Properties

Label 350.6.c.j
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{3369})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1685x^{2} + 708964 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 8) q^{6} - 49 \beta_{2} q^{7} - 64 \beta_{2} q^{8} + (3 \beta_{3} - 603) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 8) q^{6} - 49 \beta_{2} q^{7} - 64 \beta_{2} q^{8} + (3 \beta_{3} - 603) q^{9} + (3 \beta_{3} + 478) q^{11} + (16 \beta_{2} - 16 \beta_1) q^{12} + (189 \beta_{2} - 15 \beta_1) q^{13} + 196 q^{14} + 256 q^{16} + ( - 1111 \beta_{2} + 9 \beta_1) q^{17} + ( - 2400 \beta_{2} + 12 \beta_1) q^{18} + ( - 6 \beta_{3} - 1668) q^{19} + (49 \beta_{3} - 98) q^{21} + (1924 \beta_{2} + 12 \beta_1) q^{22} + (150 \beta_{2} - 150 \beta_1) q^{23} + (64 \beta_{3} - 128) q^{24} + (60 \beta_{3} - 816) q^{26} + (2883 \beta_{2} - 363 \beta_1) q^{27} + 784 \beta_{2} q^{28} + (171 \beta_{3} + 2172) q^{29} + (204 \beta_{3} - 1120) q^{31} + 1024 \beta_{2} q^{32} + (2045 \beta_{2} + 475 \beta_1) q^{33} + ( - 36 \beta_{3} + 4480) q^{34} + ( - 48 \beta_{3} + 9648) q^{36} + ( - 1006 \beta_{2} - 84 \beta_1) q^{37} + ( - 6696 \beta_{2} - 24 \beta_1) q^{38} + ( - 219 \beta_{3} + 13038) q^{39} + (282 \beta_{3} + 9518) q^{41} + ( - 196 \beta_{2} + 196 \beta_1) q^{42} + (7010 \beta_{2} - 126 \beta_1) q^{43} + ( - 48 \beta_{3} - 7648) q^{44} + (600 \beta_{3} - 1200) q^{46} + ( - 9931 \beta_{2} - 117 \beta_1) q^{47} + ( - 256 \beta_{2} + 256 \beta_1) q^{48} - 2401 q^{49} + (1129 \beta_{3} - 9818) q^{51} + ( - 3024 \beta_{2} + 240 \beta_1) q^{52} + ( - 13360 \beta_{2} - 342 \beta_1) q^{53} + (1452 \beta_{3} - 12984) q^{54} - 3136 q^{56} + ( - 3378 \beta_{2} - 1662 \beta_1) q^{57} + (9372 \beta_{2} + 684 \beta_1) q^{58} + ( - 816 \beta_{3} + 5960) q^{59} + ( - 1194 \beta_{3} + 2374) q^{61} + ( - 3664 \beta_{2} + 816 \beta_1) q^{62} + (29400 \beta_{2} - 147 \beta_1) q^{63} - 4096 q^{64} + ( - 1900 \beta_{3} - 6280) q^{66} + (33180 \beta_{2} + 1152 \beta_1) q^{67} + (17776 \beta_{2} - 144 \beta_1) q^{68} + ( - 450 \beta_{3} + 126900) q^{69} + ( - 672 \beta_{3} + 8888) q^{71} + (38400 \beta_{2} - 192 \beta_1) q^{72} + (17374 \beta_{2} - 1992 \beta_1) q^{73} + (336 \beta_{3} + 3688) q^{74} + (96 \beta_{3} + 26688) q^{76} + ( - 23569 \beta_{2} - 147 \beta_1) q^{77} + (51276 \beta_{2} - 876 \beta_1) q^{78} + ( - 873 \beta_{3} - 35686) q^{79} + ( - 2880 \beta_{3} + 165609) q^{81} + (39200 \beta_{2} + 1128 \beta_1) q^{82} + ( - 49076 \beta_{2} + 1524 \beta_1) q^{83} + ( - 784 \beta_{3} + 1568) q^{84} + (504 \beta_{3} - 28544) q^{86} + (141639 \beta_{2} + 2001 \beta_1) q^{87} + ( - 30784 \beta_{2} - 192 \beta_1) q^{88} + ( - 2922 \beta_{3} - 39766) q^{89} + ( - 735 \beta_{3} + 9996) q^{91} + ( - 2400 \beta_{2} + 2400 \beta_1) q^{92} + (172684 \beta_{2} - 1324 \beta_1) q^{93} + (468 \beta_{3} + 39256) q^{94} + ( - 1024 \beta_{3} + 2048) q^{96} + ( - 53803 \beta_{2} - 2979 \beta_1) q^{97} - 9604 \beta_{2} q^{98} + ( - 366 \beta_{3} - 280656) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 24 q^{6} - 2406 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} + 24 q^{6} - 2406 q^{9} + 1918 q^{11} + 784 q^{14} + 1024 q^{16} - 6684 q^{19} - 294 q^{21} - 384 q^{24} - 3144 