Properties

Label 350.6.c.h.99.2
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.h.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -23.0000i q^{3} -16.0000 q^{4} +92.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -286.000 q^{9} +O(q^{10})\) \(q+4.00000i q^{2} -23.0000i q^{3} -16.0000 q^{4} +92.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -286.000 q^{9} +555.000 q^{11} +368.000i q^{12} -241.000i q^{13} +196.000 q^{14} +256.000 q^{16} +1491.00i q^{17} -1144.00i q^{18} +2038.00 q^{19} -1127.00 q^{21} +2220.00i q^{22} -1230.00i q^{23} -1472.00 q^{24} +964.000 q^{26} +989.000i q^{27} +784.000i q^{28} +5001.00 q^{29} +5696.00 q^{31} +1024.00i q^{32} -12765.0i q^{33} -5964.00 q^{34} +4576.00 q^{36} +5602.00i q^{37} +8152.00i q^{38} -5543.00 q^{39} -2424.00 q^{41} -4508.00i q^{42} +602.000i q^{43} -8880.00 q^{44} +4920.00 q^{46} +23163.0i q^{47} -5888.00i q^{48} -2401.00 q^{49} +34293.0 q^{51} +3856.00i q^{52} -25296.0i q^{53} -3956.00 q^{54} -3136.00 q^{56} -46874.0i q^{57} +20004.0i q^{58} -5724.00 q^{59} -36112.0 q^{61} +22784.0i q^{62} +14014.0i q^{63} -4096.00 q^{64} +51060.0 q^{66} -66104.0i q^{67} -23856.0i q^{68} -28290.0 q^{69} +16080.0 q^{71} +18304.0i q^{72} -80482.0i q^{73} -22408.0 q^{74} -32608.0 q^{76} -27195.0i q^{77} -22172.0i q^{78} +64147.0 q^{79} -46751.0 q^{81} -9696.00i q^{82} -106284. i q^{83} +18032.0 q^{84} -2408.00 q^{86} -115023. i q^{87} -35520.0i q^{88} +71676.0 q^{89} -11809.0 q^{91} +19680.0i q^{92} -131008. i q^{93} -92652.0 q^{94} +23552.0 q^{96} -151025. i q^{97} -9604.00i q^{98} -158730. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 184 q^{6} - 572 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} + 184 q^{6} - 572 q^{9} + 1110 q^{11} + 392 q^{14} + 512 q^{16} + 4076 q^{19} - 2254 q^{21} - 2944 q^{24} + 1928 q^{26} + 10002 q^{29} + 11392 q^{31} - 11928 q^{34} + 9152 q^{36} - 11086 q^{39} - 4848 q^{41} - 17760 q^{44} + 9840 q^{46} - 4802 q^{49} + 68586 q^{51} - 7912 q^{54} - 6272 q^{56} - 11448 q^{59} - 72224 q^{61} - 8192 q^{64} + 102120 q^{66} - 56580 q^{69} + 32160 q^{71} - 44816 q^{74} - 65216 q^{76} + 128294 q^{79} - 93502 q^{81} + 36064 q^{84} - 4816 q^{86} + 143352 q^{89} - 23618 q^{91} - 185304 q^{94} + 47104 q^{96} - 317460 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) − 23.0000i − 1.47545i −0.675101 0.737725i \(-0.735900\pi\)
0.675101 0.737725i \(-0.264100\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 92.0000 1.04330
\(7\) − 49.0000i − 0.377964i
\(8\) − 64.0000i − 0.353553i
\(9\) −286.000 −1.17695
\(10\) 0 0
\(11\) 555.000 1.38297 0.691483 0.722393i \(-0.256958\pi\)
0.691483 + 0.722393i \(0.256958\pi\)
\(12\) 368.000i 0.737725i
\(13\) − 241.000i − 0.395511i −0.980251 0.197756i \(-0.936635\pi\)
0.980251 0.197756i \(-0.0633652\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1491.00i 1.25128i 0.780111 + 0.625641i \(0.215163\pi\)
−0.780111 + 0.625641i \(0.784837\pi\)
\(18\) − 1144.00i − 0.832233i
\(19\) 2038.00 1.29515 0.647575 0.762002i \(-0.275783\pi\)
0.647575 + 0.762002i \(0.275783\pi\)
\(20\) 0 0
\(21\) −1127.00 −0.557668
\(22\) 2220.00i 0.977904i
