Properties

Label 350.6.c.m
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 240x^{3} + 41209x^{2} - 33698x + 13778 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_{2} q^{2} - \beta_{4} q^{3} - 16 q^{4} - 4 \beta_1 q^{6} + 49 \beta_{2} q^{7} + 64 \beta_{2} q^{8} + (\beta_{3} - 3 \beta_1 + 18) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 \beta_{2} q^{2} - \beta_{4} q^{3} - 16 q^{4} - 4 \beta_1 q^{6} + 49 \beta_{2} q^{7} + 64 \beta_{2} q^{8} + (\beta_{3} - 3 \beta_1 + 18) q^{9} + ( - \beta_{3} + 24 \beta_1 + 4) q^{11} + 16 \beta_{4} q^{12} + (5 \beta_{5} - 159 \beta_{2}) q^{13} + 196 q^{14} + 256 q^{16} + ( - 3 \beta_{5} - 81 \beta_{4} + 367 \beta_{2}) q^{17} + ( - 4 \beta_{5} + 12 \beta_{4} - 72 \beta_{2}) q^{18} + ( - 11 \beta_{3} - 45 \beta_1 + 585) q^{19} + 49 \beta_1 q^{21} + (4 \beta_{5} - 96 \beta_{4} - 16 \beta_{2}) q^{22} + ( - 16 \beta_{5} + \cdots - 1155 \beta_{2}) q^{23}+ \cdots + ( - 148 \beta_{3} - 2013 \beta_1 - 37203) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4} + 8 q^{6} + 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 96 q^{4} + 8 q^{6} + 112 q^{9} - 22 q^{11} + 1176 q^{14} + 1536 q^{16} + 3622 q^{19} - 98 q^{21} - 128 q^{24} - 3856 q^{26} - 3848 q^{29} - 13120 q^{31} + 9480 q^{34} - 1792 q^{36} + 3148 q^{39} - 53962 q^{41} + 352 q^{44} - 26800 q^{46} - 14406 q^{49} - 111458 q^{51} + 15976 q^{54} - 18816 q^{56} - 34960 q^{59} - 81076 q^{61} - 24576 q^{64} - 126920 q^{66} - 140000 q^{69} - 130952 q^{71} - 41552 q^{74} - 57952 q^{76} - 266256 q^{79} - 179386 q^{81} + 1568 q^{84} - 151504 q^{86} - 122706 q^{89} + 47236 q^{91} - 23024 q^{94} + 2048 q^{96} - 218896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 240x^{3} + 41209x^{2} - 33698x + 13778 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 58\nu^{5} + 8111\nu^{4} + 11890\nu^{3} + 6960\nu^{2} - 9628\nu + 225301659 ) / 11854465 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8299\nu^{5} + 13195\nu^{4} - 7800\nu^{3} - 2689375\nu^{2} - 342401851\nu + 139664515 ) / 140560085 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2638\nu^{5} - 39864\nu^{4} + 540790\nu^{3} + 316560\nu^{2} - 437908\nu - 938368691 ) / 11854465 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1113559 \nu^{5} + 1763729 \nu^{4} + 342230 \nu^{3} - 221688820 \nu^{2} - 45663139341 \nu + 18626022281 ) / 983920595 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4401981 \nu^{5} - 7208951 \nu^{4} + 47191130 \nu^{3} + 821212355 \nu^{2} + 190307361619 \nu - 77619884639 ) / 983920595 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 4\beta_{4} - \beta_{3} - 5\beta_{2} - 4\beta _1 + 5 ) / 20 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 31\beta_{4} - 670\beta_{2} ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 199\beta_{5} + 936\beta_{4} + 199\beta_{3} - 2035\beta_{2} + 936\beta _1 - 2035 ) / 20 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -29\beta_{3} + 1319\beta _1 - 27364 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -40149\beta_{5} - 206096\beta_{4} + 40149\beta_{3} + 737945\beta_{2} + 206096\beta _1 - 737945 ) / 20 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
0.407896 0.407896i
−9.79499 + 9.79499i
10.3871 10.3871i
10.3871 + 10.3871i
−9.79499 9.79499i
0.407896 + 0.407896i
4.00000i 19.0051i −16.0000 0 −76.0204 49.0000i 64.0000i −118.194 0
99.2 4.00000i 2.52911i −16.0000 0 10.1164 49.0000i 64.0000i 236.604 0
99.3 4.00000i 17.4760i −16.0000 0 69.9039 49.0000i 64.0000i −62.4100 0
99.4 4.00000i 17.4760i −16.0000 0 69.9039 49.0000i 64.0000i −62.4100 0
99.5 4.00000i 2.52911i −16.0000 0 10.1164 49.0000i 64.0000i 236.604 0
99.6 4.00000i 19.0051i −16.0000 0 −76.0204 49.0000i 64.0000i −118.194 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.m 6
5.b even 2 1 inner 350.6.c.m 6
5.c odd 4 1 350.6.a.v 3
5.c odd 4 1 350.6.a.w yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.v 3 5.c odd 4 1
350.6.a.w yes 3 5.c odd 4 1
350.6.c.m 6 1.a even 1 1 trivial
350.6.c.m 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{6} + 673T_{3}^{4} + 114576T_{3}^{2} + 705600 \) Copy content Toggle raw display
\( T_{11}^{3} + 11T_{11}^{2} - 221125T_{11} - 40799375 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} + 673 T^{4} + \cdots + 705600 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} + 11 T^{2} + \cdots - 40799375)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( (T^{3} - 1811 T^{2} + \cdots + 2760714180)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + 1924 T^{2} + \cdots - 154187630694)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 6560 T^{2} + \cdots + 6751381392)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{3} + 26981 T^{2} + \cdots - 873981504312)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 30\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 54\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 51424466453808)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 17091016362224)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 19\!\cdots\!09 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 88582122380350)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 17\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 8297801992798)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 22\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 560143115269220)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
show more
show less