Properties

Label 351.2.ba.a.98.8
Level $351$
Weight $2$
Character 351.98
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(71,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 98.8
Character \(\chi\) \(=\) 351.98
Dual form 351.2.ba.a.197.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.754009 - 0.754009i) q^{2} +0.862941i q^{4} +(-0.595426 - 2.22216i) q^{5} +(-1.34030 - 5.00206i) q^{7} +(2.15868 + 2.15868i) q^{8} +(-2.12448 - 1.22657i) q^{10} +(-1.93671 - 1.93671i) q^{11} +(3.42168 + 1.13671i) q^{13} +(-4.78220 - 2.76100i) q^{14} +1.52945 q^{16} +(-0.0716242 - 0.124057i) q^{17} +(0.552200 - 2.06084i) q^{19} +(1.91759 - 0.513817i) q^{20} -2.92060 q^{22} +(-0.421808 - 0.730594i) q^{23} +(-0.253329 + 0.146260i) q^{25} +(3.43707 - 1.72289i) q^{26} +(4.31649 - 1.15660i) q^{28} +0.605036i q^{29} +(3.38018 - 0.905716i) q^{31} +(-3.16415 + 3.16415i) q^{32} +(-0.147545 - 0.0395346i) q^{34} +(-10.3173 + 5.95671i) q^{35} +(0.973046 + 3.63146i) q^{37} +(-1.13753 - 1.97025i) q^{38} +(3.51160 - 6.08227i) q^{40} +(7.55452 + 2.02423i) q^{41} +(0.187567 + 0.108292i) q^{43} +(1.67127 - 1.67127i) q^{44} +(-0.868921 - 0.232827i) q^{46} +(-2.72952 + 10.1867i) q^{47} +(-17.1621 + 9.90853i) q^{49} +(-0.0807314 + 0.301294i) q^{50} +(-0.980914 + 2.95271i) q^{52} +8.00631i q^{53} +(-3.15052 + 5.45686i) q^{55} +(7.90459 - 13.6912i) q^{56} +(0.456203 + 0.456203i) q^{58} +(-5.26532 - 5.26532i) q^{59} +(0.675442 - 1.16990i) q^{61} +(1.86577 - 3.23160i) q^{62} +7.83049i q^{64} +(0.488596 - 8.28034i) q^{65} +(1.98346 - 7.40238i) q^{67} +(0.107054 - 0.0618075i) q^{68} +(-3.28794 + 12.2708i) q^{70} +(7.04646 + 1.88809i) q^{71} +(-3.76736 + 3.76736i) q^{73} +(3.47184 + 2.00447i) q^{74} +(1.77838 + 0.476516i) q^{76} +(-7.09179 + 12.2833i) q^{77} +(1.62641 + 2.81703i) q^{79} +(-0.910674 - 3.39868i) q^{80} +(7.22246 - 4.16989i) q^{82} +(14.7099 + 3.94150i) q^{83} +(-0.233027 + 0.233027i) q^{85} +(0.223081 - 0.0597743i) q^{86} -8.36151i q^{88} +(14.2431 - 3.81643i) q^{89} +(1.09983 - 18.6390i) q^{91} +(0.630459 - 0.363996i) q^{92} +(5.62279 + 9.73895i) q^{94} -4.90830 q^{95} +(0.525725 - 0.140868i) q^{97} +(-5.46924 + 20.4115i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} + 6 q^{5} - 4 q^{7} - 30 q^{8} - 12 q^{10} + 6 q^{11} - 2 q^{13} + 12 q^{14} - 28 q^{16} - 4 q^{19} + 18 q^{20} - 4 q^{22} + 6 q^{23} + 48 q^{26} - 18 q^{31} - 54 q^{32} + 6 q^{34} - 6 q^{35}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.754009 0.754009i 0.533165 0.533165i −0.388348 0.921513i \(-0.626954\pi\)
0.921513 + 0.388348i \(0.126954\pi\)
\(3\) 0 0
\(4\) 0.862941i 0.431471i
\(5\) −0.595426 2.22216i −0.266282 0.993779i −0.961461 0.274942i \(-0.911341\pi\)
0.695178 0.718837i \(-0.255325\pi\)
\(6\) 0 0
\(7\) −1.34030 5.00206i −0.506585 1.89060i −0.451832 0.892103i \(-0.649229\pi\)
−0.0547531 0.998500i \(-0.517437\pi\)
\(8\) 2.15868 + 2.15868i 0.763210 + 0.763210i
\(9\) 0 0
\(10\) −2.12448 1.22657i −0.671821 0.387876i
\(11\) −1.93671 1.93671i −0.583941 0.583941i 0.352043 0.935984i \(-0.385487\pi\)
−0.935984 + 0.352043i \(0.885487\pi\)
\(12\) 0 0
\(13\) 3.42168 + 1.13671i 0.949003 + 0.315267i
\(14\) −4.78220 2.76100i −1.27810 0.737909i
\(15\) 0 0
\(16\) 1.52945 0.382363
\(17\) −0.0716242 0.124057i −0.0173714 0.0300882i 0.857209 0.514969i \(-0.172196\pi\)
−0.874580 + 0.484880i \(0.838863\pi\)
\(18\) 0 0
\(19\) 0.552200 2.06084i 0.126683 0.472789i −0.873211 0.487343i \(-0.837966\pi\)
0.999894 + 0.0145541i \(0.00463288\pi\)
\(20\) 1.91759 0.513817i 0.428787 0.114893i
\(21\) 0 0
\(22\) −2.92060 −0.622674
\(23\) −0.421808 0.730594i −0.0879531 0.152339i 0.818693 0.574232i \(-0.194699\pi\)
−0.906646 + 0.421893i \(0.861366\pi\)
\(24\) 0 0
\(25\) −0.253329 + 0.146260i −0.0506658 + 0.0292519i
\(26\) 3.43707 1.72289i 0.674064 0.337886i
\(27\) 0 0
\(28\) 4.31649 1.15660i 0.815739 0.218577i
\(29\) 0.605036i 0.112352i 0.998421 + 0.0561762i \(0.0178909\pi\)
−0.998421 + 0.0561762i \(0.982109\pi\)
\(30\) 0 0
\(31\) 3.38018 0.905716i 0.607098 0.162671i 0.0578423 0.998326i \(-0.481578\pi\)
0.549256 + 0.835654i \(0.314911\pi\)
\(32\) −3.16415 + 3.16415i −0.559347 + 0.559347i
\(33\) 0 0
\(34\) −0.147545 0.0395346i −0.0253038 0.00678013i
\(35\) −10.3173 + 5.95671i −1.74395 + 1.00687i
\(36\) 0 0
\(37\) 0.973046 + 3.63146i 0.159968 + 0.597008i 0.998629 + 0.0523539i \(0.0166724\pi\)
−0.838661 + 0.544654i \(0.816661\pi\)
\(38\) −1.13753 1.97025i −0.184531 0.319617i
\(39\) 0 0
\(40\) 3.51160 6.08227i 0.555233 0.961691i
\(41\) 7.55452 + 2.02423i 1.17982 + 0.316131i 0.794854 0.606801i \(-0.207547\pi\)
0.384963 + 0.922932i \(0.374214\pi\)
\(42\) 0 0
\(43\) 0.187567 + 0.108292i 0.0286038 + 0.0165144i 0.514234 0.857650i \(-0.328076\pi\)
−0.485630 + 0.874164i \(0.661410\pi\)
\(44\) 1.67127 1.67127i 0.251953 0.251953i
\(45\) 0 0
\(46\) −0.868921 0.232827i −0.128115 0.0343284i
\(47\) −2.72952 + 10.1867i −0.398141 + 1.48588i 0.418222 + 0.908345i \(0.362653\pi\)
−0.816363 + 0.577539i \(0.804013\pi\)
\(48\) 0 0
\(49\) −17.1621 + 9.90853i −2.45172 + 1.41550i
\(50\) −0.0807314 + 0.301294i −0.0114171 + 0.0426093i
\(51\) 0 0
\(52\) −0.980914 + 2.95271i −0.136028 + 0.409467i
\(53\) 8.00631i 1.09975i 0.835246 + 0.549876i \(0.185325\pi\)
−0.835246 + 0.549876i \(0.814675\pi\)
\(54\) 0 0
\(55\) −3.15052 + 5.45686i −0.424816 + 0.735802i
\(56\) 7.90459 13.6912i 1.05630 1.82956i
\(57\) 0 0
\(58\) 0.456203 + 0.456203i 0.0599024 + 0.0599024i
\(59\) −5.26532 5.26532i −0.685487 0.685487i 0.275744 0.961231i \(-0.411076\pi\)
−0.961231 + 0.275744i \(0.911076\pi\)
\(60\) 0 0
\(61\) 0.675442 1.16990i 0.0864815 0.149790i −0.819540 0.573022i \(-0.805771\pi\)
0.906022 + 0.423232i \(0.139104\pi\)
\(62\) 1.86577 3.23160i 0.236953 0.410414i
\(63\) 0 0
\(64\) 7.83049i 0.978811i
\(65\) 0.488596 8.28034i 0.0606028 1.02705i
\(66\) 0 0
\(67\) 1.98346 7.40238i 0.242318 0.904345i −0.732394 0.680881i \(-0.761597\pi\)
0.974712 0.223464i \(-0.0717364\pi\)
\(68\) 0.107054 0.0618075i 0.0129822 0.00749526i
\(69\) 0 0
\(70\) −3.28794 + 12.2708i −0.392985 + 1.46664i
\(71\) 7.04646 + 1.88809i 0.836261 + 0.224075i 0.651443 0.758697i \(-0.274164\pi\)
0.184818 + 0.982773i \(0.440831\pi\)
\(72\) 0 0