\(23\) − 1230.00i − 0.484826i −0.970173 0.242413i \(-0.922061\pi\)
0.970173 0.242413i \(-0.0779388\pi\)
\(24\) −1472.00 −0.521651
\(25\) 0 0
\(26\) 964.000 0.279669
\(27\) 989.000i 0.261088i
\(28\) 784.000i 0.188982i
\(29\) 5001.00 1.10424 0.552118 0.833766i \(-0.313820\pi\)
0.552118 + 0.833766i \(0.313820\pi\)
\(30\) 0 0
\(31\) 5696.00 1.06455 0.532275 0.846572i \(-0.321337\pi\)
0.532275 + 0.846572i \(0.321337\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 12765.0i − 2.04050i
\(34\) −5964.00 −0.884790
\(35\) 0 0
\(36\) 4576.00 0.588477
\(37\) 5602.00i 0.672727i 0.941732 + 0.336363i \(0.109197\pi\)
−0.941732 + 0.336363i \(0.890803\pi\)
\(38\) 8152.00i 0.915810i
\(39\) −5543.00 −0.583557
\(40\) 0 0
\(41\) −2424.00 −0.225202 −0.112601 0.993640i \(-0.535918\pi\)
−0.112601 + 0.993640i \(0.535918\pi\)
\(42\) − 4508.00i − 0.394331i
\(43\) 602.000i 0.0496507i 0.999692 + 0.0248253i \(0.00790297\pi\)
−0.999692 + 0.0248253i \(0.992097\pi\)
\(44\) −8880.00 −0.691483
\(45\) 0 0
\(46\) 4920.00 0.342823
\(47\) 23163.0i 1.52950i 0.644326 + 0.764751i \(0.277138\pi\)
−0.644326 + 0.764751i \(0.722862\pi\)
\(48\) − 5888.00i − 0.368863i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 34293.0 1.84621
\(52\) 3856.00i 0.197756i
\(53\) − 25296.0i − 1.23698i −0.785793 0.618489i \(-0.787745\pi\)
0.785793 0.618489i \(-0.212255\pi\)
\(54\) −3956.00 −0.184617
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) − 46874.0i − 1.91093i
\(58\) 20004.0i 0.780813i
\(59\) −5724.00 −0.214077 −0.107038 0.994255i \(-0.534137\pi\)
−0.107038 + 0.994255i \(0.534137\pi\)
\(60\) 0 0
\(61\) −36112.0 −1.24259 −0.621294 0.783578i \(-0.713393\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(62\) 22784.0i 0.752750i
\(63\) 14014.0i 0.444847i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 51060.0 1.44285
\(67\) − 66104.0i − 1.79904i −0.436880 0.899520i \(-0.643917\pi\)
0.436880 0.899520i \(-0.356083\pi\)
\(68\) − 23856.0i − 0.625641i
\(69\) −28290.0 −0.715336
\(70\) 0 0
\(71\) 16080.0 0.378565 0.189282 0.981923i \(-0.439384\pi\)
0.189282 + 0.981923i \(0.439384\pi\)
\(72\) 18304.0i 0.416116i
\(73\) − 80482.0i − 1.76763i −0.467836 0.883816i \(-0.654966\pi\)
0.467836 0.883816i \(-0.345034\pi\)
\(74\) −22408.0 −0.475690
\(75\) 0 0
\(76\) −32608.0 −0.647575
\(77\) − 27195.0i − 0.522712i
\(78\) − 22172.0i − 0.412637i
\(79\) 64147.0 1.15640 0.578201 0.815895i \(-0.303755\pi\)
0.578201 + 0.815895i \(0.303755\pi\)
\(80\) 0 0
\(81\) −46751.0 −0.791732
\(82\) − 9696.00i − 0.159242i
\(83\) − 106284.i − 1.69345i −0.532030 0.846726i \(-0.678571\pi\)
0.532030 0.846726i \(-0.321429\pi\)
\(84\) 18032.0 0.278834
\(85\) 0 0
\(86\) −2408.00 −0.0351083
\(87\) − 115023.i − 1.62925i
\(88\) − 35520.0i − 0.488952i
\(89\) 71676.0 0.959177 0.479588 0.877494i \(-0.340786\pi\)
0.479588 + 0.877494i \(0.340786\pi\)
\(90\) 0 0
\(91\) −11809.0 −0.149489
\(92\) 19680.0i 0.242413i
\(93\) − 131008.i − 1.57069i
\(94\) −92652.0 −1.08152
\(95\) 0 0
\(96\) 23552.0 0.260825
\(97\) − 151025.i − 1.62974i −0.579641 0.814872i \(-0.696807\pi\)
0.579641 0.814872i \(-0.303193\pi\)
\(98\) − 9604.00i − 0.101015i
\(99\) −158730. −1.62769
\(100\) 0 0
