i 0.0829059 + 0.143597i
\(407\) 10.2972 0.510412
\(408\) 0 0
\(409\) −29.9191 8.01681i −1.47941 0.396406i −0.573261 0.819373i \(-0.694322\pi\)
−0.906145 + 0.422967i \(0.860989\pi\)
\(410\) −18.5323 4.96572i −0.915245 0.245239i
\(411\) 0 0
\(412\) 0.659494 0.0324909
\(413\) 19.2804 + 33.3946i 0.948725 + 1.64324i
\(414\) 0 0
\(415\) 35.0346i 1.71978i
\(416\) −13.4731 + 8.87606i −0.660571 + 0.435184i
\(417\) 0 0
\(418\) −4.40613 + 4.40613i −0.215511 + 0.215511i
\(419\) 21.4719i 1.04897i −0.851419 0.524486i \(-0.824258\pi\)
0.851419 0.524486i \(-0.175742\pi\)
\(420\) 0 0
\(421\) −22.9186 6.14101i −1.11698 0.299295i −0.347321 0.937746i \(-0.612908\pi\)
−0.769662 + 0.638452i \(0.779575\pi\)
\(422\) 9.50050 2.54565i 0.462477 0.123920i
\(423\) 0 0
\(424\) −17.2831 17.2831i −0.839341 0.839341i
\(425\) 0.0419029i 0.00203259i
\(426\) 0 0
\(427\) 4.94662 + 4.94662i 0.239384 + 0.239384i
\(428\) −2.63977 + 4.57221i −0.127598 + 0.221006i
\(429\) 0 0
\(430\) −0.265656 0.460129i −0.0128111 0.0221894i
\(431\) −6.05706 + 22.6052i −0.291758 + 1.08886i 0.652000 + 0.758219i \(0.273930\pi\)
−0.943758 + 0.330637i \(0.892736\pi\)
\(432\) 0 0
\(433\) −23.0080 13.2837i −1.10569 0.638372i −0.167982 0.985790i \(-0.553725\pi\)
−0.937710 + 0.347418i \(0.887058\pi\)
\(434\) −5.00137 + 18.6654i −0.240074 + 0.895967i
\(435\) 0 0
\(436\) 1.15084 4.29498i 0.0551150 0.205692i
\(437\) −0.465845 1.73856i −0.0222844 0.0831665i
\(438\) 0 0
\(439\) 0.369772 + 0.213488i 0.0176482 + 0.0101892i 0.508798 0.860886i \(-0.330090\pi\)
−0.491150 + 0.871075i \(0.663423\pi\)
\(440\) 18.5806 + 4.97865i 0.885795 + 0.237348i
\(441\) 0 0
\(442\) −0.459913 + 0.302991i −0.0218758 + 0.0144118i
\(443\) −9.92611 + 5.73084i −0.471604 + 0.272281i −0.716911 0.697165i \(-0.754445\pi\)
0.245307 + 0.969445i \(0.421111\pi\)
\(444\) 0 0
\(445\) 33.9228 1.60810
\(446\) 1.03103 + 1.78579i 0.0488206 + 0.0845598i
\(447\) 0 0
\(448\) −28.6734 + 28.6734i −1.35469 + 1.35469i
\(449\) 1.66954 + 6.23079i 0.0787903 + 0.294049i 0.994066 0.108779i \(-0.0346940\pi\)
−0.915276 + 0.402828i \(0.868027\pi\)
\(450\) 0 0
\(451\) −10.7106 + 18.5513i −0.504342 + 0.873546i
\(452\) 4.01714 6.95789i 0.188950 0.327272i
\(453\) 0 0
\(454\) 17.7045 + 10.2217i 0.830914 + 0.479728i
\(455\) −13.5421 40.7639i −0.634864 1.91104i
\(456\) 0 0
\(457\) 2.81333 + 10.4995i 0.131602 + 0.491145i 0.999989 0.00474244i \(-0.00150957\pi\)
−0.868387 + 0.495887i \(0.834843\pi\)
\(458\) −17.4554 + 10.0779i −0.815636 + 0.470908i
\(459\) 0 0
\(460\) −1.18425 + 1.18425i −0.0552158 + 0.0552158i
\(461\) −12.0225 12.0225i −0.559943 0.559943i 0.369348 0.929291i \(-0.379581\pi\)
−0.929291 + 0.369348i \(0.879581\pi\)
\(462\) 0 0
\(463\) 37.4724 10.0407i 1.74149 0.466630i 0.758712 0.651427i \(-0.225829\pi\)
0.982777 + 0.184796i \(0.0591625\pi\)
\(464\) 0.801397 0.462687i 0.0372039 0.0214797i
\(465\) 0 0
\(466\) −15.4594 + 4.14234i −0.716144 + 0.191890i
\(467\) −37.7239 −1.74566 −0.872828 0.488028i \(-0.837716\pi\)
−0.872828 + 0.488028i \(0.837716\pi\)
\(468\) 0 0
\(469\) −39.6856 −1.83251
\(470\) 24.9894 6.69590i 1.15268 0.308859i
\(471\) 0 0
\(472\) 19.6868 11.3662i 0.906157 0.523170i
\(473\) −0.572995 + 0.153534i −0.0263463 + 0.00705948i
\(474\) 0 0
\(475\) 0.441306 + 0.441306i 0.0202485 + 0.0202485i
\(476\) 0.452649 0.452649i 0.0207471 0.0207471i
\(477\) 0 0
\(478\) −6.35728 + 3.67037i −0.290775 + 0.167879i
\(479\) 5.40418 + 20.1687i 0.246923 + 0.921531i 0.972407 + 0.233291i \(0.0749495\pi\)