\(73\) −3.76736 + 3.76736i −0.440936 + 0.440936i −0.892326 0.451391i \(-0.850928\pi\)
0.451391 + 0.892326i \(0.350928\pi\)
\(74\) 3.47184 + 2.00447i 0.403593 + 0.233014i
\(75\) 0 0
\(76\) 1.77838 + 0.476516i 0.203994 + 0.0546601i
\(77\) −7.09179 + 12.2833i −0.808185 + 1.39982i
\(78\) 0 0
\(79\) 1.62641 + 2.81703i 0.182986 + 0.316941i 0.942896 0.333087i \(-0.108090\pi\)
−0.759910 + 0.650028i \(0.774757\pi\)
\(80\) −0.910674 3.39868i −0.101816 0.379984i
\(81\) 0 0
\(82\) 7.22246 4.16989i 0.797587 0.460487i
\(83\) 14.7099 + 3.94150i 1.61462 + 0.432636i 0.949415 0.314025i \(-0.101677\pi\)
0.665205 + 0.746661i \(0.268344\pi\)
\(84\) 0 0
\(85\) −0.233027 + 0.233027i −0.0252753 + 0.0252753i
\(86\) 0.223081 0.0597743i 0.0240554 0.00644563i
\(87\) 0 0
\(88\) 8.36151i 0.891340i
\(89\) 14.2431 3.81643i 1.50977 0.404541i 0.593409 0.804901i \(-0.297782\pi\)
0.916358 + 0.400361i \(0.131115\pi\)
\(90\) 0 0
\(91\) 1.09983 18.6390i 0.115293 1.95390i
\(92\) 0.630459 0.363996i 0.0657299 0.0379492i
\(93\) 0 0
\(94\) 5.62279 + 9.73895i 0.579946 + 1.00450i
\(95\) −4.90830 −0.503581
\(96\) 0 0
\(97\) 0.525725 0.140868i 0.0533793 0.0143029i −0.232031 0.972708i \(-0.574537\pi\)
0.285410 + 0.958406i \(0.407870\pi\)
\(98\) −5.46924 + 20.4115i −0.552476 + 2.06187i
\(99\) 0 0
\(100\) −0.126213 0.218608i −0.0126213 0.0218608i
\(101\) −3.51090 −0.349347 −0.174674 0.984626i \(-0.555887\pi\)
−0.174674 + 0.984626i \(0.555887\pi\)
\(102\) 0 0
\(103\) 0.661851 + 0.382120i 0.0652141 + 0.0376514i 0.532253 0.846586i \(-0.321346\pi\)
−0.467038 + 0.884237i \(0.654679\pi\)
\(104\) 4.93252 + 9.84012i 0.483674 + 0.964903i
\(105\) 0 0
\(106\) 6.03683 + 6.03683i 0.586349 + 0.586349i
\(107\) −5.29840 3.05903i −0.512216 0.295728i 0.221528 0.975154i \(-0.428896\pi\)
−0.733744 + 0.679426i \(0.762229\pi\)
\(108\) 0 0
\(109\) −3.64352 3.64352i −0.348986 0.348986i 0.510746 0.859732i \(-0.329369\pi\)
−0.859732 + 0.510746i \(0.829369\pi\)
\(110\) 1.73900 + 6.49004i 0.165807 + 0.618801i
\(111\) 0 0
\(112\) −2.04992 7.65041i −0.193699 0.722896i
\(113\) 9.31035i 0.875844i −0.899013 0.437922i \(-0.855715\pi\)
0.899013 0.437922i \(-0.144285\pi\)
\(114\) 0 0
\(115\) −1.37234 + 1.37234i −0.127971 + 0.127971i
\(116\) −0.522111 −0.0484768
\(117\) 0 0
\(118\) −7.94020 −0.730955
\(119\) −0.524542 + 0.524542i −0.0480847 + 0.0480847i
\(120\) 0 0
\(121\) 3.49827i 0.318025i
\(122\) −0.372826 1.39140i −0.0337541 0.125972i
\(123\) 0 0
\(124\) 0.781580 + 2.91690i 0.0701879 + 0.261945i
\(125\) −7.65781 7.65781i −0.684936 0.684936i
\(126\) 0 0
\(127\) 0.310458 + 0.179243i 0.0275487 + 0.0159052i 0.513711 0.857963i \(-0.328270\pi\)
−0.486162 + 0.873868i \(0.661604\pi\)
\(128\) −0.424033 0.424033i −0.0374796 0.0374796i
\(129\) 0 0
\(130\) −5.87504 6.61186i −0.515276 0.579898i
\(131\) 10.1169 + 5.84101i 0.883920 + 0.510331i 0.871949 0.489597i \(-0.162856\pi\)
0.0119710 + 0.999928i \(0.496189\pi\)
\(132\) 0 0
\(133\) −11.0486 −0.958032
\(134\) −4.08591 7.07701i −0.352969 0.611361i
\(135\) 0 0
\(136\) 0.113185 0.422413i 0.00970556 0.0362216i
\(137\) −15.1873 + 4.06943i −1.29754 + 0.347675i −0.840520 0.541781i \(-0.817750\pi\)
−0.457021 + 0.889456i \(0.651084\pi\)
\(138\) 0 0
\(139\) 13.7650 1.16753 0.583767 0.811922i \(-0.301578\pi\)
0.583767 + 0.811922i \(0.301578\pi\)
\(140\) −5.14029 8.90325i −0.434434 0.752462i
\(141\) 0 0
\(142\) 6.73673 3.88945i 0.565334 0.326396i
\(143\) −4.42533 8.82830i −0.370065 0.738260i
\(144\) 0 0
\(145\) 1.34449 0.360254i 0.111654 0.0299175i
\(146\) 5.68124i 0.470183i
\(147\) 0 0
\(148\) −3.13373 + 0.839681i −0.257591 + 0.0690214i
\(149\) 9.35362 9.35362i 0.766278 0.766278i −0.211171 0.977449i \(-0.567728\pi\)
0.977449 + 0.211171i \(0.0677277\pi\)
\(150\) 0 0
\(151\) −11.1072 2.97615i −0.903888 0.242196i −0.223203 0.974772i \(-0.571651\pi\)
−0.680685 + 0.732576i \(0.738318\pi\)
\(152\) 5.64072 3.25667i 0.457523 0.264151i
\(153\) 0 0
\(154\) 3.91448 + 14.6090i 0.315438 + 1.17723i
\(155\) −4.02529 6.97201i −0.323319 0.560005i
\(156\) 0 0
\(157\) −4.68972 + 8.12283i −0.374280 + 0.648272i −0.990219 0.139522i \(-0.955443\pi\)
0.615939 + 0.787794i \(0.288777\pi\)
\(158\) 3.35040 + 0.897737i 0.266543 + 0.0714201i
\(159\) 0 0
\(160\) 8.91525 + 5.14722i 0.704812 + 0.406924i
\(161\) −3.08913 + 3.08913i −0.243457 + 0.243457i
\(162\) 0 0
\(163\) −14.3617 3.84819i −1.12489 0.301414i −0.352030 0.935989i \(-0.614508\pi\)
−0.772861 + 0.634575i \(0.781175\pi\)
\(164\) −1.74679 + 6.51910i −0.136401 + 0.509056i
\(165\) 0 0
\(166\) 14.0633 8.11946i 1.09152 0.630192i
\(167\) 0.558665 2.08497i 0.0432308 0.161339i −0.940936 0.338585i \(-0.890052\pi\)
0.984167 + 0.177245i \(0.0567185\pi\)
\(168\) 0 0
\(169\) 10.4158 + 7.77892i 0.801214 + 0.598378i
\(170\) 0.351409i 0.0269518i
\(171\) 0 0
\(172\) −0.0934497 + 0.161860i −0.00712547 + 0.0123417i
\(173\) −6.04205 + 10.4651i −0.459369 + 0.795650i −0.998928 0.0462976i \(-0.985258\pi\)
0.539559 + 0.841948i \(0.318591\pi\)
\(174\) 0 0
\(175\) 1.07114 + 1.07114i 0.0809704 + 0.0809704i
\(176\) −2.96211 2.96211i −0.223277 0.223277i
\(177\) 0 0
\(178\) 7.86181 13.6171i 0.589267 1.02064i
\(179\) 1.54606 2.67786i 0.115558 0.200152i −0.802445 0.596727i \(-0.796468\pi\)
0.918003 + 0.396574i \(0.129801\pi\)
\(180\) 0 0
\(181\) 20.3888i 1.51549i 0.652550 + 0.757745i \(0.273699\pi\)
−0.652550 + 0.757745i \(0.726301\pi\)
\(182\) −13.2247 14.8832i −0.980279 1.10322i
\(183\) 0 0
\(184\) 0.666569 2.48767i 0.0491401 0.183394i
\(185\) 7.49030 4.32453i 0.550698 0.317945i
\(186\) 0 0
\(187\) −0.101547 + 0.378978i −0.00742584 + 0.0277136i
\(188\) −8.79053 2.35541i −0.641115 0.171786i
\(189\) 0 0
\(190\) −3.70090 + 3.70090i −0.268492 + 0.268492i
\(191\) −8.18928 4.72808i −0.592555 0.342112i 0.173552 0.984825i \(-0.444476\pi\)
−0.766107 + 0.642713i \(0.777809\pi\)
\(192\) 0 0
\(193\) 0.383474 + 0.102752i 0.0276031 + 0.00739622i 0.272594 0.962129i \(-0.412118\pi\)
−0.244991 + 0.969525i \(0.578785\pi\)
\(194\) 0.290186 0.502617i 0.0208341 0.0360858i
\(195\) 0 0
\(196\) −8.55047 14.8099i −0.610748 1.05785i
\(197\) −0.713601 2.66320i −0.0508420 0.189745i 0.935834 0.352440i \(-0.114648\pi\)
−0.986676 + 0.162695i \(0.947981\pi\)
\(198\) 0 0
\(199\) 13.4785 7.78181i 0.955465 0.551638i 0.0606908 0.998157i \(-0.480670\pi\)