\(101\) −57150.0 −0.557459 −0.278729 0.960370i \(-0.589913\pi\)
−0.278729 + 0.960370i \(0.589913\pi\)
\(102\) 137172.i 1.30546i
\(103\) 115889.i 1.07634i 0.842837 + 0.538170i \(0.180884\pi\)
−0.842837 + 0.538170i \(0.819116\pi\)
\(104\) −15424.0 −0.139834
\(105\) 0 0
\(106\) 101184. 0.874676
\(107\) 137862.i 1.16409i 0.813158 + 0.582043i \(0.197747\pi\)
−0.813158 + 0.582043i \(0.802253\pi\)
\(108\) − 15824.0i − 0.130544i
\(109\) −88397.0 −0.712642 −0.356321 0.934364i \(-0.615969\pi\)
−0.356321 + 0.934364i \(0.615969\pi\)
\(110\) 0 0
\(111\) 128846. 0.992575
\(112\) − 12544.0i − 0.0944911i
\(113\) 205554.i 1.51436i 0.653205 + 0.757181i \(0.273424\pi\)
−0.653205 + 0.757181i \(0.726576\pi\)
\(114\) 187496. 1.35123
\(115\) 0 0
\(116\) −80016.0 −0.552118
\(117\) 68926.0i 0.465499i
\(118\) − 22896.0i − 0.151375i
\(119\) 73059.0 0.472940
\(120\) 0 0
\(121\) 146974. 0.912593
\(122\) − 144448.i − 0.878642i
\(123\) 55752.0i 0.332275i
\(124\) −91136.0 −0.532275
\(125\) 0 0
\(126\) −56056.0 −0.314554
\(127\) − 250916.i − 1.38044i −0.723597 0.690222i \(-0.757513\pi\)
0.723597 0.690222i \(-0.242487\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 13846.0 0.0732572
\(130\) 0 0
\(131\) −52122.0 −0.265365 −0.132682 0.991159i \(-0.542359\pi\)
−0.132682 + 0.991159i \(0.542359\pi\)
\(132\) 204240.i 1.02025i
\(133\) − 99862.0i − 0.489521i
\(134\) 264416. 1.27211
\(135\) 0 0
\(136\) 95424.0 0.442395
\(137\) 135468.i 0.616645i 0.951282 + 0.308323i \(0.0997676\pi\)
−0.951282 + 0.308323i \(0.900232\pi\)
\(138\) − 113160.i − 0.505819i
\(139\) 349486. 1.53424 0.767119 0.641505i \(-0.221690\pi\)
0.767119 + 0.641505i \(0.221690\pi\)
\(140\) 0 0
\(141\) 532749. 2.25671
\(142\) 64320.0i 0.267686i
\(143\) − 133755.i − 0.546978i
\(144\) −73216.0 −0.294239
\(145\) 0 0
\(146\) 321928. 1.24990
\(147\) 55223.0i 0.210779i
\(148\) − 89632.0i − 0.336363i
\(149\) −176082. −0.649754 −0.324877 0.945756i \(-0.605323\pi\)
−0.324877 + 0.945756i \(0.605323\pi\)
\(150\) 0 0
\(151\) 383333. 1.36815 0.684075 0.729411i \(-0.260206\pi\)
0.684075 + 0.729411i \(0.260206\pi\)
\(152\) − 130432.i − 0.457905i
\(153\) − 426426.i − 1.47270i
\(154\) 108780. 0.369613
\(155\) 0 0
\(156\) 88688.0 0.291779
\(157\) − 345914.i − 1.12000i −0.828492 0.560001i \(-0.810801\pi\)
0.828492 0.560001i \(-0.189199\pi\)
\(158\) 256588.i 0.817699i
\(159\) −581808. −1.82510
\(160\) 0 0
\(161\) −60270.0 −0.183247
\(162\) − 187004.i − 0.559839i
\(163\) 91586.0i 0.269998i 0.990846 + 0.134999i \(0.0431031\pi\)
−0.990846 + 0.134999i \(0.956897\pi\)
\(164\) 38784.0 0.112601
\(165\) 0 0
\(166\) 425136. 1.19745
\(167\) − 38097.0i − 0.105706i −0.998602 0.0528530i \(-0.983169\pi\)
0.998602 0.0528530i \(-0.0168315\pi\)
\(168\) 72128.0i 0.197165i
\(169\) 313212. 0.843571
\(170\) 0 0
\(171\) −582868. −1.52433
\(172\) − 9632.00i − 0.0248253i
\(173\) − 541443.i − 1.37543i −0.725982 0.687713i \(-0.758615\pi\)
0.725982 0.687713i \(-0.241385\pi\)
\(174\) 460092. 1.15205
\(175\) 0 0
\(176\) 142080. 0.345741
\(177\) 131652.i 0.315860i
\(178\) 286704.i 0.678241i
\(179\) −166188. −0.387674 −0.193837 0.981034i \(-0.562093\pi\)
−0.193837 + 0.981034i \(0.562093\pi\)