−0.725484 + 0.688240i \(0.758384\pi\)
\(480\) 0 0
\(481\) −11.3196 + 7.45737i −0.516130 + 0.340027i
\(482\) 0.941984 + 0.543855i 0.0429062 + 0.0247719i
\(483\) 0 0
\(484\) −1.50940 + 2.61436i −0.0686092 + 0.118835i
\(485\) 0.626060 1.08437i 0.0284279 0.0492386i
\(486\) 0 0
\(487\) 4.59917 + 17.1643i 0.208408 + 0.777791i 0.988384 + 0.151980i \(0.0485650\pi\)
−0.779975 + 0.625811i \(0.784768\pi\)
\(488\) 2.91613 2.91613i 0.132007 0.132007i
\(489\) 0 0
\(490\) −24.3070 42.1010i −1.09808 1.90193i
\(491\) −14.5919 −0.658523 −0.329261 0.944239i \(-0.606800\pi\)
−0.329261 + 0.944239i \(0.606800\pi\)
\(492\) 0 0
\(493\) −0.0750588 + 0.0433352i −0.00338048 + 0.00195172i
\(494\) 1.65264 8.03462i 0.0743559 0.361494i
\(495\) 0 0
\(496\) 5.16982 + 1.38525i 0.232132 + 0.0621995i
\(497\) 32.7162 + 18.8887i 1.46752 + 0.847275i
\(498\) 0 0
\(499\) −3.09645 11.5561i −0.138616 0.517323i −0.999957 0.00929473i \(-0.997041\pi\)
0.861341 0.508028i \(-0.169625\pi\)
\(500\) −2.41878 + 9.02703i −0.108171 + 0.403701i
\(501\) 0 0
\(502\) 8.08540 30.1751i 0.360869 1.34678i
\(503\) −24.4849 14.1364i −1.09173 0.630310i −0.157693 0.987488i \(-0.550406\pi\)
−0.934036 + 0.357178i \(0.883739\pi\)
\(504\) 0 0
\(505\) 2.09048 7.80177i 0.0930250 0.347174i
\(506\) −1.23193 2.13377i −0.0547661 0.0948577i
\(507\) 0 0
\(508\) −0.154676 + 0.267907i −0.00686264 + 0.0118864i
\(509\) −6.43830 6.43830i −0.285373 0.285373i 0.549874 0.835247i \(-0.314676\pi\)
−0.835247 + 0.549874i \(0.814676\pi\)
\(510\) 0 0
\(511\) 27.5904i 1.22053i
\(512\) 11.4426 + 11.4426i 0.505696 + 0.505696i
\(513\) 0 0
\(514\) 18.7299 5.01867i 0.826142 0.221364i
\(515\) 1.69826 + 0.455048i 0.0748344 + 0.0200518i
\(516\) 0 0
\(517\) 28.8849i 1.27036i
\(518\) −14.6798 + 14.6798i −0.644992 + 0.644992i
\(519\) 0 0
\(520\) −24.0311 + 7.98335i −1.05384 + 0.350093i
\(521\) 10.8148i 0.473806i −0.971533 0.236903i \(-0.923868\pi\)
0.971533 0.236903i \(-0.0761324\pi\)
\(522\) 0 0
\(523\) −16.8346 29.1584i −0.736125 1.27501i −0.954228 0.299080i \(-0.903320\pi\)
0.218103 0.975926i \(-0.430013\pi\)
\(524\) −10.0809 −0.440386
\(525\) 0 0
\(526\) −20.1399 5.39648i −0.878143 0.235298i
\(527\) −0.484205 0.129742i −0.0210923 0.00565167i
\(528\) 0 0
\(529\) −22.2883 −0.969057
\(530\) −9.82031 17.0093i −0.426567 0.738836i
\(531\) 0 0
\(532\) 9.53425i 0.413362i
\(533\) −1.66104 28.1501i −0.0719478 1.21932i
\(534\) 0 0
\(535\) −9.95246 + 9.95246i −0.430282 + 0.430282i
\(536\) 23.3955i 1.01053i
\(537\) 0 0
\(538\) 28.5388 + 7.64694i 1.23039 + 0.329683i
\(539\) −52.4280 + 14.0480i −2.25823 + 0.605092i
\(540\) 0 0
\(541\) 19.2044 + 19.2044i 0.825663 + 0.825663i 0.986914 0.161250i \(-0.0515526\pi\)
−0.161250 + 0.986914i \(0.551553\pi\)
\(542\) 8.91191i 0.382799i
\(543\) 0 0
\(544\) −0.453259 0.453259i −0.0194333 0.0194333i
\(545\) 5.92703 10.2659i 0.253886 0.439744i
\(546\) 0 0
\(547\) −12.0347 20.8447i −0.514565 0.891253i −0.999857 0.0169009i \(-0.994620\pi\)
0.485292 0.874352i \(-0.338713\pi\)
\(548\) 3.51168 13.1058i 0.150011 0.559850i
\(549\) 0 0
\(550\) 0.739873 + 0.427166i 0.0315483 + 0.0182144i
\(551\) 0.334101 1.24688i 0.0142332 0.0531190i
\(552\) 0 0
\(553\) 4.35976 16.2709i 0.185396 0.691907i
\(554\) 4.35208 + 16.2422i 0.184902 + 0.690065i
\(555\) 0 0
\(556\) 10.2870 + 5.93920i 0.436266 + 0.251878i
\(557\) 25.0352 + 6.70816i 1.06078 + 0.284234i 0.746698 0.665163i \(-0.231638\pi\)
0.314078 + 0.949397i \(0.398305\pi\)