0.894774 + 0.446519i \(0.147336\pi\)
\(200\) −0.862586 0.231129i −0.0609940 0.0163433i
\(201\) 0 0
\(202\) −2.64725 + 2.64725i −0.186260 + 0.186260i
\(203\) 3.02643 0.810930i 0.212414 0.0569161i
\(204\) 0 0
\(205\) 17.9926i 1.25666i
\(206\) 0.787163 0.210920i 0.0548443 0.0146955i
\(207\) 0 0
\(208\) 5.23329 + 1.73854i 0.362863 + 0.120546i
\(209\) −5.06071 + 2.92180i −0.350057 + 0.202105i
\(210\) 0 0
\(211\) −4.61191 7.98807i −0.317497 0.549921i 0.662468 0.749090i \(-0.269509\pi\)
−0.979965 + 0.199169i \(0.936176\pi\)
\(212\) −6.90898 −0.474510
\(213\) 0 0
\(214\) −6.30158 + 1.68850i −0.430767 + 0.115424i
\(215\) 0.128960 0.481284i 0.00879498 0.0328233i
\(216\) 0 0
\(217\) −9.06090 15.6939i −0.615094 1.06537i
\(218\) −5.49449 −0.372134
\(219\) 0 0
\(220\) −4.70894 2.71871i −0.317477 0.183295i
\(221\) −0.104058 0.505898i −0.00699973 0.0340304i
\(222\) 0 0
\(223\) 1.36740 + 1.36740i 0.0915676 + 0.0915676i 0.751407 0.659839i \(-0.229376\pi\)
−0.659839 + 0.751407i \(0.729376\pi\)
\(224\) 20.0682 + 11.5864i 1.34086 + 0.774146i
\(225\) 0 0
\(226\) −7.02009 7.02009i −0.466969 0.466969i
\(227\) −4.96201 18.5185i −0.329340 1.22912i −0.909876 0.414880i \(-0.863823\pi\)
0.580536 0.814235i \(-0.302843\pi\)
\(228\) 0 0
\(229\) 4.89219 + 18.2579i 0.323285 + 1.20652i 0.916025 + 0.401122i \(0.131380\pi\)
−0.592739 + 0.805394i \(0.701954\pi\)
\(230\) 2.06951i 0.136460i
\(231\) 0 0
\(232\) −1.30608 + 1.30608i −0.0857485 + 0.0857485i
\(233\) 15.0092 0.983286 0.491643 0.870797i \(-0.336397\pi\)
0.491643 + 0.870797i \(0.336397\pi\)
\(234\) 0 0
\(235\) 24.2617 1.58266
\(236\) 4.54366 4.54366i 0.295767 0.295767i
\(237\) 0 0
\(238\) 0.791019i 0.0512741i
\(239\) −1.78174 6.64956i −0.115251 0.430124i 0.884054 0.467384i \(-0.154804\pi\)
−0.999306 + 0.0372603i \(0.988137\pi\)
\(240\) 0 0
\(241\) 0.264008 + 0.985292i 0.0170063 + 0.0634683i 0.973908 0.226945i \(-0.0728738\pi\)
−0.956901 + 0.290413i \(0.906207\pi\)
\(242\) −2.63773 2.63773i −0.169560 0.169560i
\(243\) 0 0
\(244\) 1.00956 + 0.582867i 0.0646301 + 0.0373142i
\(245\) 32.2371 + 32.2371i 2.05955 + 2.05955i
\(246\) 0 0
\(247\) 4.23203 6.42384i 0.269277 0.408739i
\(248\) 9.25189 + 5.34158i 0.587496 + 0.339191i
\(249\) 0 0
\(250\) −11.5481 −0.730367
\(251\) −14.6482 25.3714i −0.924586 1.60143i −0.792226 0.610228i \(-0.791078\pi\)
−0.132359 0.991202i \(-0.542255\pi\)
\(252\) 0 0
\(253\) −0.598029 + 2.23187i −0.0375977 + 0.140317i
\(254\) 0.369239 0.0989372i 0.0231681 0.00620787i
\(255\) 0 0
\(256\) −16.3004 −1.01878
\(257\) 9.09224 + 15.7482i 0.567159 + 0.982347i 0.996845 + 0.0793694i \(0.0252907\pi\)
−0.429687 + 0.902978i \(0.641376\pi\)
\(258\) 0 0
\(259\) 16.8606 9.73448i 1.04767 0.604871i
\(260\) 7.14545 + 0.421629i 0.443142 + 0.0261483i
\(261\) 0 0
\(262\) 12.0324 3.22408i 0.743366 0.199184i
\(263\) 19.5534i 1.20572i 0.797848 + 0.602858i \(0.205971\pi\)
−0.797848 + 0.602858i \(0.794029\pi\)
\(264\) 0 0
\(265\) 17.7913 4.76716i 1.09291 0.292845i
\(266\) −8.33071 + 8.33071i −0.510789 + 0.510789i
\(267\) 0 0
\(268\) 6.38782 + 1.71161i 0.390198 + 0.104553i
\(269\) −23.9955 + 13.8538i −1.46303 + 0.844683i −0.999150 0.0412138i \(-0.986878\pi\)
−0.463883 + 0.885896i \(0.653544\pi\)
\(270\) 0 0
\(271\) 2.16310 + 8.07278i 0.131399 + 0.490387i 0.999987 0.00514827i \(-0.00163875\pi\)
−0.868588 + 0.495535i \(0.834972\pi\)
\(272\) −0.109546 0.189739i −0.00664218 0.0115046i
\(273\) 0 0
\(274\) −8.38299 + 14.5198i −0.506435 + 0.877171i
\(275\) 0.773889 + 0.207363i 0.0466673 + 0.0125045i
\(276\) 0 0
\(277\) 13.6565 + 7.88460i 0.820541 + 0.473740i 0.850603 0.525808i \(-0.176237\pi\)
−0.0300620 + 0.999548i \(0.509570\pi\)
\(278\) 10.3789 10.3789i 0.622488 0.622488i
\(279\) 0 0
\(280\) −35.1305 9.41319i −2.09945 0.562546i
\(281\) −3.53952 + 13.2097i −0.211150 + 0.788022i 0.776337 + 0.630319i \(0.217076\pi\)
−0.987486 + 0.157704i \(0.949591\pi\)
\(282\) 0 0
\(283\) −11.6559 + 6.72951i −0.692869 + 0.400028i −0.804686 0.593701i \(-0.797666\pi\)
0.111817 + 0.993729i \(0.464333\pi\)
\(284\) −1.62931 + 6.08068i −0.0966820 + 0.360822i
\(285\) 0 0
\(286\) −9.99336 3.31988i −0.590920 0.196308i
\(287\) 40.5013i 2.39071i
\(288\) 0 0
\(289\) 8.48974 14.7047i 0.499396 0.864980i
\(290\) 0.742120 1.28539i 0.0435788 0.0754807i
\(291\) 0 0
\(292\) −3.25101 3.25101i −0.190251 0.190251i
\(293\) −5.04007 5.04007i −0.294444 0.294444i 0.544389 0.838833i \(-0.316762\pi\)
−0.838833 + 0.544389i \(0.816762\pi\)
\(294\) 0 0
\(295\) −8.56527 + 14.8355i −0.498689 + 0.863756i
\(296\) −5.73867 + 9.93966i −0.333553 + 0.577731i
\(297\) 0 0
\(298\) 14.1054i 0.817105i
\(299\) −0.612820 2.97933i −0.0354403 0.172299i
\(300\) 0 0
\(301\) 0.290288 1.08337i 0.0167319 0.0624443i
\(302\) −10.6189 + 6.13085i −0.611051 + 0.352791i
\(303\) 0 0
\(304\) 0.844562 3.15195i 0.0484390 0.180777i
\(305\) −3.00188 0.804351i −0.171887 0.0460570i
\(306\) 0 0
\(307\) −8.37481 + 8.37481i −0.477976 + 0.477976i −0.904484 0.426508i \(-0.859744\pi\)
0.426508 + 0.904484i \(0.359744\pi\)
\(308\) −10.5998 6.11980i −0.603980 0.348708i
\(309\) 0 0
\(310\) −8.29206 2.22185i −0.470957 0.126193i
\(311\) −1.34766 + 2.33421i −0.0764186 + 0.132361i −0.901702 0.432357i \(-0.857682\pi\)
0.825284 + 0.564718i \(0.191015\pi\)
\(312\) 0 0
\(313\) 1.67357 + 2.89871i 0.0945958 + 0.163845i 0.909440 0.415836i \(-0.136511\pi\)
−0.814844 + 0.579680i \(0.803177\pi\)
\(314\) 2.58860 + 9.66077i 0.146083 + 0.545189i
\(315\) 0 0
\(316\) −2.43093 + 1.40350i −0.136751 + 0.0789530i
\(317\) 3.08107 + 0.825569i 0.173050 + 0.0463686i 0.344304 0.938858i \(-0.388115\pi\)
−0.171254 + 0.985227i \(0.554782\pi\)
\(318\) 0 0
\(319\) 1.17178 1.17178i 0.0656072 0.0656072i
\(320\) 17.4006 4.66247i 0.972723 0.260640i
\(321\) 0 0
\(322\) 4.65846i 0.259606i
\(323\) −0.295212 + 0.0791017i −0.0164260 + 0.00440134i
\(324\) 0 0
\(325\) −1.03307 + 0.212492i −0.0573042 + 0.0117869i
\(326\) −13.7304 + 7.92724i −0.760456 + 0.439049i
\(327\) 0 0
\(328\) 11.9381 + 20.6775i 0.659174 + 1.14172i
\(329\) 54.6129 3.01091
\(330\) 0 0
\(331\) −29.7907 + 7.98241i −1.63745 + 0.438753i −0.956060 0.293170i \(-0.905290\pi\)
−0.681387 + 0.731923i \(0.738623\pi\)
\(332\) −3.40128 + 12.6938i −0.186670 + 0.696661i