\(180\) 0 0
\(181\) −197320. −0.447687 −0.223844 0.974625i \(-0.571860\pi\)
−0.223844 + 0.974625i \(0.571860\pi\)
\(182\) − 47236.0i − 0.105705i
\(183\) 830576.i 1.83338i
\(184\) −78720.0 −0.171412
\(185\) 0 0
\(186\) 524032. 1.11065
\(187\) 827505.i 1.73048i
\(188\) − 370608.i − 0.764751i
\(189\) 48461.0 0.0986820
\(190\) 0 0
\(191\) −337221. −0.668854 −0.334427 0.942422i \(-0.608543\pi\)
−0.334427 + 0.942422i \(0.608543\pi\)
\(192\) 94208.0i 0.184431i
\(193\) 260516.i 0.503432i 0.967801 + 0.251716i \(0.0809949\pi\)
−0.967801 + 0.251716i \(0.919005\pi\)
\(194\) 604100. 1.15240
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 409212.i 0.751247i 0.926772 + 0.375624i \(0.122571\pi\)
−0.926772 + 0.375624i \(0.877429\pi\)
\(198\) − 634920.i − 1.15095i
\(199\) −300980. −0.538772 −0.269386 0.963032i \(-0.586821\pi\)
−0.269386 + 0.963032i \(0.586821\pi\)
\(200\) 0 0
\(201\) −1.52039e6 −2.65439
\(202\) − 228600.i − 0.394183i
\(203\) − 245049.i − 0.417362i
\(204\) −548688. −0.923103
\(205\) 0 0
\(206\) −463556. −0.761087
\(207\) 351780.i 0.570618i
\(208\) − 61696.0i − 0.0988778i
\(209\) 1.13109e6 1.79115
\(210\) 0 0
\(211\) −1.22618e6 −1.89604 −0.948021 0.318209i \(-0.896919\pi\)
−0.948021 + 0.318209i \(0.896919\pi\)
\(212\) 404736.i 0.618489i
\(213\) − 369840.i − 0.558554i
\(214\) −551448. −0.823133
\(215\) 0 0
\(216\) 63296.0 0.0923085
\(217\) − 279104.i − 0.402362i
\(218\) − 353588.i − 0.503914i
\(219\) −1.85109e6 −2.60805
\(220\) 0 0
\(221\) 359331. 0.494896
\(222\) 515384.i 0.701857i
\(223\) 621257.i 0.836583i 0.908313 + 0.418292i \(0.137371\pi\)
−0.908313 + 0.418292i \(0.862629\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −822216. −1.07082
\(227\) − 1.29768e6i − 1.67148i −0.549123 0.835742i \(-0.685038\pi\)
0.549123 0.835742i \(-0.314962\pi\)
\(228\) 749984.i 0.955465i
\(229\) 124264. 0.156587 0.0782937 0.996930i \(-0.475053\pi\)
0.0782937 + 0.996930i \(0.475053\pi\)
\(230\) 0 0
\(231\) −625485. −0.771235
\(232\) − 320064.i − 0.390406i
\(233\) 1.08742e6i 1.31222i 0.754666 + 0.656109i \(0.227799\pi\)
−0.754666 + 0.656109i \(0.772201\pi\)
\(234\) −275704. −0.329157
\(235\) 0 0
\(236\) 91584.0 0.107038
\(237\) − 1.47538e6i − 1.70621i
\(238\) 292236.i 0.334419i
\(239\) 545631. 0.617880 0.308940 0.951081i \(-0.400026\pi\)
0.308940 + 0.951081i \(0.400026\pi\)
\(240\) 0 0
\(241\) 811310. 0.899796 0.449898 0.893080i \(-0.351460\pi\)
0.449898 + 0.893080i \(0.351460\pi\)
\(242\) 587896.i 0.645301i
\(243\) 1.31560e6i 1.42925i
\(244\) 577792. 0.621294
\(245\) 0 0
\(246\) −223008. −0.234954
\(247\) − 491158.i − 0.512246i
\(248\) − 364544.i − 0.376375i
\(249\) −2.44453e6 −2.49860
\(250\) 0 0
\(251\) −897738. −0.899426 −0.449713 0.893173i \(-0.648474\pi\)
−0.449713 + 0.893173i \(0.648474\pi\)
\(252\) − 224224.i − 0.222424i
\(253\) − 682650.i − 0.670497i
\(254\) 1.00366e6 0.976122
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 594678.i 0.561628i 0.959762 + 0.280814i \(0.0906045\pi\)
−0.959762 + 0.280814i \(0.909396\pi\)
\(258\) 55384.0i 0.0518006i
\(259\) 274498. 0.254267
\(260\) 0 0
\(261\) −1.43029e6 −1.29964
\(262\) − 208488.i − 0.187641i