\(558\) 0 0
\(559\) 0.518699 0.583750i 0.0219386 0.0246900i
\(560\) −15.7798 + 9.11050i −0.666820 + 0.384989i
\(561\) 0 0
\(562\) −14.5827 −0.615136
\(563\) −8.22579 14.2475i −0.346676 0.600460i 0.638981 0.769223i \(-0.279356\pi\)
−0.985657 + 0.168762i \(0.946023\pi\)
\(564\) 0 0
\(565\) 15.1454 15.1454i 0.637174 0.637174i
\(566\) 3.71451 + 13.8627i 0.156132 + 0.582694i
\(567\) 0 0
\(568\) 11.1353 19.2869i 0.467226 0.809259i
\(569\) −7.11456 + 12.3228i −0.298258 + 0.516598i −0.975737 0.218944i \(-0.929739\pi\)
0.677480 + 0.735541i \(0.263072\pi\)
\(570\) 0 0
\(571\) −18.0451 10.4184i −0.755164 0.435994i 0.0723925 0.997376i \(-0.476937\pi\)
−0.827557 + 0.561382i \(0.810270\pi\)
\(572\) 0.501973 + 8.50704i 0.0209885 + 0.355697i
\(573\) 0 0
\(574\) −11.1778 41.7161i −0.466552 1.74120i
\(575\) −0.213713 + 0.123387i −0.00891244 + 0.00514560i
\(576\) 0 0
\(577\) −32.0720 + 32.0720i −1.33517 + 1.33517i −0.434505 + 0.900670i \(0.643076\pi\)
−0.900670 + 0.434505i \(0.856924\pi\)
\(578\) 12.8027 + 12.8027i 0.532521 + 0.532521i
\(579\) 0 0
\(580\) −1.16021 + 0.310878i −0.0481752 + 0.0129085i
\(581\) −68.2970 + 39.4313i −2.83344 + 1.63589i
\(582\) 0 0
\(583\) −21.1815 + 5.67557i −0.877249 + 0.235058i
\(584\) 16.2651 0.673053
\(585\) 0 0
\(586\) −7.60051 −0.313974
\(587\) −15.2613 + 4.08926i −0.629903 + 0.168782i −0.559626 0.828746i \(-0.689055\pi\)
−0.0702771 + 0.997528i \(0.522388\pi\)
\(588\) 0 0
\(589\) 6.46587 3.73307i 0.266421 0.153818i
\(590\) 17.6444 4.72780i 0.726408 0.194640i
\(591\) 0 0
\(592\) 4.06591 + 4.06591i 0.167108 + 0.167108i
\(593\) 25.1695 25.1695i 1.03359 1.03359i 0.0341707 0.999416i \(-0.489121\pi\)
0.999416 0.0341707i \(-0.0108790\pi\)
\(594\) 0 0
\(595\) 1.47794 0.853290i 0.0605897 0.0349815i
\(596\) −2.95442 11.0260i −0.121018 0.451644i
\(597\) 0 0
\(598\) 2.89957 + 1.45346i 0.118572 + 0.0594362i
\(599\) 1.33423 + 0.770320i 0.0545153 + 0.0314744i 0.527010 0.849859i \(-0.323313\pi\)
−0.472495 + 0.881334i \(0.656646\pi\)
\(600\) 0 0
\(601\) −14.6937 + 25.4502i −0.599369 + 1.03814i 0.393546 + 0.919305i \(0.371248\pi\)
−0.992914 + 0.118832i \(0.962085\pi\)
\(602\) 0.597990 1.03575i 0.0243722 0.0422140i
\(603\) 0 0
\(604\) 2.56825 + 9.58482i 0.104500 + 0.390001i
\(605\) −5.69076 + 5.69076i −0.231362 + 0.231362i
\(606\) 0 0
\(607\) 10.4263 + 18.0589i 0.423191 + 0.732988i 0.996250 0.0865261i \(-0.0275766\pi\)
−0.573059 + 0.819514i \(0.694243\pi\)
\(608\) 9.54711 0.387186
\(609\) 0 0
\(610\) 2.86993 1.65696i 0.116200 0.0670882i
\(611\) 20.9189 + 31.7530i 0.846287 + 1.28459i
\(612\) 0 0
\(613\) −21.4484 5.74708i −0.866292 0.232122i −0.201809 0.979425i \(-0.564682\pi\)
−0.664484 + 0.747303i \(0.731349\pi\)
\(614\) −10.9374 6.31468i −0.441396 0.254840i
\(615\) 0 0
\(616\) 11.2069 + 41.8248i 0.451540 + 1.68517i
\(617\) 3.14191 11.7258i 0.126488 0.472061i −0.873400 0.487004i \(-0.838090\pi\)
0.999888 + 0.0149425i \(0.00475652\pi\)
\(618\) 0 0
\(619\) 1.49281 5.57125i 0.0600012 0.223928i −0.929414 0.369038i \(-0.879687\pi\)
0.989415 + 0.145111i \(0.0463538\pi\)
\(620\) −6.01643 3.47359i −0.241626 0.139503i
\(621\) 0 0
\(622\) 0.743870 2.77616i 0.0298265 0.111314i
\(623\) 38.1800 + 66.1298i 1.52965 + 2.64943i
\(624\) 0 0
\(625\) −13.1885 + 22.8432i −0.527541 + 0.913727i
\(626\) 2.52377 + 2.52377i 0.100870 + 0.100870i
\(627\) 0 0
\(628\) 8.09390i 0.322982i
\(629\) −0.380813 0.380813i −0.0151840 0.0151840i
\(630\) 0 0