\(333\) 0 0
\(334\) −1.15084 1.99332i −0.0629714 0.109070i
\(335\) −17.6303 −0.963244
\(336\) 0 0
\(337\) −4.37979 2.52867i −0.238582 0.137745i 0.375943 0.926643i \(-0.377319\pi\)
−0.614525 + 0.788897i \(0.710652\pi\)
\(338\) 13.7190 1.98822i 0.746213 0.108145i
\(339\) 0 0
\(340\) −0.201088 0.201088i −0.0109056 0.0109056i
\(341\) −8.30056 4.79233i −0.449500 0.259519i
\(342\) 0 0
\(343\) 46.9330 + 46.9330i 2.53415 + 2.53415i
\(344\) 0.171130 + 0.638667i 0.00922672 + 0.0344346i
\(345\) 0 0
\(346\) 3.33505 + 12.4466i 0.179293 + 0.669132i
\(347\) 9.93186i 0.533170i 0.963811 + 0.266585i \(0.0858954\pi\)
−0.963811 + 0.266585i \(0.914105\pi\)
\(348\) 0 0
\(349\) −16.7774 + 16.7774i −0.898073 + 0.898073i −0.995266 0.0971927i \(-0.969014\pi\)
0.0971927 + 0.995266i \(0.469014\pi\)
\(350\) 1.61529 0.0863411
\(351\) 0 0
\(352\) 12.2561 0.653252
\(353\) 14.8488 14.8488i 0.790322 0.790322i −0.191225 0.981546i \(-0.561246\pi\)
0.981546 + 0.191225i \(0.0612459\pi\)
\(354\) 0 0
\(355\) 16.7826i 0.890726i
\(356\) 3.29335 + 12.2910i 0.174547 + 0.651420i
\(357\) 0 0
\(358\) −0.853384 3.18487i −0.0451027 0.168326i
\(359\) 8.32119 + 8.32119i 0.439175 + 0.439175i 0.891734 0.452559i \(-0.149489\pi\)
−0.452559 + 0.891734i \(0.649489\pi\)
\(360\) 0 0
\(361\) 12.5124 + 7.22401i 0.658545 + 0.380211i
\(362\) 15.3734 + 15.3734i 0.808006 + 0.808006i
\(363\) 0 0
\(364\) 16.0844 + 0.949085i 0.843049 + 0.0497456i
\(365\) 10.6148 + 6.12849i 0.555607 + 0.320780i
\(366\) 0 0
\(367\) −5.67060 −0.296003 −0.148001 0.988987i \(-0.547284\pi\)
−0.148001 + 0.988987i \(0.547284\pi\)
\(368\) −0.645135 1.11741i −0.0336300 0.0582489i
\(369\) 0 0
\(370\) 2.38702 8.90848i 0.124095 0.463130i
\(371\) 40.0481 10.7309i 2.07919 0.557118i
\(372\) 0 0
\(373\) −26.9106 −1.39338 −0.696690 0.717373i \(-0.745345\pi\)
−0.696690 + 0.717373i \(0.745345\pi\)
\(374\) 0.209186 + 0.362320i 0.0108167 + 0.0187351i
\(375\) 0 0
\(376\) −27.8820 + 16.0977i −1.43791 + 0.830176i
\(377\) −0.687751 + 2.07024i −0.0354210 + 0.106623i
\(378\) 0 0
\(379\) −26.3773 + 7.06778i −1.35491 + 0.363047i −0.861945 0.507001i \(-0.830754\pi\)
−0.492966 + 0.870049i \(0.664087\pi\)
\(380\) 4.23558i 0.217280i
\(381\) 0 0
\(382\) −9.73981 + 2.60977i −0.498332 + 0.133528i
\(383\) −11.8575 + 11.8575i −0.605891 + 0.605891i −0.941870 0.335978i \(-0.890933\pi\)
0.335978 + 0.941870i \(0.390933\pi\)
\(384\) 0 0
\(385\) 31.5182 + 8.44527i 1.60632 + 0.430411i
\(386\) 0.366619 0.211667i 0.0186604 0.0107736i
\(387\) 0 0
\(388\) 0.121560 + 0.453670i 0.00617130 + 0.0230316i
\(389\) −0.566623 0.981420i −0.0287289 0.0497600i 0.851303 0.524674i \(-0.175813\pi\)
−0.880032 + 0.474914i \(0.842479\pi\)
\(390\) 0 0
\(391\) −0.0604234 + 0.104656i −0.00305574 + 0.00529270i
\(392\) −58.4368 15.6581i −2.95151 0.790854i
\(393\) 0 0
\(394\) −2.54613 1.47001i −0.128272 0.0740581i
\(395\) 5.29148 5.29148i 0.266243 0.266243i
\(396\) 0 0
\(397\) 17.9346 + 4.80557i 0.900114 + 0.241185i 0.679065 0.734078i \(-0.262385\pi\)
0.221049 + 0.975263i \(0.429052\pi\)
\(398\) 4.29535 16.0305i 0.215306 0.803534i
\(399\) 0 0
\(400\) −0.387454 + 0.223697i −0.0193727 + 0.0111848i
\(401\) 4.50864 16.8265i 0.225151 0.840274i −0.757193 0.653191i \(-0.773430\pi\)
0.982344 0.187083i \(-0.0599035\pi\)
\(402\) 0 0
\(403\) 12.5954 + 0.743215i 0.627423 + 0.0370222i
\(404\) 3.02970i 0.150733i
\(405\) 0 0
\(406\) 1.67051 2.89340i 0.0829059 0.143597i
\(407\) 5.14858 8.91761i 0.255206 0.442029i
\(408\) 0 0
\(409\) 21.9023 + 21.9023i 1.08300 + 1.08300i 0.996228 + 0.0867723i \(0.0276553\pi\)
0.0867723 + 0.996228i \(0.472345\pi\)
\(410\) −13.5666 13.5666i −0.670006 0.670006i
\(411\) 0 0
\(412\) −0.329747 + 0.571138i −0.0162455 + 0.0281380i
\(413\) −19.2804 + 33.3946i −0.948725 + 1.64324i
\(414\) 0 0
\(415\) 35.0346i 1.71978i
\(416\) −14.4234 + 7.22998i −0.707166 + 0.354479i
\(417\) 0 0
\(418\) −1.61276 + 6.01888i −0.0788824 + 0.294393i
\(419\) −18.5952 + 10.7360i −0.908436 + 0.524486i −0.879928 0.475108i \(-0.842409\pi\)
−0.0285086 + 0.999594i \(0.509076\pi\)
\(420\) 0 0
\(421\) 6.14101 22.9186i 0.299295 1.11698i −0.638452 0.769662i \(-0.720425\pi\)
0.937746 0.347321i \(-0.112908\pi\)
\(422\) −9.50050 2.54565i −0.462477 0.123920i
\(423\) 0 0
\(424\) −17.2831 + 17.2831i −0.839341 + 0.839341i
\(425\) 0.0362890 + 0.0209515i 0.00176027 + 0.00101630i
\(426\) 0 0
\(427\) −6.75721 1.81059i −0.327004 0.0876206i
\(428\) 2.63977 4.57221i 0.127598 0.221006i
\(429\) 0 0
\(430\) −0.265656 0.460129i −0.0128111 0.0221894i
\(431\) 6.05706 + 22.6052i 0.291758 + 1.08886i 0.943758 + 0.330637i \(0.107264\pi\)
−0.652000 + 0.758219i \(0.726070\pi\)
\(432\) 0 0
\(433\) −23.0080 + 13.2837i −1.10569 + 0.638372i −0.937710 0.347418i \(-0.887058\pi\)
−0.167982 + 0.985790i \(0.553725\pi\)
\(434\) −18.6654 5.00137i −0.895967 0.240074i
\(435\) 0 0
\(436\) 3.14414 3.14414i 0.150577 0.150577i
\(437\) −1.73856 + 0.465845i −0.0831665 + 0.0222844i
\(438\) 0 0
\(439\) 0.426976i 0.0203784i 0.999948 + 0.0101892i \(0.00324338\pi\)
−0.999948 + 0.0101892i \(0.996757\pi\)
\(440\) −18.5806 + 4.97865i −0.885795 + 0.237348i
\(441\) 0 0
\(442\) −0.459913 0.302991i −0.0218758 0.0144118i
\(443\) −9.92611 + 5.73084i −0.471604 + 0.272281i −0.716911 0.697165i \(-0.754445\pi\)
0.245307 + 0.969445i \(0.421111\pi\)
\(444\) 0 0
\(445\) −16.9614 29.3780i −0.804048 1.39265i
\(446\) 2.06206 0.0976412
\(447\) 0 0
\(448\) 39.1686 10.4952i 1.85054 0.495852i
\(449\) −1.66954 + 6.23079i −0.0787903 + 0.294049i −0.994066 0.108779i \(-0.965306\pi\)
0.915276 + 0.402828i \(0.131973\pi\)
\(450\) 0 0
\(451\) −10.7106 18.5513i −0.504342 0.873546i
\(452\) 8.03428 0.377901
\(453\) 0 0
\(454\) −17.7045 10.2217i −0.830914 0.479728i
\(455\) −42.0737 + 8.65415i −1.97244 + 0.405713i
\(456\) 0 0
\(457\) 7.68615 + 7.68615i 0.359543 + 0.359543i 0.863644 0.504101i \(-0.168176\pi\)
−0.504101 + 0.863644i \(0.668176\pi\)
\(458\) 17.4554 + 10.0779i 0.815636 + 0.470908i
\(459\) 0 0
\(460\) −1.18425 1.18425i −0.0552158 0.0552158i
\(461\) 4.40054 + 16.4230i 0.204953 + 0.764896i 0.989464 + 0.144781i \(0.0462477\pi\)
−0.784510 + 0.620116i \(0.787086\pi\)
\(462\) 0 0
\(463\) −10.0407 37.4724i −0.466630 1.74149i −0.651427 0.758712i \(-0.725829\pi\)
