Properties

Label 350.6.c.l
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{79})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 39x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_1 q^{2} + ( - \beta_{3} - 4 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{2} + 16) q^{6} - 49 \beta_1 q^{7} - 64 \beta_1 q^{8} + ( - 8 \beta_{2} - 89) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 \beta_1 q^{2} + ( - \beta_{3} - 4 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{2} + 16) q^{6} - 49 \beta_1 q^{7} - 64 \beta_1 q^{8} + ( - 8 \beta_{2} - 89) q^{9} + ( - 3 \beta_{2} - 3) q^{11} + (16 \beta_{3} + 64 \beta_1) q^{12} + ( - 15 \beta_{3} - 346 \beta_1) q^{13} + 196 q^{14} + 256 q^{16} + (6 \beta_{3} + 252 \beta_1) q^{17} + ( - 32 \beta_{3} - 356 \beta_1) q^{18} + ( - 54 \beta_{2} + 34) q^{19} + ( - 49 \beta_{2} - 196) q^{21} + ( - 12 \beta_{3} - 12 \beta_1) q^{22} + ( - 75 \beta_{3} - 825 \beta_1) q^{23} + ( - 64 \beta_{2} - 256) q^{24} + (60 \beta_{2} + 1384) q^{26} + ( - 122 \beta_{3} + 1912 \beta_1) q^{27} + 784 \beta_1 q^{28} + ( - 276 \beta_{2} - 1425) q^{29} + (21 \beta_{2} + 1922) q^{31} + 1024 \beta_1 q^{32} + (15 \beta_{3} + 960 \beta_1) q^{33} + ( - 24 \beta_{2} - 1008) q^{34} + (128 \beta_{2} + 1424) q^{36} + ( - 366 \beta_{3} + 5671 \beta_1) q^{37} + ( - 216 \beta_{3} + 136 \beta_1) q^{38} + ( - 406 \beta_{2} - 6124) q^{39} + (333 \beta_{2} + 7644) q^{41} + ( - 196 \beta_{3} - 784 \beta_1) q^{42} + ( - 39 \beta_{3} - 427 \beta_1) q^{43} + (48 \beta_{2} + 48) q^{44} + (300 \beta_{2} + 3300) q^{46} + ( - 648 \beta_{3} + 7530 \beta_1) q^{47} + ( - 256 \beta_{3} - 1024 \beta_1) q^{48} - 2401 q^{49} + (276 \beta_{2} + 2904) q^{51} + (240 \beta_{3} + 5536 \beta_1) q^{52} + (252 \beta_{3} + 9126 \beta_1) q^{53} + (488 \beta_{2} - 7648) q^{54} - 3136 q^{56} + (182 \beta_{3} + 16928 \beta_1) q^{57} + ( - 1104 \beta_{3} - 5700 \beta_1) q^{58} + (51 \beta_{2} - 19098) q^{59} + ( - 921 \beta_{2} - 7828) q^{61} + (84 \beta_{3} + 7688 \beta_1) q^{62} + (392 \beta_{3} + 4361 \beta_1) q^{63} - 4096 q^{64} + ( - 60 \beta_{2} - 3840) q^{66} + (1023 \beta_{3} + 32449 \beta_1) q^{67} + ( - 96 \beta_{3} - 4032 \beta_1) q^{68} + ( - 1125 \beta_{2} - 27000) q^{69} + ( - 1953 \beta_{2} - 20043) q^{71} + (512 \beta_{3} + 5696 \beta_1) q^{72} + (2997 \beta_{3} + 36680 \beta_1) q^{73} + (1464 \beta_{2} - 22684) q^{74} + (864 \beta_{2} - 544) q^{76} + (147 \beta_{3} + 147 \beta_1) q^{77} + ( - 1624 \beta_{3} - 24496 \beta_1) q^{78} + ( - 747 \beta_{2} - 17735) q^{79} + ( - 520 \beta_{2} - 52531) q^{81} + (1332 \beta_{3} + 30576 \beta_1) q^{82} + (3321 \beta_{3} - 978 \beta_1) q^{83} + (784 \beta_{2} + 3136) q^{84} + (156 \beta_{2} + 1708) q^{86} + (2529 \beta_{3} + 92916 \beta_1) q^{87} + (192 \beta_{3} + 192 \beta_1) q^{88} + (3597 \beta_{2} + 9678) q^{89} + ( - 735 \beta_{2} - 16954) q^{91} + (1200 \beta_{3} + 13200 \beta_1) q^{92} + ( - 2006 \beta_{3} - 14324 \beta_1) q^{93} + (2592 \beta_{2} - 30120) q^{94} + (1024 \beta_{2} + 4096) q^{96} + ( - 21 \beta_{3} + 113734 \beta_1) q^{97} - 9604 \beta_1 q^{98} + (291 \beta_{2} + 7851) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 64 q^{6} - 356 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} + 64 q^{6} - 356 q^{9} - 12 q^{11} + 784 q^{14} + 1024 q^{16} + 136 q^{19} - 784 q^{21} - 1024 q^{24} + 5536 q^{26} - 5700 q^{29} + 7688 q^{31} - 4032 q^{34} + 5696 q^{36} - 24496 q^{39} + 30576 q^{41} + 192 q^{44} + 13200 q^{46} - 9604 q^{49} + 11616 q^{51} - 30592 q^{54} - 12544 q^{56} - 76392 q^{59} - 31312 q^{61} - 16384 q^{64} - 15360 q^{66} - 108000 q^{69} - 80172 q^{71} - 90736 q^{74} - 2176 q^{76} - 70940 q^{79} - 210124 q^{81} + 12544 q^{84} + 6832 q^{86} + 38712 q^{89} - 67816 q^{91} - 120480 q^{94} + 16384 q^{96} + 31404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 39x^{2} + 400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 19\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 59\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 78 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 78 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 19\beta_{2} + 118\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
−4.44410 0.500000i
4.44410 0.500000i
4.44410 + 0.500000i
−4.44410 + 0.500000i
4.00000i 13.7764i −16.0000 0 −55.1056 49.0000i 64.0000i 53.2111 0
99.2 4.00000i 21.7764i −16.0000 0 87.1056 49.0000i 64.0000i −231.211 0
99.3 4.00000i 21.7764i −16.0000 0 87.1056 49.0000i 64.0000i −231.211 0
99.4 4.00000i 13.7764i −16.0000 0 −55.1056 49.0000i 64.0000i 53.2111 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.l 4
5.b even 2 1 inner 350.6.c.l 4
5.c odd 4 1 350.6.a.o 2
5.c odd 4 1 350.6.a.t yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.o 2 5.c odd 4 1
350.6.a.t yes 2 5.c odd 4 1
350.6.c.l 4 1.a even 1 1 trivial
350.6.c.l 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{4} + 664T_{3}^{2} + 90000 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} - 2835 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 664 T^{2} + 90000 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T - 2835)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 2363515456 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 2717328384 \) Copy content Toggle raw display
$19$ \( (T^{2} - 68 T - 920300)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 1203134765625 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2850 T - 22040991)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 3844 T + 3554728)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 103425950721025 \) Copy content Toggle raw display
$41$ \( (T^{2} - 15288 T + 23389812)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 88987066249 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 57\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 39\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( (T^{2} + 38196 T + 363911688)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 15656 T - 206766572)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 52\!\cdots\!69 \) Copy content Toggle raw display
$71$ \( (T^{2} + 40086 T - 803568195)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 22\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T^{2} + 35470 T + 138199381)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T^{2} - 19356 T - 3994873560)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
show more
show less