\(631\) −0.701230 + 0.187894i −0.0279155 + 0.00747994i −0.272750 0.962085i \(-0.587933\pi\)
0.244834 + 0.969565i \(0.421266\pi\)
\(632\) −9.59200 2.57017i −0.381549 0.102236i
\(633\) 0 0
\(634\) 3.40133i 0.135084i
\(635\) −0.583161 + 0.583161i −0.0231420 + 0.0231420i
\(636\) 0 0
\(637\) 47.4600 53.4121i 1.88043 2.11626i
\(638\) 1.76707i 0.0699589i
\(639\) 0 0
\(640\) −0.689789 1.19475i −0.0272663 0.0472266i
\(641\) 1.93672 0.0764960 0.0382480 0.999268i \(-0.487822\pi\)
0.0382480 + 0.999268i \(0.487822\pi\)
\(642\) 0 0
\(643\) −5.23973 1.40398i −0.206635 0.0553676i 0.154017 0.988068i \(-0.450779\pi\)
−0.360652 + 0.932701i \(0.617446\pi\)
\(644\) −3.64146 0.975727i −0.143494 0.0384490i
\(645\) 0 0
\(646\) 0.325898 0.0128223
\(647\) −5.52455 9.56880i −0.217192 0.376188i 0.736756 0.676159i \(-0.236357\pi\)
−0.953949 + 0.299970i \(0.903023\pi\)
\(648\) 0 0
\(649\) 20.3949i 0.800568i
\(650\) −1.12270 + 0.0662467i −0.0440358 + 0.00259841i
\(651\) 0 0
\(652\) 9.07249 9.07249i 0.355306 0.355306i
\(653\) 26.4693i 1.03582i −0.855434 0.517912i \(-0.826710\pi\)
0.855434 0.517912i \(-0.173290\pi\)
\(654\) 0 0
\(655\) −25.9593 6.95577i −1.01431 0.271784i
\(656\) −11.5543 + 3.09595i −0.451118 + 0.120877i
\(657\) 0 0
\(658\) 41.1786 + 41.1786i 1.60531 + 1.60531i
\(659\) 44.2149i 1.72237i −0.508294 0.861184i \(-0.669724\pi\)
0.508294 0.861184i \(-0.330276\pi\)
\(660\) 0 0
\(661\) −22.3707 22.3707i −0.870118 0.870118i 0.122367 0.992485i \(-0.460952\pi\)
−0.992485 + 0.122367i \(0.960952\pi\)
\(662\) 16.4437 28.4813i 0.639102 1.10696i
\(663\) 0 0
\(664\) 23.2455 + 40.2624i 0.902102 + 1.56249i
\(665\) −6.57859 + 24.5516i −0.255107 + 0.952072i
\(666\) 0 0
\(667\) 0.442036 + 0.255209i 0.0171157 + 0.00988175i
\(668\) 0.482095 1.79920i 0.0186528 0.0696132i
\(669\) 0 0
\(670\) −4.86571 + 18.1591i −0.187979 + 0.701547i
\(671\) −0.957624 3.57390i −0.0369687 0.137969i
\(672\) 0 0
\(673\) 15.8801 + 9.16836i 0.612132 + 0.353414i 0.773799 0.633431i \(-0.218354\pi\)
−0.161668 + 0.986845i \(0.551687\pi\)
\(674\) 5.20904 + 1.39576i 0.200645 + 0.0537626i
\(675\) 0 0
\(676\) −6.71275 8.98820i −0.258183 0.345700i
\(677\) −16.0817 + 9.28475i −0.618068 + 0.356842i −0.776116 0.630590i \(-0.782813\pi\)
0.158048 + 0.987431i \(0.449480\pi\)
\(678\) 0 0
\(679\) 2.81852 0.108165
\(680\) −0.503031 0.871276i −0.0192904 0.0334119i
\(681\) 0 0
\(682\) 7.22692 7.22692i 0.276733 0.276733i
\(683\) 6.10105 + 22.7694i 0.233450 + 0.871249i 0.978841 + 0.204621i \(0.0655962\pi\)
−0.745391 + 0.666628i \(0.767737\pi\)
\(684\) 0 0
\(685\) 18.0858 31.3256i 0.691024 1.19689i
\(686\) 35.3879 61.2937i 1.35112 2.34020i
\(687\) 0 0
\(688\) −0.286875 0.165627i −0.0109370 0.00631448i
\(689\) 19.1744 21.5791i 0.730485 0.822098i
\(690\) 0 0
\(691\) 11.1642 + 41.6653i 0.424705 + 1.58502i 0.764566 + 0.644545i \(0.222953\pi\)
−0.339861 + 0.940476i \(0.610380\pi\)
\(692\) 9.03080 5.21394i 0.343300 0.198204i
\(693\) 0 0
\(694\) 7.48871 7.48871i 0.284268 0.284268i
\(695\) 22.3920 + 22.3920i 0.849377 + 0.849377i
\(696\) 0 0
\(697\) 1.08217 0.289967i 0.0409902 0.0109833i
\(698\) 21.9110 12.6503i 0.829342 0.478821i
\(699\) 0 0
\(700\) 1.26266 0.338328i 0.0477239 0.0127876i
\(701\) −16.2764 −0.614753 −0.307376 0.951588i \(-0.599451\pi\)
−0.307376 + 0.951588i \(0.599451\pi\)
\(702\) 0 0
\(703\) 8.02116 0.302524
\(704\) 20.7164 5.55093i 0.780777 0.209209i
\(705\) 0 0
\(706\) 19.3923 11.1961i 0.729837 0.421372i