q^{26} + 9030 q^{29} - 4072 q^{31} + 17848 q^{34} + 38496 q^{36} + 51714 q^{39} + 38636 q^{41} - 30688 q^{44} - 3600 q^{46} - 9604 q^{49} - 37014 q^{51} - 49032 q^{54} - 12544 q^{56} + 22208 q^{59} + 7108 q^{61} - 16384 q^{64} - 28920 q^{66} + 506700 q^{69} + 34208 q^{71} + 15424 q^{74} + 106944 q^{76} - 144490 q^{79} + 656676 q^{81} + 4704 q^{84} - 113168 q^{86} - 164908 q^{89} + 38514 q^{91} + 157960 q^{94} + 6144 q^{96} - 1123356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 1685x^{2} + 708964 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 843\nu ) / 842 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 843 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 843 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 842\beta_{2} - 843\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
28.5215i
29.5215i
29.5215i
28.5215i
4.00000i 27.5215i −16.0000 0 −110.086 49.0000i 64.0000i −514.435 0
99.2 4.00000i 30.5215i −16.0000 0 122.086 49.0000i 64.0000i −688.565 0
99.3 4.00000i 30.5215i −16.0000 0 122.086 49.0000i 64.0000i −688.565 0
99.4 4.00000i 27.5215i −16.0000 0 −110.086 49.0000i 64.0000i −514.435 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.j 4
5.b even 2 1 inner 350.6.c.j 4
5.c odd 4 1 70.6.a.g 2
5.c odd 4 1 350.6.a.q 2
15.e even 4 1 630.6.a.u 2
20.e even 4 1 560.6.a.m 2
35.f even 4 1 490.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.g 2 5.c odd 4 1
350.6.a.q 2 5.c odd 4 1
350.6.c.j 4 1.a even 1 1 trivial
350.6.c.j 4 5.b even 2 1 inner
490.6.a.v 2 35.f even 4 1
560.6.a.m 2 20.e even 4 1
630.6.a.u 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{4} + 1689T_{3}^{2} + 705600 \) Copy content Toggle raw display
\( T_{11}^{2} - 959T_{11} + 222340 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1689 T^{2} + 705600 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 959 T + 222340)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 22768999236 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1383253549924 \) Copy content Toggle raw display
$19$ \( (T^{2} + 3342 T + 2761920)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 357210000000000 \) Copy content Toggle raw display
$29$ \( (T^{2} - 4515 T - 19531926)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2036 T - 34014752)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 25136385504400 \) Copy content Toggle raw display
$41$ \( (T^{2} - 19318 T + 26317192)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 13\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 73\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 56\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( (T^{2} - 11104 T - 529992512)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 3554 T - 1197584192)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 29\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{2} - 17104 T - 307209920)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 90\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} + 72245 T + 662931856)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 27\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{2} + 82454 T - 5491535720)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
show more
show less