0.184796 0.982777i \(-0.440838\pi\)
\(464\) 0.925373i 0.0429594i
\(465\) 0 0
\(466\) 11.3171 11.3171i 0.524253 0.524253i
\(467\) 37.7239 1.74566 0.872828 0.488028i \(-0.162284\pi\)
0.872828 + 0.488028i \(0.162284\pi\)
\(468\) 0 0
\(469\) −39.6856 −1.83251
\(470\) 18.2935 18.2935i 0.843818 0.843818i
\(471\) 0 0
\(472\) 22.7323i 1.04634i
\(473\) −0.153534 0.572995i −0.00705948 0.0263463i
\(474\) 0 0
\(475\) 0.161529 + 0.602835i 0.00741147 + 0.0276600i
\(476\) −0.452649 0.452649i −0.0207471 0.0207471i
\(477\) 0 0
\(478\) −6.35728 3.67037i −0.290775 0.167879i
\(479\) −14.7645 14.7645i −0.674607 0.674607i 0.284167 0.958775i \(-0.408283\pi\)
−0.958775 + 0.284167i \(0.908283\pi\)
\(480\) 0 0
\(481\) −0.798464 + 13.5318i −0.0364068 + 0.616995i
\(482\) 0.941984 + 0.543855i 0.0429062 + 0.0247719i
\(483\) 0 0
\(484\) 3.01880 0.137218
\(485\) −0.626060 1.08437i −0.0284279 0.0492386i
\(486\) 0 0
\(487\) 4.59917 17.1643i 0.208408 0.777791i −0.779975 0.625811i \(-0.784768\pi\)
0.988384 0.151980i \(-0.0485650\pi\)
\(488\) 3.98351 1.06738i 0.180325 0.0483180i
\(489\) 0 0
\(490\) 48.6141 2.19616
\(491\) −7.29594 12.6369i −0.329261 0.570297i 0.653104 0.757268i \(-0.273466\pi\)
−0.982365 + 0.186971i \(0.940133\pi\)
\(492\) 0 0
\(493\) 0.0750588 0.0433352i 0.00338048 0.00195172i
\(494\) −1.65264 8.03462i −0.0743559 0.361494i
\(495\) 0 0
\(496\) 5.16982 1.38525i 0.232132 0.0621995i
\(497\) 37.7775i 1.69455i
\(498\) 0 0
\(499\) 11.5561 3.09645i 0.517323 0.138616i 0.00929473 0.999957i \(-0.497041\pi\)
0.508028 + 0.861341i \(0.330375\pi\)
\(500\) 6.60824 6.60824i 0.295530 0.295530i
\(501\) 0 0
\(502\) −30.1751 8.08540i −1.34678 0.360869i
\(503\) 24.4849 14.1364i 1.09173 0.630310i 0.157693 0.987488i \(-0.449594\pi\)
0.934036 + 0.357178i \(0.116261\pi\)
\(504\) 0 0
\(505\) 2.09048 + 7.80177i 0.0930250 + 0.347174i
\(506\) 1.23193 + 2.13377i 0.0547661 + 0.0948577i
\(507\) 0 0
\(508\) −0.154676 + 0.267907i −0.00686264 + 0.0118864i
\(509\) −8.79489 2.35658i −0.389827 0.104454i 0.0585816 0.998283i \(-0.481342\pi\)
−0.448408 + 0.893829i \(0.648009\pi\)
\(510\) 0 0
\(511\) 23.8940 + 13.7952i 1.05701 + 0.610263i
\(512\) −11.4426 + 11.4426i −0.505696 + 0.505696i
\(513\) 0 0
\(514\) 18.7299 + 5.01867i 0.826142 + 0.221364i
\(515\) 0.455048 1.69826i 0.0200518 0.0748344i
\(516\) 0 0
\(517\) 25.0150 14.4424i 1.10016 0.635178i
\(518\) 5.37317 20.0529i 0.236083 0.881075i
\(519\) 0 0
\(520\) 18.9294 16.8199i 0.830107 0.737602i
\(521\) 10.8148i 0.473806i −0.971533 0.236903i \(-0.923868\pi\)
0.971533 0.236903i \(-0.0761324\pi\)
\(522\) 0 0
\(523\) −16.8346 + 29.1584i −0.736125 + 1.27501i 0.218103 + 0.975926i \(0.430013\pi\)
−0.954228 + 0.299080i \(0.903320\pi\)
\(524\) −5.04045 + 8.73031i −0.220193 + 0.381385i
\(525\) 0 0
\(526\) 14.7435 + 14.7435i 0.642845 + 0.642845i
\(527\) −0.354463 0.354463i −0.0154406 0.0154406i
\(528\) 0 0
\(529\) 11.1442 19.3022i 0.484528 0.839228i
\(530\) 9.82031 17.0093i 0.426567 0.738836i
\(531\) 0 0
\(532\) 9.53425i 0.413362i
\(533\) 23.5482 + 15.5136i 1.01998 + 0.671967i
\(534\) 0 0
\(535\) −3.64285 + 13.5953i −0.157494 + 0.587777i
\(536\) 20.2611 11.6977i 0.875145 0.505265i
\(537\) 0 0
\(538\) −7.64694 + 28.5388i −0.329683 + 1.23039i
\(539\) 52.4280 + 14.0480i 2.25823 + 0.605092i
\(540\) 0 0
\(541\) 19.2044 19.2044i 0.825663 0.825663i −0.161250 0.986914i \(-0.551553\pi\)
0.986914 + 0.161250i \(0.0515526\pi\)
\(542\) 7.71794 + 4.45596i 0.331514 + 0.191400i
\(543\) 0 0
\(544\) 0.619163 + 0.165904i 0.0265464 + 0.00711309i
\(545\) −5.92703 + 10.2659i −0.253886 + 0.439744i
\(546\) 0 0
\(547\) −12.0347 20.8447i −0.514565 0.891253i −0.999857 0.0169009i \(-0.994620\pi\)
0.485292 0.874352i \(-0.338713\pi\)
\(548\) −3.51168 13.1058i −0.150011 0.559850i
\(549\) 0 0
\(550\) 0.739873 0.427166i 0.0315483 0.0182144i
\(551\) 1.24688 + 0.334101i 0.0531190 + 0.0142332i
\(552\) 0 0
\(553\) 11.9111 11.9111i 0.506511 0.506511i
\(554\) 16.2422 4.35208i 0.690065 0.184902i
\(555\) 0 0
\(556\) 11.8784i 0.503756i
\(557\) −25.0352 + 6.70816i −1.06078 + 0.284234i −0.746698 0.665163i \(-0.768362\pi\)
−0.314078 + 0.949397i \(0.601695\pi\)
\(558\) 0 0
\(559\) 0.518699 + 0.583750i 0.0219386 + 0.0246900i
\(560\) −15.7798 + 9.11050i −0.666820 + 0.384989i
\(561\) 0 0
\(562\) 7.29137 + 12.6290i 0.307568 + 0.532723i
\(563\) −16.4516 −0.693352 −0.346676 0.937985i \(-0.612690\pi\)
−0.346676 + 0.937985i \(0.612690\pi\)
\(564\) 0 0
\(565\) −20.6891 + 5.54362i −0.870396 + 0.233222i
\(566\) −3.71451 + 13.8627i −0.156132 + 0.582694i
\(567\) 0 0
\(568\) 11.1353 + 19.2869i 0.467226 + 0.809259i
\(569\) −14.2291 −0.596516 −0.298258 0.954485i \(-0.596406\pi\)
−0.298258 + 0.954485i \(0.596406\pi\)
\(570\) 0 0
\(571\) 18.0451 + 10.4184i 0.755164 + 0.435994i 0.827557 0.561382i \(-0.189730\pi\)
−0.0723925 + 0.997376i \(0.523063\pi\)
\(572\) 7.61830 3.81880i 0.318537 0.159672i
\(573\) 0 0
\(574\) −30.5383 30.5383i −1.27464 1.27464i
\(575\) 0.213713 + 0.123387i 0.00891244 + 0.00514560i
\(576\) 0 0
\(577\) −32.0720 32.0720i −1.33517 1.33517i −0.900670 0.434505i \(-0.856924\pi\)
−0.434505 0.900670i \(-0.643076\pi\)
\(578\) −4.68611 17.4888i −0.194916 0.727438i
\(579\) 0 0
\(580\) 0.310878 + 1.16021i 0.0129085 + 0.0481752i
\(581\) 78.8626i 3.27177i
\(582\) 0 0
\(583\) 15.5059 15.5059i 0.642191 0.642191i
\(584\) −16.2651 −0.673053
\(585\) 0 0
\(586\) −7.60051 −0.313974
\(587\) −11.1721 + 11.1721i −0.461121 + 0.461121i −0.899023 0.437902i \(-0.855722\pi\)
0.437902 + 0.899023i \(0.355722\pi\)
\(588\) 0 0
\(589\) 7.46614i 0.307637i
\(590\) 4.72780 + 17.6444i 0.194640 + 0.726408i
\(591\) 0 0
\(592\) 1.48823 + 5.55414i 0.0611657 + 0.228274i
\(593\) −25.1695 25.1695i −1.03359 1.03359i −0.999416 0.0341707i \(-0.989121\pi\)
−0.0341707 0.999416i \(-0.510879\pi\)
\(594\) 0 0
\(595\) 1.47794 + 0.853290i 0.0605897 + 0.0349815i
\(596\) 8.07162 + 8.07162i 0.330626 + 0.330626i
\(597\) 0 0
\(598\) −2.70851 1.78437i −0.110759 0.0729683i
\(599\) 1.33423 + 0.770320i 0.0545153 + 0.0314744i 0.527010 0.849859i \(-0.323313\pi\)
−0.472495 + 0.881334i \(0.656646\pi\)
\(600\) 0 0
\(601\) 29.3874 1.19874 0.599369 0.800473i \(-0.295418\pi\)
0.599369 + 0.800473i \(0.295418\pi\)