\(707\) 17.5617 4.70565i 0.660477 0.176974i
\(708\) 0 0
\(709\) −3.46292 3.46292i −0.130053 0.130053i 0.639084 0.769137i \(-0.279314\pi\)
−0.769137 + 0.639084i \(0.779314\pi\)
\(710\) 12.6542 12.6542i 0.474904 0.474904i
\(711\) 0 0
\(712\) 38.9848 22.5079i 1.46102 0.843519i
\(713\) 0.764077 + 2.85158i 0.0286149 + 0.106792i
\(714\) 0 0
\(715\) −4.57719 + 22.2528i −0.171177 + 0.832209i
\(716\) 2.31083 + 1.33416i 0.0863599 + 0.0498599i
\(717\) 0 0
\(718\) −6.27425 + 10.8673i −0.234153 + 0.405565i
\(719\) −17.2570 + 29.8900i −0.643577 + 1.11471i 0.341052 + 0.940045i \(0.389217\pi\)
−0.984628 + 0.174663i \(0.944116\pi\)
\(720\) 0 0
\(721\) 1.02431 + 3.82278i 0.0381473 + 0.142368i
\(722\) 10.8939 10.8939i 0.405430 0.405430i
\(723\) 0 0
\(724\) 8.79719 + 15.2372i 0.326945 + 0.566285i
\(725\) −0.176985 −0.00657305
\(726\) 0 0
\(727\) −6.05240 + 3.49435i −0.224471 + 0.129598i −0.608019 0.793923i \(-0.708035\pi\)
0.383548 + 0.923521i \(0.374702\pi\)
\(728\) −42.6099 37.8615i −1.57923 1.40324i
\(729\) 0 0
\(730\) 12.6246 + 3.38276i 0.467258 + 0.125201i
\(731\) 0.0268687 + 0.0155127i 0.000993776 + 0.000573757i
\(732\) 0 0
\(733\) 5.89883 + 22.0147i 0.217878 + 0.813133i 0.985133 + 0.171791i \(0.0549554\pi\)
−0.767255 + 0.641342i \(0.778378\pi\)
\(734\) 1.56501 5.84069i 0.0577655 0.215584i
\(735\) 0 0
\(736\) −0.977042 + 3.64637i −0.0360142 + 0.134407i
\(737\) 18.1777 + 10.4949i 0.669584 + 0.386585i
\(738\) 0 0
\(739\) −3.70607 + 13.8313i −0.136330 + 0.508791i 0.863659 + 0.504077i \(0.168167\pi\)
−0.999989 + 0.00471409i \(0.998499\pi\)
\(740\) −3.73181 6.46368i −0.137184 0.237610i
\(741\) 0 0
\(742\) 22.1055 38.2878i 0.811517 1.40559i
\(743\) 4.39820 + 4.39820i 0.161354 + 0.161354i 0.783166 0.621812i \(-0.213603\pi\)
−0.621812 + 0.783166i \(0.713603\pi\)
\(744\) 0 0
\(745\) 30.4317i 1.11493i
\(746\) 20.2909 + 20.2909i 0.742901 + 0.742901i
\(747\) 0 0
\(748\) −0.327036 + 0.0876290i −0.0119576 + 0.00320403i
\(749\) −30.6030 8.20004i −1.11821 0.299623i
\(750\) 0 0
\(751\) 43.6578i 1.59309i 0.604576 + 0.796547i \(0.293343\pi\)
−0.604576 + 0.796547i \(0.706657\pi\)
\(752\) 11.4054 11.4054i 0.415912 0.415912i
\(753\) 0 0
\(754\) 1.27974 + 1.94253i 0.0466053 + 0.0707427i
\(755\) 26.4539i 0.962757i
\(756\) 0 0
\(757\) 9.84349 + 17.0494i 0.357768 + 0.619672i 0.987588 0.157069i \(-0.0502046\pi\)
−0.629820 + 0.776741i \(0.716871\pi\)
\(758\) −29.1191 −1.05765
\(759\) 0 0
\(760\) 14.4737 + 3.87821i 0.525016 + 0.140678i
\(761\) −8.35027 2.23745i −0.302697 0.0811074i 0.104274 0.994549i \(-0.466748\pi\)
−0.406971 + 0.913441i \(0.633415\pi\)
\(762\) 0 0
\(763\) 26.6834 0.966005
\(764\) −4.08006 7.06686i −0.147611 0.255670i
\(765\) 0 0
\(766\) 17.8814i 0.646080i
\(767\) 14.7703 + 22.4199i 0.533323 + 0.809537i
\(768\) 0 0
\(769\) −6.20131 + 6.20131i −0.223625 + 0.223625i −0.810023 0.586398i \(-0.800545\pi\)
0.586398 + 0.810023i \(0.300545\pi\)
\(770\) 34.7944i 1.25390i
\(771\) 0 0
\(772\) 0.330916 + 0.0886686i 0.0119099 + 0.00319125i
\(773\) 3.74962 1.00471i 0.134865 0.0361368i −0.190755 0.981638i \(-0.561094\pi\)
0.325620 + 0.945501i \(0.394427\pi\)
\(774\) 0 0
\(775\) −0.723828 0.723828i −0.0260007 0.0260007i
\(776\) 1.66157i 0.0596469i
\(777\) 0 0
\(778\) 0.854478 + 0.854478i 0.0306345 + 0.0306345i
\(779\) −8.34321 + 14.4509i −0.298926 + 0.517756i
\(780\) 0 0
\(781\) −9.99028 17.3037i −0.357480 0.619174i
\(782\) −0.0333521 + 0.124472i −0.00119267 + 0.00445109i
\(783\) 0 0