\(263\) 1.02837e6i 0.916769i 0.888754 + 0.458385i \(0.151572\pi\)
−0.888754 + 0.458385i \(0.848428\pi\)
\(264\) −816960. −0.721425
\(265\) 0 0
\(266\) 399448. 0.346143
\(267\) − 1.64855e6i − 1.41522i
\(268\) 1.05766e6i 0.899520i
\(269\) 1.24390e6 1.04811 0.524053 0.851685i \(-0.324419\pi\)
0.524053 + 0.851685i \(0.324419\pi\)
\(270\) 0 0
\(271\) 737624. 0.610115 0.305058 0.952334i \(-0.401324\pi\)
0.305058 + 0.952334i \(0.401324\pi\)
\(272\) 381696.i 0.312821i
\(273\) 271607.i 0.220564i
\(274\) −541872. −0.436034
\(275\) 0 0
\(276\) 452640. 0.357668
\(277\) 2.20063e6i 1.72325i 0.507548 + 0.861624i \(0.330552\pi\)
−0.507548 + 0.861624i \(0.669448\pi\)
\(278\) 1.39794e6i 1.08487i
\(279\) −1.62906e6 −1.25293
\(280\) 0 0
\(281\) 173979. 0.131441 0.0657205 0.997838i \(-0.479065\pi\)
0.0657205 + 0.997838i \(0.479065\pi\)
\(282\) 2.13100e6i 1.59573i
\(283\) − 551053.i − 0.409004i −0.978866 0.204502i \(-0.934443\pi\)
0.978866 0.204502i \(-0.0655574\pi\)
\(284\) −257280. −0.189282
\(285\) 0 0
\(286\) 535020. 0.386772
\(287\) 118776.i 0.0851185i
\(288\) − 292864.i − 0.208058i
\(289\) −803224. −0.565708
\(290\) 0 0
\(291\) −3.47358e6 −2.40461
\(292\) 1.28771e6i 0.883816i
\(293\) − 1.67512e6i − 1.13993i −0.821670 0.569963i \(-0.806958\pi\)
0.821670 0.569963i \(-0.193042\pi\)
\(294\) −220892. −0.149043
\(295\) 0 0
\(296\) 358528. 0.237845
\(297\) 548895.i 0.361076i
\(298\) − 704328.i − 0.459446i
\(299\) −296430. −0.191754
\(300\) 0 0
\(301\) 29498.0 0.0187662
\(302\) 1.53333e6i 0.967428i
\(303\) 1.31445e6i 0.822503i
\(304\) 521728. 0.323788
\(305\) 0 0
\(306\) 1.70570e6 1.04136
\(307\) − 2.33060e6i − 1.41131i −0.708556 0.705655i \(-0.750653\pi\)
0.708556 0.705655i \(-0.249347\pi\)
\(308\) 435120.i 0.261356i
\(309\) 2.66545e6 1.58809
\(310\) 0 0
\(311\) 706266. 0.414064 0.207032 0.978334i \(-0.433620\pi\)
0.207032 + 0.978334i \(0.433620\pi\)
\(312\) 354752.i 0.206319i
\(313\) − 183565.i − 0.105908i −0.998597 0.0529540i \(-0.983136\pi\)
0.998597 0.0529540i \(-0.0168637\pi\)
\(314\) 1.38366e6 0.791961
\(315\) 0 0
\(316\) −1.02635e6 −0.578201
\(317\) − 2.70665e6i − 1.51281i −0.654103 0.756405i \(-0.726954\pi\)
0.654103 0.756405i \(-0.273046\pi\)
\(318\) − 2.32723e6i − 1.29054i
\(319\) 2.77556e6 1.52712
\(320\) 0 0
\(321\) 3.17083e6 1.71755
\(322\) − 241080.i − 0.129575i
\(323\) 3.03866e6i 1.62060i
\(324\) 748016. 0.395866
\(325\) 0 0
\(326\) −366344. −0.190917
\(327\) 2.03313e6i 1.05147i
\(328\) 155136.i 0.0796211i
\(329\) 1.13499e6 0.578098
\(330\) 0 0
\(331\) −2.14337e6 −1.07529 −0.537647 0.843170i \(-0.680687\pi\)
−0.537647 + 0.843170i \(0.680687\pi\)
\(332\) 1.70054e6i 0.846726i
\(333\) − 1.60217e6i − 0.791769i
\(334\) 152388. 0.0747454
\(335\) 0 0
\(336\) −288512. −0.139417
\(337\) − 655346.i − 0.314337i −0.987572 0.157169i \(-0.949763\pi\)
0.987572 0.157169i \(-0.0502366\pi\)
\(338\) 1.25285e6i 0.596495i
\(339\) 4.72774e6 2.23437
\(340\) 0 0
\(341\) 3.16128e6 1.47223
\(342\) − 2.33147e6i − 1.07787i
\(343\) 117649.i 0.0539949i
\(344\) 38528.0 0.0175542
\(345\) 0 0
\(346\) 2.16577e6 0.972574
\(347\) 4.22275e6i 1.88266i 0.337491 + 0.941329i \(0.390422\pi\)
