Properties

Label 350.6.c.k
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 565x^{2} + 79524 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_{2} q^{2} + ( - 2 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 12) q^{6} + 49 \beta_{2} q^{7} - 64 \beta_{2} q^{8} + (5 \beta_{3} - 48) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 \beta_{2} q^{2} + ( - 2 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 12) q^{6} + 49 \beta_{2} q^{7} - 64 \beta_{2} q^{8} + (5 \beta_{3} - 48) q^{9} + (13 \beta_{3} + 201) q^{11} + (32 \beta_{2} - 16 \beta_1) q^{12} + ( - 220 \beta_{2} - 11 \beta_1) q^{13} - 196 q^{14} + 256 q^{16} + (692 \beta_{2} + 65 \beta_1) q^{17} + ( - 172 \beta_{2} + 20 \beta_1) q^{18} + ( - 114 \beta_{3} - 902) q^{19} + ( - 49 \beta_{3} + 147) q^{21} + (856 \beta_{2} + 52 \beta_1) q^{22} + (716 \beta_{2} + 98 \beta_1) q^{23} + (64 \beta_{3} - 192) q^{24} + (44 \beta_{3} + 836) q^{26} + (1010 \beta_{2} + 185 \beta_1) q^{27} - 784 \beta_{2} q^{28} + (93 \beta_{3} + 519) q^{29} + ( - 448 \beta_{3} - 2512) q^{31} + 1024 \beta_{2} q^{32} + (3238 \beta_{2} + 175 \beta_1) q^{33} + ( - 260 \beta_{3} - 2508) q^{34} + ( - 80 \beta_{3} + 768) q^{36} + ( - 4658 \beta_{2} - 160 \beta_1) q^{37} + ( - 4064 \beta_{2} - 456 \beta_1) q^{38} + (187 \beta_{3} + 2475) q^{39} + ( - 118 \beta_{3} - 3852) q^{41} + (392 \beta_{2} - 196 \beta_1) q^{42} + ( - 1608 \beta_{2} - 1138 \beta_1) q^{43} + ( - 208 \beta_{3} - 3216) q^{44} + ( - 392 \beta_{3} - 2472) q^{46} + ( - 3530 \beta_{2} + 1447 \beta_1) q^{47} + ( - 512 \beta_{2} + 256 \beta_1) q^{48} - 2401 q^{49} + ( - 497 \beta_{3} - 16449) q^{51} + (3520 \beta_{2} + 176 \beta_1) q^{52} + (17622 \beta_{2} + 1002 \beta_1) q^{53} + ( - 740 \beta_{3} - 3300) q^{54} + 3136 q^{56} + ( - 30116 \beta_{2} - 674 \beta_1) q^{57} + (2448 \beta_{2} + 372 \beta_1) q^{58} + (464 \beta_{3} - 3708) q^{59} + (614 \beta_{3} - 22876) q^{61} + ( - 11840 \beta_{2} - 1792 \beta_1) q^{62} + ( - 2107 \beta_{2} + 245 \beta_1) q^{63} - 4096 q^{64} + ( - 700 \beta_{3} - 12252) q^{66} + ( - 26988 \beta_{2} + 580 \beta_1) q^{67} + ( - 11072 \beta_{2} - 1040 \beta_1) q^{68} + ( - 422 \beta_{3} - 25782) q^{69} + (1952 \beta_{3} - 32112) q^{71} + (2752 \beta_{2} - 320 \beta_1) q^{72} + ( - 19594 \beta_{2} + 1708 \beta_1) q^{73} + (640 \beta_{3} + 17992) q^{74} + (1824 \beta_{3} + 14432) q^{76} + (10486 \beta_{2} + 637 \beta_1) q^{77} + (10648 \beta_{2} + 748 \beta_1) q^{78} + (2393 \beta_{3} - 32231) q^{79} + (760 \beta_{3} - 61359) q^{81} + ( - 15880 \beta_{2} - 472 \beta_1) q^{82} + ( - 94812 \beta_{2} - 24 \beta_1) q^{83} + (784 \beta_{3} - 2352) q^{84} + (4552 \beta_{3} + 1880) q^{86} + (25002 \beta_{2} + 333 \beta_1) q^{87} + ( - 13696 \beta_{2} - 832 \beta_1) q^{88} + (2770 \beta_{3} - 33480) q^{89} + (539 \beta_{3} + 10241) q^{91} + ( - 11456 \beta_{2} - 1568 \beta_1) q^{92} + ( - 120416 \beta_{2} - 1616 \beta_1) q^{93} + ( - 5788 \beta_{3} + 19908) q^{94} + ( - 1024 \beta_{3} + 3072) q^{96} + (77308 \beta_{2} - 931 \beta_1) q^{97} - 9604 \beta_{2} q^{98} + (446 \beta_{3} + 8682) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 40 q^{6} - 182 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} + 40 q^{6} - 