\(784\) −26.2485 15.1546i −0.937448 0.541236i
\(785\) 5.58475 20.8426i 0.199328 0.743904i
\(786\) 0 0
\(787\) 1.10975 4.14166i 0.0395585 0.147634i −0.943322 0.331879i \(-0.892317\pi\)
0.982880 + 0.184245i \(0.0589840\pi\)
\(788\) 0.615796 + 2.29818i 0.0219368 + 0.0818693i
\(789\) 0 0
\(790\) −6.91058 3.98983i −0.245867 0.141952i
\(791\) 46.5710 + 12.4787i 1.65587 + 0.443690i
\(792\) 0 0
\(793\) 3.64099 + 3.23524i 0.129295 + 0.114887i
\(794\) 17.1463 9.89944i 0.608501 0.351318i
\(795\) 0 0
\(796\) −13.4305 −0.476031
\(797\) −5.45712 9.45202i −0.193301 0.334808i 0.753041 0.657974i \(-0.228586\pi\)
−0.946342 + 0.323166i \(0.895253\pi\)
\(798\) 0 0
\(799\) −1.06823 + 1.06823i −0.0377913 + 0.0377913i
\(800\) −0.338784 1.26436i −0.0119778 0.0447018i
\(801\) 0 0
\(802\) −9.28776 + 16.0869i −0.327962 + 0.568047i
\(803\) 7.29630 12.6376i 0.257481 0.445970i
\(804\) 0 0
\(805\) −8.70387 5.02518i −0.306771 0.177114i
\(806\) −2.71066 + 13.1783i −0.0954789 + 0.464188i
\(807\) 0 0
\(808\) −2.77408 10.3530i −0.0975916 0.364217i
\(809\) 24.7010 14.2611i 0.868439 0.501394i 0.00160994 0.999999i \(-0.499488\pi\)
0.866829 + 0.498605i \(0.166154\pi\)
\(810\) 0 0
\(811\) −14.4345 + 14.4345i −0.506862 + 0.506862i −0.913562 0.406700i \(-0.866680\pi\)
0.406700 + 0.913562i \(0.366680\pi\)
\(812\) −1.91185 1.91185i −0.0670927 0.0670927i
\(813\) 0 0
\(814\) 10.6060 2.84188i 0.371741 0.0996078i
\(815\) 29.6225 17.1026i 1.03763 0.599077i
\(816\) 0 0
\(817\) −0.446345 + 0.119598i −0.0156156 + 0.00418419i
\(818\) −33.0291 −1.15484
\(819\) 0 0
\(820\) 15.5266 0.542211
\(821\) −21.4587 + 5.74984i −0.748914 + 0.200671i −0.613036 0.790055i \(-0.710052\pi\)
−0.135878 + 0.990726i \(0.543385\pi\)
\(822\) 0 0
\(823\) −48.6206 + 28.0711i −1.69481 + 0.978498i −0.744277 + 0.667871i \(0.767206\pi\)
−0.950532 + 0.310627i \(0.899461\pi\)
\(824\) 2.25360 0.603851i 0.0785080 0.0210361i
\(825\) 0 0
\(826\) 29.0752 + 29.0752i 1.01165 + 1.01165i
\(827\) −7.73555 + 7.73555i −0.268991 + 0.268991i −0.828694 0.559702i \(-0.810915\pi\)
0.559702 + 0.828694i \(0.310915\pi\)
\(828\) 0 0
\(829\) −22.3717 + 12.9163i −0.777001 + 0.448602i −0.835366 0.549693i \(-0.814745\pi\)
0.0583652 + 0.998295i \(0.481411\pi\)
\(830\) 9.66907 + 36.0854i 0.335618 + 1.25254i
\(831\) 0 0
\(832\) −18.7533 + 21.1052i −0.650153 + 0.731691i
\(833\) 2.45844 + 1.41938i 0.0851799 + 0.0491786i
\(834\) 0 0
\(835\) 2.48288 4.30048i 0.0859237 0.148824i
\(836\) 2.52134 4.36709i 0.0872024 0.151039i
\(837\) 0 0
\(838\) −5.92596 22.1160i −0.204709 0.763984i
\(839\) 25.1564 25.1564i 0.868497 0.868497i −0.123809 0.992306i \(-0.539511\pi\)
0.992306 + 0.123809i \(0.0395111\pi\)
\(840\) 0 0
\(841\) −14.3170 24.7977i −0.493688 0.855094i
\(842\) −25.3009 −0.871925
\(843\) 0 0
\(844\) −6.89323 + 3.97981i −0.237275 + 0.136991i
\(845\) −11.0842 27.7773i −0.381307 0.955567i
\(846\) 0 0
\(847\) −17.4986 4.68873i −0.601259 0.161107i
\(848\) −10.6047 6.12263i −0.364167 0.210252i
\(849\) 0 0
\(850\) −0.0115646 0.0431598i −0.000396664 0.00148037i
\(851\) −0.820878 + 3.06356i −0.0281393 + 0.105017i
\(852\) 0 0
\(853\) 3.20271 11.9527i 0.109659 0.409252i −0.889173 0.457571i \(-0.848720\pi\)
0.998832 + 0.0483186i \(0.0153863\pi\)
\(854\) 6.46020 + 3.72980i 0.221063 + 0.127631i
\(855\) 0 0
\(856\) −4.83409 + 18.0411i −0.165226 + 0.616630i
\(857\) −1.46053 2.52971i −0.0498907 0.0864132i 0.840002 0.542584i \(-0.182554\pi\)
−0.889892 + 0.456171i \(0.849221\pi\)
\(858\) 0 0