\(602\) −0.597990 1.03575i −0.0243722 0.0422140i
\(603\) 0 0
\(604\) 2.56825 9.58482i 0.104500 0.390001i
\(605\) −7.77372 + 2.08296i −0.316047 + 0.0846844i
\(606\) 0 0
\(607\) −20.8526 −0.846382 −0.423191 0.906041i \(-0.639090\pi\)
−0.423191 + 0.906041i \(0.639090\pi\)
\(608\) 4.77355 + 8.26804i 0.193593 + 0.335313i
\(609\) 0 0
\(610\) −2.86993 + 1.65696i −0.116200 + 0.0670882i
\(611\) −20.9189 + 31.7530i −0.846287 + 1.28459i
\(612\) 0 0
\(613\) −21.4484 + 5.74708i −0.866292 + 0.232122i −0.664484 0.747303i \(-0.731349\pi\)
−0.201809 + 0.979425i \(0.564682\pi\)
\(614\) 12.6294i 0.509680i
\(615\) 0 0
\(616\) −41.8248 + 11.2069i −1.68517 + 0.451540i
\(617\) −8.58385 + 8.58385i −0.345573 + 0.345573i −0.858457 0.512885i \(-0.828577\pi\)
0.512885 + 0.858457i \(0.328577\pi\)
\(618\) 0 0
\(619\) −5.57125 1.49281i −0.223928 0.0600012i 0.145111 0.989415i \(-0.453646\pi\)
−0.369038 + 0.929414i \(0.620313\pi\)
\(620\) 6.01643 3.47359i 0.241626 0.139503i
\(621\) 0 0
\(622\) 0.743870 + 2.77616i 0.0298265 + 0.111314i
\(623\) −38.1800 66.1298i −1.52965 2.64943i
\(624\) 0 0
\(625\) −13.1885 + 22.8432i −0.527541 + 0.913727i
\(626\) 3.44754 + 0.923765i 0.137791 + 0.0369211i
\(627\) 0 0
\(628\) −7.00952 4.04695i −0.279710 0.161491i
\(629\) 0.380813 0.380813i 0.0151840 0.0151840i
\(630\) 0 0
\(631\) −0.701230 0.187894i −0.0279155 0.00747994i 0.244834 0.969565i \(-0.421266\pi\)
−0.272750 + 0.962085i \(0.587933\pi\)
\(632\) −2.57017 + 9.59200i −0.102236 + 0.381549i
\(633\) 0 0
\(634\) 2.94564 1.70066i 0.116986 0.0675420i
\(635\) 0.213452 0.796612i 0.00847057 0.0316126i
\(636\) 0 0
\(637\) −69.9862 + 14.3955i −2.77296 + 0.570370i
\(638\) 1.76707i 0.0699589i
\(639\) 0 0
\(640\) −0.689789 + 1.19475i −0.0272663 + 0.0472266i
\(641\) 0.968362 1.67725i 0.0382480 0.0662475i −0.846268 0.532758i \(-0.821156\pi\)
0.884516 + 0.466510i \(0.154489\pi\)
\(642\) 0 0
\(643\) 3.83575 + 3.83575i 0.151267 + 0.151267i 0.778684 0.627417i \(-0.215888\pi\)
−0.627417 + 0.778684i \(0.715888\pi\)
\(644\) −2.66573 2.66573i −0.105045 0.105045i
\(645\) 0 0
\(646\) −0.162949 + 0.282236i −0.00641114 + 0.0111044i
\(647\) 5.52455 9.56880i 0.217192 0.376188i −0.736756 0.676159i \(-0.763643\pi\)
0.953949 + 0.299970i \(0.0969767\pi\)
\(648\) 0 0
\(649\) 20.3949i 0.800568i
\(650\) −0.618720 + 0.939162i −0.0242682 + 0.0368370i
\(651\) 0 0
\(652\) 3.32076 12.3933i 0.130051 0.485357i
\(653\) −22.9231 + 13.2346i −0.897049 + 0.517912i −0.876242 0.481872i \(-0.839957\pi\)
−0.0208076 + 0.999783i \(0.506624\pi\)
\(654\) 0 0
\(655\) 6.95577 25.9593i 0.271784 1.01431i
\(656\) 11.5543 + 3.09595i 0.451118 + 0.120877i
\(657\) 0 0
\(658\) 41.1786 41.1786i 1.60531 1.60531i
\(659\) 38.2912 + 22.1074i 1.49161 + 0.861184i 0.999954 0.00960334i \(-0.00305688\pi\)
0.491660 + 0.870787i \(0.336390\pi\)
\(660\) 0 0
\(661\) 30.5589 + 8.18823i 1.18860 + 0.318485i 0.798334 0.602215i \(-0.205715\pi\)
0.390270 + 0.920701i \(0.372382\pi\)
\(662\) −16.4437 + 28.4813i −0.639102 + 1.10696i
\(663\) 0 0
\(664\) 23.2455 + 40.2624i 0.902102 + 1.56249i
\(665\) 6.57859 + 24.5516i 0.255107 + 0.952072i
\(666\) 0 0
\(667\) 0.442036 0.255209i 0.0171157 0.00988175i
\(668\) 1.79920 + 0.482095i 0.0696132 + 0.0186528i
\(669\) 0 0
\(670\) −13.2934 + 13.2934i −0.513568 + 0.513568i
\(671\) −3.57390 + 0.957624i −0.137969 + 0.0369687i
\(672\) 0 0
\(673\) 18.3367i 0.706829i 0.935467 + 0.353414i \(0.114979\pi\)
−0.935467 + 0.353414i \(0.885021\pi\)
\(674\) −5.20904 + 1.39576i −0.200645 + 0.0537626i
\(675\) 0 0
\(676\) −6.71275 + 8.98820i −0.258183 + 0.345700i
\(677\) −16.0817 + 9.28475i −0.618068 + 0.356842i −0.776116 0.630590i \(-0.782813\pi\)
0.158048 + 0.987431i \(0.449480\pi\)
\(678\) 0 0
\(679\) −1.40926 2.44091i −0.0540824 0.0936734i
\(680\) −1.00606 −0.0385807
\(681\) 0 0
\(682\) −9.87215 + 2.64524i −0.378024 + 0.101291i
\(683\) −6.10105 + 22.7694i −0.233450 + 0.871249i 0.745391 + 0.666628i \(0.232263\pi\)
−0.978841 + 0.204621i \(0.934404\pi\)
\(684\) 0 0
\(685\) 18.0858 + 31.3256i 0.691024 + 1.19689i
\(686\) 70.7759 2.70224
\(687\) 0 0
\(688\) 0.286875 + 0.165627i 0.0109370 + 0.00631448i
\(689\) −9.10086 + 27.3950i −0.346715 + 1.04367i
\(690\) 0 0
\(691\) 30.5011 + 30.5011i 1.16032 + 1.16032i 0.984406 + 0.175910i \(0.0562867\pi\)
0.175910 + 0.984406i \(0.443713\pi\)
\(692\) −9.03080 5.21394i −0.343300 0.198204i
\(693\) 0 0
\(694\) 7.48871 + 7.48871i 0.284268 + 0.284268i
\(695\) −8.19604 30.5880i −0.310893 1.16027i
\(696\) 0 0
\(697\) −0.289967 1.08217i −0.0109833 0.0409902i
\(698\) 25.3006i 0.957642i
\(699\) 0 0
\(700\) −0.924328 + 0.924328i −0.0349363 + 0.0349363i
\(701\) 16.2764 0.614753 0.307376 0.951588i \(-0.400549\pi\)
0.307376 + 0.951588i \(0.400549\pi\)
\(702\) 0 0
\(703\) 8.02116 0.302524
\(704\) 15.1654 15.1654i 0.571568 0.571568i
\(705\) 0 0
\(706\) 22.3923i 0.842744i
\(707\) 4.70565 + 17.5617i 0.176974 + 0.660477i
\(708\) 0 0
\(709\) −1.26752 4.73044i −0.0476026 0.177655i 0.938032 0.346550i \(-0.112647\pi\)
−0.985634 + 0.168895i \(0.945980\pi\)
\(710\) −12.6542 12.6542i −0.474904 0.474904i
\(711\) 0 0
\(712\) 38.9848 + 22.5079i 1.46102 + 0.843519i
\(713\) −2.08750 2.08750i −0.0781774 0.0781774i
\(714\) 0 0
\(715\) −16.9829 + 15.0904i −0.635125 + 0.564348i
\(716\) 2.31083 + 1.33416i 0.0863599 + 0.0498599i
\(717\) 0 0
\(718\) 12.5485 0.468306
\(719\) 17.2570 + 29.8900i 0.643577 + 1.11471i 0.984628 + 0.174663i \(0.0558836\pi\)
−0.341052 + 0.940045i \(0.610783\pi\)
\(720\) 0 0
\(721\) 1.02431 3.82278i 0.0381473 0.142368i
\(722\) 14.8814 3.98746i 0.553828 0.148398i
\(723\) 0 0
\(724\) −17.5944 −0.653890
\(725\) −0.0884924 0.153273i −0.00328653 0.00569243i
\(726\) 0 0
\(727\) 6.05240 3.49435i 0.224471 0.129598i −0.383548 0.923521i \(-0.625298\pi\)
0.608019 + 0.793923i \(0.291965\pi\)
\(728\) 42.6099 37.8615i 1.57923 1.40324i
\(729\) 0 0
\(730\) 12.6246 3.38276i 0.467258 0.125201i
\(731\) 0.0310253i 0.00114751i
\(732\) 0 0
\(733\) −22.0147 + 5.89883i −0.813133 + 0.217878i −0.641342 0.767255i \(-0.721622\pi\)
−0.171791 + 0.985133i \(0.554955\pi\)
\(734\) −4.27568 + 4.27568i −0.157818 + 0.157818i
\(735\) 0 0
\(736\) 3.64637 + 0.977042i 0.134407 + 0.0360142i
\(737\) −18.1777 + 10.4949i −0.669584 + 0.386585i
\(738\) 0 0