−0.337491 + 0.941329i \(0.609578\pi\)
\(348\) 1.84037e6i 0.814623i
\(349\) −3.01710e6 −1.32595 −0.662974 0.748643i \(-0.730706\pi\)
−0.662974 + 0.748643i \(0.730706\pi\)
\(350\) 0 0
\(351\) 238349. 0.103263
\(352\) 568320.i 0.244476i
\(353\) 2.25258e6i 0.962150i 0.876679 + 0.481075i \(0.159754\pi\)
−0.876679 + 0.481075i \(0.840246\pi\)
\(354\) −526608. −0.223347
\(355\) 0 0
\(356\) −1.14682e6 −0.479588
\(357\) − 1.68036e6i − 0.697800i
\(358\) − 664752.i − 0.274127i
\(359\) 1.83950e6 0.753294 0.376647 0.926357i \(-0.377077\pi\)
0.376647 + 0.926357i \(0.377077\pi\)
\(360\) 0 0
\(361\) 1.67735e6 0.677414
\(362\) − 789280.i − 0.316563i
\(363\) − 3.38040e6i − 1.34649i
\(364\) 188944. 0.0747446
\(365\) 0 0
\(366\) −3.32230e6 −1.29639
\(367\) 1.68832e6i 0.654320i 0.944969 + 0.327160i \(0.106092\pi\)
−0.944969 + 0.327160i \(0.893908\pi\)
\(368\) − 314880.i − 0.121206i
\(369\) 693264. 0.265053
\(370\) 0 0
\(371\) −1.23950e6 −0.467534
\(372\) 2.09613e6i 0.785345i
\(373\) 1.81212e6i 0.674394i 0.941434 + 0.337197i \(0.109479\pi\)
−0.941434 + 0.337197i \(0.890521\pi\)
\(374\) −3.31002e6 −1.22363
\(375\) 0 0
\(376\) 1.48243e6 0.540761
\(377\) − 1.20524e6i − 0.436738i
\(378\) 193844.i 0.0697787i
\(379\) 4.76708e6 1.70472 0.852362 0.522952i \(-0.175169\pi\)
0.852362 + 0.522952i \(0.175169\pi\)
\(380\) 0 0
\(381\) −5.77107e6 −2.03678
\(382\) − 1.34888e6i − 0.472951i
\(383\) − 69996.0i − 0.0243824i −0.999926 0.0121912i \(-0.996119\pi\)
0.999926 0.0121912i \(-0.00388067\pi\)
\(384\) −376832. −0.130413
\(385\) 0 0
\(386\) −1.04206e6 −0.355980
\(387\) − 172172.i − 0.0584366i
\(388\) 2.41640e6i 0.814872i
\(389\) −3.98895e6 −1.33655 −0.668275 0.743915i \(-0.732967\pi\)
−0.668275 + 0.743915i \(0.732967\pi\)
\(390\) 0 0
\(391\) 1.83393e6 0.606654
\(392\) 153664.i 0.0505076i
\(393\) 1.19881e6i 0.391532i
\(394\) −1.63685e6 −0.531212
\(395\) 0 0
\(396\) 2.53968e6 0.813844
\(397\) 3.05904e6i 0.974110i 0.873371 + 0.487055i \(0.161929\pi\)
−0.873371 + 0.487055i \(0.838071\pi\)
\(398\) − 1.20392e6i − 0.380969i
\(399\) −2.29683e6 −0.722264
\(400\) 0 0
\(401\) 4.30794e6 1.33785 0.668927 0.743329i \(-0.266754\pi\)
0.668927 + 0.743329i \(0.266754\pi\)
\(402\) − 6.08157e6i − 1.87694i
\(403\) − 1.37274e6i − 0.421041i
\(404\) 914400. 0.278729
\(405\) 0 0
\(406\) 980196. 0.295119
\(407\) 3.10911e6i 0.930358i
\(408\) − 2.19475e6i − 0.652732i
\(409\) 239206. 0.0707072 0.0353536 0.999375i \(-0.488744\pi\)
0.0353536 + 0.999375i \(0.488744\pi\)
\(410\) 0 0
\(411\) 3.11576e6 0.909829
\(412\) − 1.85422e6i − 0.538170i
\(413\) 280476.i 0.0809134i
\(414\) −1.40712e6 −0.403488
\(415\) 0 0
\(416\) 246784. 0.0699171
\(417\) − 8.03818e6i − 2.26369i
\(418\) 4.52436e6i 1.26653i
\(419\) −4.63462e6 −1.28967 −0.644835 0.764322i \(-0.723074\pi\)
−0.644835 + 0.764322i \(0.723074\pi\)
\(420\) 0 0
\(421\) −2.10108e6 −0.577745 −0.288873 0.957368i \(-0.593280\pi\)
−0.288873 + 0.957368i \(0.593280\pi\)
\(422\) − 4.90472e6i − 1.34070i
\(423\) − 6.62462e6i − 1.80016i
\(424\) −1.61894e6 −0.437338
\(425\) 0 0
\(426\) 1.47936e6 0.394957
\(427\) 1.76949e6i 0.469654i
\(428\) − 2.20579e6i − 0.582043i
\(429\) −3.07636e6 −0.807039
\(430\) 0 0