\(859\) 14.1298 24.4734i 0.482101 0.835023i −0.517688 0.855569i \(-0.673207\pi\)
0.999789 + 0.0205462i \(0.00654052\pi\)
\(860\) 0.304035 + 0.304035i 0.0103675 + 0.0103675i
\(861\) 0 0
\(862\) 24.9550i 0.849969i
\(863\) −32.6894 32.6894i −1.11276 1.11276i −0.992776 0.119986i \(-0.961715\pi\)
−0.119986 0.992776i \(-0.538285\pi\)
\(864\) 0 0
\(865\) 26.8528 7.19519i 0.913023 0.244644i
\(866\) −27.3642 7.33222i −0.929874 0.249159i
\(867\) 0 0
\(868\) 15.6381i 0.530790i
\(869\) −6.29980 + 6.29980i −0.213706 + 0.213706i
\(870\) 0 0
\(871\) −27.5832 + 1.62759i −0.934621 + 0.0551489i
\(872\) 15.7304i 0.532699i
\(873\) 0 0
\(874\) −0.959637 1.66214i −0.0324602 0.0562227i
\(875\) −56.0822 −1.89593
\(876\) 0 0
\(877\) 54.6344 + 14.6393i 1.84487 + 0.494332i 0.999223 0.0394048i \(-0.0125462\pi\)
0.845650 + 0.533737i \(0.179213\pi\)
\(878\) 0.439783 + 0.117839i 0.0148420 + 0.00397689i
\(879\) 0 0
\(880\) 9.63712 0.324867
\(881\) −14.1084 24.4364i −0.475323 0.823284i 0.524278 0.851547i \(-0.324335\pi\)
−0.999600 + 0.0282639i \(0.991002\pi\)
\(882\) 0 0
\(883\) 7.20265i 0.242388i −0.992629 0.121194i \(-0.961328\pi\)
0.992629 0.121194i \(-0.0386724\pi\)
\(884\) 0.296046 0.333174i 0.00995711 0.0112059i
\(885\) 0 0
\(886\) −8.64222 + 8.64222i −0.290341 + 0.290341i
\(887\) 31.5868i 1.06058i 0.847816 + 0.530291i \(0.177917\pi\)
−0.847816 + 0.530291i \(0.822083\pi\)
\(888\) 0 0
\(889\) −1.79317 0.480478i −0.0601410 0.0161147i
\(890\) 34.9404 9.36224i 1.17120 0.313823i
\(891\) 0 0
\(892\) −1.17998 1.17998i −0.0395087 0.0395087i
\(893\) 22.5004i 0.752947i
\(894\) 0 0
\(895\) 5.03006 + 5.03006i 0.168136 + 0.168136i
\(896\) 1.55271 2.68937i 0.0518724 0.0898456i
\(897\) 0 0
\(898\) 3.43923 + 5.95692i 0.114769 + 0.198785i
\(899\) −0.547991 + 2.04513i −0.0182765 + 0.0682090i
\(900\) 0 0
\(901\) 0.993237 + 0.573446i 0.0330895 + 0.0191042i
\(902\) −5.91196 + 22.0637i −0.196847 + 0.734642i
\(903\) 0 0
\(904\) 7.35641 27.4545i 0.244671 0.913123i
\(905\) 12.1400 + 45.3072i 0.403549 + 1.50606i
\(906\) 0 0
\(907\) −19.5861 11.3080i −0.650346 0.375477i 0.138243 0.990398i \(-0.455854\pi\)
−0.788589 + 0.614921i \(0.789188\pi\)
\(908\) −15.9804 4.28192i −0.530327 0.142101i
\(909\) 0 0
\(910\) −25.1986 38.2492i −0.835326 1.26795i
\(911\) 20.2816 11.7096i 0.671958 0.387955i −0.124860 0.992174i \(-0.539848\pi\)
0.796818 + 0.604219i \(0.206515\pi\)
\(912\) 0 0
\(913\) 41.7106 1.38042
\(914\) 5.79543 + 10.0380i 0.191696 + 0.332027i
\(915\) 0 0
\(916\) 11.5338 11.5338i 0.381088 0.381088i
\(917\) −15.6574 58.4342i −0.517053 1.92967i
\(918\) 0 0
\(919\) 13.0969 22.6845i 0.432027 0.748293i −0.565020 0.825077i \(-0.691132\pi\)
0.997048 + 0.0767835i \(0.0244650\pi\)
\(920\) −2.96245 + 5.13111i −0.0976689 + 0.169168i
\(921\) 0 0
\(922\) −15.7012 9.06506i −0.517090 0.298542i
\(923\) 23.5138 + 11.7867i 0.773968 + 0.387964i
\(924\) 0 0
\(925\) −0.284635 1.06227i −0.00935873 0.0349273i
\(926\) 35.8253 20.6837i 1.17729 0.679710i
\(927\) 0 0
\(928\) −1.91442 + 1.91442i −0.0628440 + 0.0628440i
\(929\) 6.89279 + 6.89279i 0.226145 + 0.226145i 0.811080 0.584935i \(-0.198880\pi\)
−0.584935 + 0.811080i \(0.698880\pi\)
\(930\) 0 0
\(931\) −40.8397 + 10.9430i −1.33847 + 0.358642i
\(932\) 11.2168 6.47603i 0.367419 0.212129i
\(933\) 0 0
\(934\) −38.8555 + 10.4113i −1.27139 + 0.340668i
\(935\) −0.902613 −0.0295186
\(936\) 0 0
\(937\) 38.7284 1.26520 0.632601 0.774478i \(-0.281987\pi\)