\(739\) −3.70607 13.8313i −0.136330 0.508791i −0.999989 0.00471409i \(-0.998499\pi\)
0.863659 0.504077i \(-0.168167\pi\)
\(740\) 3.73181 + 6.46368i 0.137184 + 0.237610i
\(741\) 0 0
\(742\) 22.1055 38.2878i 0.811517 1.40559i
\(743\) 6.00805 + 1.60985i 0.220414 + 0.0590598i 0.367336 0.930088i \(-0.380270\pi\)
−0.146922 + 0.989148i \(0.546937\pi\)
\(744\) 0 0
\(745\) −26.3546 15.2158i −0.965558 0.557465i
\(746\) −20.2909 + 20.2909i −0.742901 + 0.742901i
\(747\) 0 0
\(748\) −0.327036 0.0876290i −0.0119576 0.00320403i
\(749\) −8.20004 + 30.6030i −0.299623 + 1.11821i
\(750\) 0 0
\(751\) −37.8087 + 21.8289i −1.37966 + 0.796547i −0.992118 0.125304i \(-0.960009\pi\)
−0.387542 + 0.921852i \(0.626676\pi\)
\(752\) −4.17467 + 15.5801i −0.152234 + 0.568146i
\(753\) 0 0
\(754\) 1.04241 + 2.07955i 0.0379623 + 0.0757328i
\(755\) 26.4539i 0.962757i
\(756\) 0 0
\(757\) 9.84349 17.0494i 0.357768 0.619672i −0.629820 0.776741i \(-0.716871\pi\)
0.987588 + 0.157069i \(0.0502046\pi\)
\(758\) −14.5596 + 25.2179i −0.528827 + 0.915955i
\(759\) 0 0
\(760\) −10.5955 10.5955i −0.384338 0.384338i
\(761\) −6.11282 6.11282i −0.221590 0.221590i 0.587578 0.809168i \(-0.300082\pi\)
−0.809168 + 0.587578i \(0.800082\pi\)
\(762\) 0 0
\(763\) −13.3417 + 23.1085i −0.483002 + 0.836585i
\(764\) 4.08006 7.06686i 0.147611 0.255670i
\(765\) 0 0
\(766\) 17.8814i 0.646080i
\(767\) −12.0311 24.0014i −0.434418 0.866640i
\(768\) 0 0
\(769\) −2.26984 + 8.47115i −0.0818524 + 0.305477i −0.994700 0.102824i \(-0.967212\pi\)
0.912847 + 0.408301i \(0.133879\pi\)
\(770\) 30.1328 17.3972i 1.08591 0.626951i
\(771\) 0 0
\(772\) −0.0886686 + 0.330916i −0.00319125 + 0.0119099i
\(773\) −3.74962 1.00471i −0.134865 0.0361368i 0.190755 0.981638i \(-0.438906\pi\)
−0.325620 + 0.945501i \(0.605573\pi\)
\(774\) 0 0
\(775\) −0.723828 + 0.723828i −0.0260007 + 0.0260007i
\(776\) 1.43896 + 0.830785i 0.0516558 + 0.0298235i
\(777\) 0 0
\(778\) −1.16724 0.312761i −0.0418475 0.0112130i
\(779\) 8.34321 14.4509i 0.298926 0.517756i
\(780\) 0 0
\(781\) −9.99028 17.3037i −0.357480 0.619174i
\(782\) 0.0333521 + 0.124472i 0.00119267 + 0.00445109i
\(783\) 0 0
\(784\) −26.2485 + 15.1546i −0.937448 + 0.541236i
\(785\) 20.8426 + 5.58475i 0.743904 + 0.199328i
\(786\) 0 0
\(787\) 3.03191 3.03191i 0.108076 0.108076i −0.651001 0.759077i \(-0.725651\pi\)
0.759077 + 0.651001i \(0.225651\pi\)
\(788\) 2.29818 0.615796i 0.0818693 0.0219368i
\(789\) 0 0
\(790\) 7.97965i 0.283903i
\(791\) −46.5710 + 12.4787i −1.65587 + 0.443690i
\(792\) 0 0
\(793\) 3.64099 3.23524i 0.129295 0.114887i
\(794\) 17.1463 9.89944i 0.608501 0.351318i
\(795\) 0 0
\(796\) 6.71525 + 11.6311i 0.238016 + 0.412255i
\(797\) −10.9142 −0.386603 −0.193301 0.981139i \(-0.561919\pi\)
−0.193301 + 0.981139i \(0.561919\pi\)
\(798\) 0 0
\(799\) 1.45923 0.390999i 0.0516238 0.0138326i
\(800\) 0.338784 1.26436i 0.0119778 0.0447018i
\(801\) 0 0
\(802\) −9.28776 16.0869i −0.327962 0.568047i
\(803\) 14.5926 0.514962
\(804\) 0 0
\(805\) 8.70387 + 5.02518i 0.306771 + 0.177114i
\(806\) 10.0575 8.93667i 0.354259 0.314781i
\(807\) 0 0
\(808\) −7.57891 7.57891i −0.266625 0.266625i
\(809\) −24.7010 14.2611i −0.868439 0.501394i −0.00160994 0.999999i \(-0.500512\pi\)
−0.866829 + 0.498605i \(0.833846\pi\)
\(810\) 0 0
\(811\) −14.4345 14.4345i −0.506862 0.506862i 0.406700 0.913562i \(-0.366680\pi\)
−0.913562 + 0.406700i \(0.866680\pi\)
\(812\) 0.699785 + 2.61163i 0.0245576 + 0.0916503i
\(813\) 0 0
\(814\) −2.84188 10.6060i −0.0996078 0.371741i
\(815\) 34.2052i 1.19815i
\(816\) 0 0
\(817\) 0.326747 0.326747i 0.0114314 0.0114314i
\(818\) 33.0291 1.15484
\(819\) 0 0
\(820\) 15.5266 0.542211
\(821\) −15.7089 + 15.7089i −0.548243 + 0.548243i −0.925932 0.377689i \(-0.876719\pi\)
0.377689 + 0.925932i \(0.376719\pi\)
\(822\) 0 0
\(823\) 56.1423i 1.95700i 0.206255 + 0.978498i \(0.433872\pi\)
−0.206255 + 0.978498i \(0.566128\pi\)
\(824\) 0.603851 + 2.25360i 0.0210361 + 0.0785080i
\(825\) 0 0
\(826\) 10.6422 + 39.7174i 0.370291 + 1.38195i
\(827\) 7.73555 + 7.73555i 0.268991 + 0.268991i 0.828694 0.559702i \(-0.189085\pi\)
−0.559702 + 0.828694i \(0.689085\pi\)
\(828\) 0 0
\(829\) −22.3717 12.9163i −0.777001 0.448602i 0.0583652 0.998295i \(-0.481411\pi\)
−0.835366 + 0.549693i \(0.814745\pi\)
\(830\) −26.4164 26.4164i −0.916926 0.916926i
\(831\) 0 0
\(832\) −8.90100 + 26.7934i −0.308587 + 0.928895i
\(833\) 2.45844 + 1.41938i 0.0851799 + 0.0491786i
\(834\) 0 0
\(835\) −4.96577 −0.171847
\(836\) −2.52134 4.36709i −0.0872024 0.151039i
\(837\) 0 0
\(838\) −5.92596 + 22.1160i −0.204709 + 0.763984i
\(839\) 34.3643 9.20790i 1.18639 0.317892i 0.388931 0.921267i \(-0.372844\pi\)
0.797458 + 0.603375i \(0.206178\pi\)
\(840\) 0 0
\(841\) 28.6339 0.987377
\(842\) −12.6504 21.9112i −0.435962 0.755109i
\(843\) 0 0
\(844\) 6.89323 3.97981i 0.237275 0.136991i
\(845\) 11.0842 27.7773i 0.381307 0.955567i
\(846\) 0 0
\(847\) −17.4986 + 4.68873i −0.601259 + 0.161107i
\(848\) 12.2453i 0.420504i
\(849\) 0 0
\(850\) 0.0431598 0.0115646i 0.00148037 0.000396664i
\(851\) 2.24268 2.24268i 0.0768781 0.0768781i
\(852\) 0 0
\(853\) −11.9527 3.20271i −0.409252 0.109659i 0.0483186 0.998832i \(-0.484614\pi\)
−0.457571 + 0.889173i \(0.651280\pi\)
\(854\) −6.46020 + 3.72980i −0.221063 + 0.127631i
\(855\) 0 0
\(856\) −4.83409 18.0411i −0.165226 0.616630i
\(857\) 1.46053 + 2.52971i 0.0498907 + 0.0864132i 0.889892 0.456171i \(-0.150779\pi\)
−0.840002 + 0.542584i \(0.817446\pi\)
\(858\) 0 0
\(859\) 14.1298 24.4734i 0.482101 0.835023i −0.517688 0.855569i \(-0.673207\pi\)
0.999789 + 0.0205462i \(0.00654052\pi\)
\(860\) 0.415320 + 0.111285i 0.0141623 + 0.00379477i
\(861\) 0 0
\(862\) 21.6116 + 12.4775i 0.736095 + 0.424985i
\(863\) 32.6894 32.6894i 1.11276 1.11276i 0.119986 0.992776i \(-0.461715\pi\)
0.992776 0.119986i \(-0.0382850\pi\)
\(864\) 0 0
\(865\) 26.8528 + 7.19519i 0.913023 + 0.244644i
\(866\) −7.33222 + 27.3642i −0.249159 + 0.929874i
\(867\) 0 0
\(868\) 13.5429 7.81903i 0.459678 0.265395i
\(869\) 2.30589 8.60569i 0.0782219 0.291928i
\(870\) 0 0
\(871\) 15.2011 23.0740i 0.515071 0.781831i
\(872\) 15.7304i 0.532699i
\(873\) 0 0
\(874\) −0.959637 + 1.66214i −0.0324602 + 0.0562227i
\(875\) −28.0411 + 48.5686i −0.947963 + 1.64192i