\(431\) 1.65484e6 0.429104 0.214552 0.976713i \(-0.431171\pi\)
0.214552 + 0.976713i \(0.431171\pi\)
\(432\) 253184.i 0.0652720i
\(433\) − 1.84031e6i − 0.471705i −0.971789 0.235852i \(-0.924212\pi\)
0.971789 0.235852i \(-0.0757882\pi\)
\(434\) 1.11642e6 0.284513
\(435\) 0 0
\(436\) 1.41435e6 0.356321
\(437\) − 2.50674e6i − 0.627922i
\(438\) − 7.40434e6i − 1.84417i
\(439\) −5.83684e6 −1.44549 −0.722747 0.691113i \(-0.757121\pi\)
−0.722747 + 0.691113i \(0.757121\pi\)
\(440\) 0 0
\(441\) 686686. 0.168136
\(442\) 1.43732e6i 0.349944i
\(443\) 1.19704e6i 0.289801i 0.989446 + 0.144901i \(0.0462862\pi\)
−0.989446 + 0.144901i \(0.953714\pi\)
\(444\) −2.06154e6 −0.496288
\(445\) 0 0
\(446\) −2.48503e6 −0.591554
\(447\) 4.04989e6i 0.958681i
\(448\) 200704.i 0.0472456i
\(449\) 3.42570e6 0.801924 0.400962 0.916095i \(-0.368676\pi\)
0.400962 + 0.916095i \(0.368676\pi\)
\(450\) 0 0
\(451\) −1.34532e6 −0.311447
\(452\) − 3.28886e6i − 0.757181i
\(453\) − 8.81666e6i − 2.01864i
\(454\) 5.19071e6 1.18192
\(455\) 0 0
\(456\) −2.99994e6 −0.675616
\(457\) − 5.29742e6i − 1.18652i −0.805012 0.593258i \(-0.797841\pi\)
0.805012 0.593258i \(-0.202159\pi\)
\(458\) 497056.i 0.110724i
\(459\) −1.47460e6 −0.326695
\(460\) 0 0
\(461\) 8.87731e6 1.94549 0.972745 0.231876i \(-0.0744863\pi\)
0.972745 + 0.231876i \(0.0744863\pi\)
\(462\) − 2.50194e6i − 0.545346i
\(463\) − 2.17475e6i − 0.471473i −0.971817 0.235737i \(-0.924250\pi\)
0.971817 0.235737i \(-0.0757503\pi\)
\(464\) 1.28026e6 0.276059
\(465\) 0 0
\(466\) −4.34966e6 −0.927878
\(467\) 378969.i 0.0804103i 0.999191 + 0.0402051i \(0.0128011\pi\)
−0.999191 + 0.0402051i \(0.987199\pi\)
\(468\) − 1.10282e6i − 0.232749i
\(469\) −3.23910e6 −0.679973
\(470\) 0 0
\(471\) −7.95602e6 −1.65251
\(472\) 366336.i 0.0756876i
\(473\) 334110.i 0.0686652i
\(474\) 5.90152e6 1.20647
\(475\) 0 0
\(476\) −1.16894e6 −0.236470
\(477\) 7.23466e6i 1.45587i
\(478\) 2.18252e6i 0.436907i
\(479\) −1.88489e6 −0.375360 −0.187680 0.982230i \(-0.560097\pi\)
−0.187680 + 0.982230i \(0.560097\pi\)
\(480\) 0 0
\(481\) 1.35008e6 0.266071
\(482\) 3.24524e6i 0.636252i
\(483\) 1.38621e6i 0.270372i
\(484\) −2.35158e6 −0.456296
\(485\) 0 0
\(486\) −5.26240e6 −1.01063
\(487\) − 3.67689e6i − 0.702518i −0.936278 0.351259i \(-0.885754\pi\)
0.936278 0.351259i \(-0.114246\pi\)
\(488\) 2.31117e6i 0.439321i
\(489\) 2.10648e6 0.398368
\(490\) 0 0
\(491\) 9.54015e6 1.78588 0.892939 0.450178i \(-0.148640\pi\)
0.892939 + 0.450178i \(0.148640\pi\)
\(492\) − 892032.i − 0.166138i
\(493\) 7.45649e6i 1.38171i
\(494\) 1.96463e6 0.362213
\(495\) 0 0
\(496\) 1.45818e6 0.266137
\(497\) − 787920.i − 0.143084i
\(498\) − 9.77813e6i − 1.76678i
\(499\) −4.78243e6 −0.859800 −0.429900 0.902877i \(-0.641451\pi\)
−0.429900 + 0.902877i \(0.641451\pi\)
\(500\) 0 0
\(501\) −876231. −0.155964
\(502\) − 3.59095e6i − 0.635990i
\(503\) − 1.08395e7i − 1.91024i −0.296220 0.955120i \(-0.595726\pi\)
0.296220 0.955120i \(-0.404274\pi\)
\(504\) 896896. 0.157277
\(505\) 0 0
\(506\) 2.73060e6 0.474113
\(507\) − 7.20388e6i − 1.24465i
\(508\) 4.01466e6i 0.690222i
\(509\) 7.64177e6 1.30737 0.653687 0.756765i \(-0.273221\pi\)