0.632601 + 0.774478i \(0.281987\pi\)
\(938\) −40.8760 + 10.9527i −1.33465 + 0.357618i
\(939\) 0 0
\(940\) −18.1315 + 10.4682i −0.591383 + 0.341435i
\(941\) −50.7507 + 13.5986i −1.65442 + 0.443302i −0.960847 0.277080i \(-0.910633\pi\)
−0.693578 + 0.720382i \(0.743967\pi\)
\(942\) 0 0
\(943\) −4.66545 4.66545i −0.151928 0.151928i
\(944\) 8.05305 8.05305i 0.262104 0.262104i
\(945\) 0 0
\(946\) −0.547809 + 0.316278i −0.0178108 + 0.0102831i
\(947\) 12.1957 + 45.5150i 0.396307 + 1.47904i 0.819542 + 0.573019i \(0.194228\pi\)
−0.423234 + 0.906020i \(0.639105\pi\)
\(948\) 0 0
\(949\) 1.13154 + 19.1765i 0.0367314 + 0.622495i
\(950\) 0.576337 + 0.332749i 0.0186989 + 0.0107958i
\(951\) 0 0
\(952\) 1.13232 1.96124i 0.0366987 0.0635640i
\(953\) −24.8010 + 42.9566i −0.803383 + 1.39150i 0.113994 + 0.993481i \(0.463636\pi\)
−0.917377 + 0.398019i \(0.869698\pi\)
\(954\) 0 0
\(955\) −5.63044 21.0131i −0.182197 0.679968i
\(956\) 4.20064 4.20064i 0.135858 0.135858i
\(957\) 0 0
\(958\) 11.1326 + 19.2822i 0.359677 + 0.622979i
\(959\) 81.4222 2.62926
\(960\) 0 0
\(961\) 16.2415 9.37703i 0.523919 0.302485i
\(962\) −9.60101 + 10.8051i −0.309549 + 0.348371i
\(963\) 0 0
\(964\) −0.850249 0.227824i −0.0273847 0.00733770i
\(965\) 0.790960 + 0.456661i 0.0254619 + 0.0147004i
\(966\) 0 0
\(967\) −15.3349 57.2307i −0.493138 1.84042i −0.540218 0.841525i \(-0.681658\pi\)
0.0470805 0.998891i \(-0.485008\pi\)
\(968\) −2.76410 + 10.3158i −0.0888416 + 0.331561i
\(969\) 0 0
\(970\) 0.345568 1.28968i 0.0110955 0.0414091i
\(971\) 19.4119 + 11.2075i 0.622957 + 0.359665i 0.778019 0.628240i \(-0.216224\pi\)
−0.155062 + 0.987905i \(0.549558\pi\)
\(972\) 0 0
\(973\) −18.4492 + 68.8535i −0.591455 + 2.20734i
\(974\) 9.47425 + 16.4099i 0.303575 + 0.525807i
\(975\) 0 0
\(976\) 1.03306 1.78931i 0.0330673 0.0572743i
\(977\) 10.9746 + 10.9746i 0.351109 + 0.351109i 0.860522 0.509413i \(-0.170137\pi\)
−0.509413 + 0.860522i \(0.670137\pi\)
\(978\) 0 0
\(979\) 40.3870i 1.29077i
\(980\) 27.8187 + 27.8187i 0.888635 + 0.888635i
\(981\) 0 0
\(982\) −15.0296 + 4.02716i −0.479613 + 0.128512i
\(983\) −2.42828 0.650655i −0.0774500 0.0207527i 0.219886 0.975526i \(-0.429431\pi\)
−0.297336 + 0.954773i \(0.596098\pi\)
\(984\) 0 0
\(985\) 6.34294i 0.202103i
\(986\) −0.0653503 + 0.0653503i −0.00208118 + 0.00208118i
\(987\) 0 0
\(988\) 0.391021 + 6.62671i 0.0124400 + 0.210824i
\(989\) 0.182714i 0.00580997i
\(990\) 0 0
\(991\) 15.2437 + 26.4028i 0.484231 + 0.838713i 0.999836 0.0181139i \(-0.00576614\pi\)
−0.515605 + 0.856826i \(0.672433\pi\)
\(992\) −15.6591 −0.497178
\(993\) 0 0
\(994\) 38.9106 + 10.4261i 1.23417 + 0.330695i
\(995\) −34.5848 9.26698i −1.09641 0.293783i
\(996\) 0 0
\(997\) −7.98608 −0.252922 −0.126461 0.991972i \(-0.540362\pi\)
−0.126461 + 0.991972i \(0.540362\pi\)
\(998\) −6.37866 11.0482i −0.201913 0.349723i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.bf.a.314.8 48
3.2 odd 2 117.2.bc.a.41.5 yes 48
9.2 odd 6 351.2.ba.a.197.8 48
9.7 even 3 117.2.x.a.2.5 48
13.7 odd 12 351.2.ba.a.98.8 48
39.20 even 12 117.2.x.a.59.5 yes 48
117.7 odd 12 117.2.bc.a.20.5 yes 48
117.20 even 12 inner 351.2.bf.a.332.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.2.5 48 9.7 even 3
117.2.x.a.59.5 yes 48 39.20 even 12
117.2.bc.a.20.5 yes 48 117.7 odd 12
117.2.bc.a.41.5 yes 48 3.2 odd 2
351.2.ba.a.98.8 48 13.7 odd 12
351.2.ba.a.197.8 48 9.2 odd 6
351.2.bf.a.314.8 48 1.1 even 1 trivial
351.2.bf.a.332.8 48 117.20 even 12 inner