\(876\) 0 0
\(877\) −39.9952 39.9952i −1.35054 1.35054i −0.885055 0.465486i \(-0.845880\pi\)
−0.465486 0.885055i \(-0.654120\pi\)
\(878\) 0.321943 + 0.321943i 0.0108651 + 0.0108651i
\(879\) 0 0
\(880\) −4.81856 + 8.34599i −0.162434 + 0.281343i
\(881\) 14.1084 24.4364i 0.475323 0.823284i −0.524278 0.851547i \(-0.675665\pi\)
0.999600 + 0.0282639i \(0.00899789\pi\)
\(882\) 0 0
\(883\) 7.20265i 0.242388i 0.992629 + 0.121194i \(0.0386724\pi\)
−0.992629 + 0.121194i \(0.961328\pi\)
\(884\) 0.436560 0.0897963i 0.0146831 0.00302018i
\(885\) 0 0
\(886\) −3.16327 + 11.8055i −0.106272 + 0.396613i
\(887\) 27.3550 15.7934i 0.918490 0.530291i 0.0353373 0.999375i \(-0.488749\pi\)
0.883153 + 0.469085i \(0.155416\pi\)
\(888\) 0 0
\(889\) 0.480478 1.79317i 0.0161147 0.0601410i
\(890\) −34.9404 9.36224i −1.17120 0.313823i
\(891\) 0 0
\(892\) −1.17998 + 1.17998i −0.0395087 + 0.0395087i
\(893\) 19.4859 + 11.2502i 0.652071 + 0.376473i
\(894\) 0 0
\(895\) −6.87119 1.84113i −0.229678 0.0615421i
\(896\) −1.55271 + 2.68937i −0.0518724 + 0.0898456i
\(897\) 0 0
\(898\) 3.43923 + 5.95692i 0.114769 + 0.198785i
\(899\) 0.547991 + 2.04513i 0.0182765 + 0.0682090i
\(900\) 0 0
\(901\) 0.993237 0.573446i 0.0330895 0.0191042i
\(902\) −22.0637 5.91196i −0.734642 0.196847i
\(903\) 0 0
\(904\) 20.0981 20.0981i 0.668453 0.668453i
\(905\) 45.3072 12.1400i 1.50606 0.403549i
\(906\) 0 0
\(907\) 22.6161i 0.750954i −0.926832 0.375477i \(-0.877479\pi\)
0.926832 0.375477i \(-0.122521\pi\)
\(908\) 15.9804 4.28192i 0.530327 0.142101i
\(909\) 0 0
\(910\) −25.1986 + 38.2492i −0.835326 + 1.26795i
\(911\) 20.2816 11.7096i 0.671958 0.387955i −0.124860 0.992174i \(-0.539848\pi\)
0.796818 + 0.604219i \(0.206515\pi\)
\(912\) 0 0
\(913\) −20.8553 36.1224i −0.690209 1.19548i
\(914\) 11.5909 0.383391
\(915\) 0 0
\(916\) −15.7555 + 4.22167i −0.520576 + 0.139488i
\(917\) 15.6574 58.4342i 0.517053 1.92967i
\(918\) 0 0
\(919\) 13.0969 + 22.6845i 0.432027 + 0.748293i 0.997048 0.0767835i \(-0.0244650\pi\)
−0.565020 + 0.825077i \(0.691132\pi\)
\(920\) −5.92489 −0.195338
\(921\) 0 0
\(922\) 15.7012 + 9.06506i 0.517090 + 0.298542i
\(923\) 21.9645 + 14.4702i 0.722971 + 0.476294i
\(924\) 0 0
\(925\) −0.777637 0.777637i −0.0255685 0.0255685i
\(926\) −35.8253 20.6837i −1.17729 0.679710i
\(927\) 0 0
\(928\) −1.91442 1.91442i −0.0628440 0.0628440i
\(929\) −2.52294 9.41573i −0.0827749 0.308920i 0.912109 0.409949i \(-0.134453\pi\)
−0.994884 + 0.101028i \(0.967787\pi\)
\(930\) 0 0
\(931\) 10.9430 + 40.8397i 0.358642 + 1.33847i
\(932\) 12.9521i 0.424259i
\(933\) 0 0
\(934\) 28.4442 28.4442i 0.930722 0.930722i
\(935\) 0.902613 0.0295186
\(936\) 0 0
\(937\) 38.7284 1.26520 0.632601 0.774478i \(-0.281987\pi\)
0.632601 + 0.774478i \(0.281987\pi\)
\(938\) −29.9233 + 29.9233i −0.977031 + 0.977031i
\(939\) 0 0
\(940\) 20.9364i 0.682871i
\(941\) −13.5986 50.7507i −0.443302 1.65442i −0.720382 0.693578i \(-0.756033\pi\)
0.277080 0.960847i \(-0.410633\pi\)
\(942\) 0 0
\(943\) −1.70767 6.37312i −0.0556094 0.207537i
\(944\) −8.05305 8.05305i −0.262104 0.262104i
\(945\) 0 0
\(946\) −0.547809 0.316278i −0.0178108 0.0102831i
\(947\) −33.3193 33.3193i −1.08273 1.08273i −0.996254 0.0864783i \(-0.972439\pi\)
−0.0864783 0.996254i \(-0.527561\pi\)
\(948\) 0 0
\(949\) −17.1731 + 8.60830i −0.557462 + 0.279437i
\(950\) 0.576337 + 0.332749i 0.0186989 + 0.0107958i
\(951\) 0 0
\(952\) −2.26464 −0.0733974
\(953\) 24.8010 + 42.9566i 0.803383 + 1.39150i 0.917377 + 0.398019i \(0.130302\pi\)
−0.113994 + 0.993481i \(0.536364\pi\)
\(954\) 0 0
\(955\) −5.63044 + 21.0131i −0.182197 + 0.679968i
\(956\) 5.73818 1.53754i 0.185586 0.0497276i
\(957\) 0 0
\(958\) −22.2651 −0.719354
\(959\) 40.7111 + 70.5137i 1.31463 + 2.27701i
\(960\) 0 0
\(961\) −16.2415 + 9.37703i −0.523919 + 0.302485i
\(962\) 9.60101 + 10.8051i 0.309549 + 0.348371i
\(963\) 0 0
\(964\) −0.850249 + 0.227824i −0.0273847 + 0.00733770i
\(965\) 0.913321i 0.0294009i
\(966\) 0 0
\(967\) 57.2307 15.3349i 1.84042 0.493138i 0.841525 0.540218i \(-0.181658\pi\)
0.998891 + 0.0470805i \(0.0149917\pi\)
\(968\) 7.55166 7.55166i 0.242720 0.242720i
\(969\) 0 0
\(970\) −1.28968 0.345568i −0.0414091 0.0110955i
\(971\) −19.4119 + 11.2075i −0.622957 + 0.359665i −0.778019 0.628240i \(-0.783776\pi\)
0.155062 + 0.987905i \(0.450442\pi\)
\(972\) 0 0
\(973\) −18.4492 68.8535i −0.591455 2.20734i
\(974\) −9.47425 16.4099i −0.303575 0.525807i
\(975\) 0 0
\(976\) 1.03306 1.78931i 0.0330673 0.0572743i
\(977\) 14.9916 + 4.01699i 0.479624 + 0.128515i 0.490528 0.871426i \(-0.336804\pi\)
−0.0109035 + 0.999941i \(0.503471\pi\)
\(978\) 0 0
\(979\) −34.9762 20.1935i −1.11784 0.645387i
\(980\) −27.8187 + 27.8187i −0.888635 + 0.888635i
\(981\) 0 0
\(982\) −15.0296 4.02716i −0.479613 0.128512i
\(983\) −0.650655 + 2.42828i −0.0207527 + 0.0774500i −0.975526 0.219886i \(-0.929431\pi\)
0.954773 + 0.297336i \(0.0960981\pi\)
\(984\) 0 0
\(985\) −5.49315 + 3.17147i −0.175026 + 0.101051i
\(986\) 0.0239199 0.0892702i 0.000761764 0.00284294i
\(987\) 0 0
\(988\) 5.54339 + 3.65199i 0.176359 + 0.116185i
\(989\) 0.182714i 0.00580997i
\(990\) 0 0
\(991\) 15.2437 26.4028i 0.484231 0.838713i −0.515605 0.856826i \(-0.672433\pi\)
0.999836 + 0.0181139i \(0.00576614\pi\)
\(992\) −7.82956 + 13.5612i −0.248589 + 0.430569i
\(993\) 0 0
\(994\) −28.4845 28.4845i −0.903475 0.903475i
\(995\) −25.3179 25.3179i −0.802630 0.802630i
\(996\) 0 0
\(997\) 3.99304 6.91615i 0.126461 0.219037i −0.795842 0.605504i \(-0.792972\pi\)
0.922303 + 0.386467i \(0.126305\pi\)
\(998\) 6.37866 11.0482i 0.201913 0.349723i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.ba.a.98.8 48
3.2 odd 2 117.2.x.a.59.5 yes 48
9.2 odd 6 351.2.bf.a.332.8 48
9.7 even 3 117.2.bc.a.20.5 yes 48
13.2 odd 12 351.2.bf.a.314.8 48
39.2 even 12 117.2.bc.a.41.5 yes 48
117.2 even 12 inner 351.2.ba.a.197.8 48
117.106 odd 12 117.2.x.a.2.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.2.5 48 117.106 odd 12
117.2.x.a.59.5 yes 48 3.2 odd 2
117.2.bc.a.20.5 yes 48 9.7 even 3
117.2.bc.a.41.5 yes 48 39.2 even 12
351.2.ba.a.98.8 48 1.1 even 1 trivial
351.2.ba.a.197.8 48 117.2 even 12 inner
351.2.bf.a.314.8 48 13.2 odd 12
351.2.bf.a.332.8 48 9.2 odd 6