182 q^{9} + 830 q^{11} - 784 q^{14} + 1024 q^{16} - 3836 q^{19} + 490 q^{21} - 640 q^{24} + 3432 q^{26} + 2262 q^{29} - 10944 q^{31} - 10552 q^{34} + 2912 q^{36} + 10274 q^{39} - 15644 q^{41} - 13280 q^{44} - 10672 q^{46} - 9604 q^{49} - 66790 q^{51} - 14680 q^{54} + 12544 q^{56} - 13904 q^{59} - 90276 q^{61} - 16384 q^{64} - 50408 q^{66} - 103972 q^{69} - 124544 q^{71} + 73248 q^{74} + 61376 q^{76} - 124138 q^{79} - 243916 q^{81} - 7840 q^{84} + 16624 q^{86} - 128380 q^{89} + 42042 q^{91} + 68056 q^{94} + 10240 q^{96} + 35620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 565x^{2} + 79524 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 283\nu ) / 282 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 283 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 283 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 282\beta_{2} - 283\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
16.3003i
17.3003i
17.3003i
16.3003i
4.00000i 14.3003i −16.0000 0 −57.2012 49.0000i 64.0000i 38.5015 0
99.2 4.00000i 19.3003i −16.0000 0 77.2012 49.0000i 64.0000i −129.501 0
99.3 4.00000i 19.3003i −16.0000 0 77.2012 49.0000i 64.0000i −129.501 0
99.4 4.00000i 14.3003i −16.0000 0 −57.2012 49.0000i 64.0000i 38.5015 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.k 4
5.b even 2 1 inner 350.6.c.k 4
5.c odd 4 1 70.6.a.h 2
5.c odd 4 1 350.6.a.p 2
15.e even 4 1 630.6.a.s 2
20.e even 4 1 560.6.a.k 2
35.f even 4 1 490.6.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.h 2 5.c odd 4 1
350.6.a.p 2 5.c odd 4 1
350.6.c.k 4 1.a even 1 1 trivial
350.6.c.k 4 5.b even 2 1 inner
490.6.a.u 2 35.f even 4 1
560.6.a.k 2 20.e even 4 1
630.6.a.s 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{4} + 577T_{3}^{2} + 76176 \) Copy content Toggle raw display
\( T_{11}^{2} - 415T_{11} - 4644 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 577 T^{2} + 76176 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 415 T - 4644)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 160325 T^{2} + 140612164 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 573906244356 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1918 T - 2748440)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 5134030905600 \) Copy content Toggle raw display
$29$ \( (T^{2} - 1131 T - 2121390)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 5472 T - 49163008)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 188581116810256 \) Copy content Toggle raw display
$41$ \( (T^{2} + 7822 T + 11365872)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 32\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 95033486214144 \) Copy content Toggle raw display
$59$ \( (T^{2} + 6952 T - 48684720)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 45138 T + 402952640)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 42\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T^{2} + 62272 T - 106007808)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + 62069 T - 653150040)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 80\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{2} + 64190 T - 1135587000)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
show more
show less