0.653687 + 0.756765i \(0.273221\pi\)
\(510\) 0 0
\(511\) −3.94362e6 −0.668102
\(512\) 262144.i 0.0441942i
\(513\) 2.01558e6i 0.338148i
\(514\) −2.37871e6 −0.397131
\(515\) 0 0
\(516\) −221536. −0.0366286
\(517\) 1.28555e7i 2.11525i
\(518\) 1.09799e6i 0.179794i
\(519\) −1.24532e7 −2.02937
\(520\) 0 0
\(521\) 6.44011e6 1.03944 0.519719 0.854337i \(-0.326037\pi\)
0.519719 + 0.854337i \(0.326037\pi\)
\(522\) − 5.72114e6i − 0.918981i
\(523\) − 4.77929e6i − 0.764028i −0.924157 0.382014i \(-0.875231\pi\)
0.924157 0.382014i \(-0.124769\pi\)
\(524\) 833952. 0.132682
\(525\) 0 0
\(526\) −4.11348e6 −0.648254
\(527\) 8.49274e6i 1.33205i
\(528\) − 3.26784e6i − 0.510124i
\(529\) 4.92344e6 0.764944
\(530\) 0 0
\(531\) 1.63706e6 0.251959
\(532\) 1.59779e6i 0.244760i
\(533\) 584184.i 0.0890700i
\(534\) 6.59419e6 1.00071
\(535\) 0 0
\(536\) −4.23066e6 −0.636057
\(537\) 3.82232e6i 0.571994i
\(538\) 4.97561e6i 0.741123i
\(539\) −1.33256e6 −0.197566
\(540\) 0 0
\(541\) −2.05678e6 −0.302130 −0.151065 0.988524i \(-0.548270\pi\)
−0.151065 + 0.988524i \(0.548270\pi\)
\(542\) 2.95050e6i 0.431417i
\(543\) 4.53836e6i 0.660540i
\(544\) −1.52678e6 −0.221198
\(545\) 0 0
\(546\) −1.08643e6 −0.155962
\(547\) 1.20189e7i 1.71750i 0.512393 + 0.858751i \(0.328759\pi\)
−0.512393 + 0.858751i \(0.671241\pi\)
\(548\) − 2.16749e6i − 0.308323i
\(549\) 1.03280e7 1.46247
\(550\) 0 0
\(551\) 1.01920e7 1.43015
\(552\) 1.81056e6i 0.252910i
\(553\) − 3.14320e6i − 0.437079i
\(554\) −8.80252e6 −1.21852
\(555\) 0 0
\(556\) −5.59178e6 −0.767119
\(557\) − 8.69942e6i − 1.18810i −0.804429 0.594049i \(-0.797528\pi\)
0.804429 0.594049i \(-0.202472\pi\)
\(558\) − 6.51622e6i − 0.885953i
\(559\) 145082. 0.0196374
\(560\) 0 0
\(561\) 1.90326e7 2.55324
\(562\) 695916.i 0.0929429i
\(563\) − 7.35942e6i − 0.978527i −0.872136 0.489263i \(-0.837266\pi\)
0.872136 0.489263i \(-0.162734\pi\)
\(564\) −8.52398e6 −1.12835
\(565\) 0 0
\(566\) 2.20421e6 0.289209
\(567\) 2.29080e6i 0.299247i
\(568\) − 1.02912e6i − 0.133843i
\(569\) 7.50029e6 0.971175 0.485588 0.874188i \(-0.338606\pi\)
0.485588 + 0.874188i \(0.338606\pi\)
\(570\) 0 0
\(571\) −2.22879e6 −0.286074 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(572\) 2.14008e6i 0.273489i
\(573\) 7.75608e6i 0.986861i
\(574\) −475104. −0.0601879
\(575\) 0 0
\(576\) 1.17146e6 0.147119
\(577\) 5.10946e6i 0.638903i 0.947603 + 0.319452i \(0.103499\pi\)
−0.947603 + 0.319452i \(0.896501\pi\)
\(578\) − 3.21290e6i − 0.400016i
\(579\) 5.99187e6 0.742790
\(580\) 0 0
\(581\) −5.20792e6 −0.640064
\(582\) − 1.38943e7i − 1.70031i
\(583\) − 1.40393e7i − 1.71070i
\(584\) −5.15085e6 −0.624952
\(585\) 0 0
\(586\) 6.70048e6 0.806049
\(587\) − 1.10646e7i − 1.32537i −0.748896 0.662687i \(-0.769416\pi\)
0.748896 0.662687i \(-0.230584\pi\)
\(588\) − 883568.i − 0.105389i
\(589\) 1.16084e7 1.37875
\(590\) 0 0
\(591\) 9.41188e6 1.10843
\(592\) 1.43411e6i 0.168182i
\(593\) 9.10043e6i 1.06274i 0.847141 + 0.531368i \(0.178322\pi\)
−0.847141 + 0.531368i \(0.821678\pi\)
\(594\) −2.19558e6 −0.255319
\(595\) 0 0
\(596\) 2.81731e6 0.324877
\(597\) 6.92254e6i 0.794931i
\(598\) − 1.18572e6i − 0.135590i
\(599\) 1.28615e7 1.46462 0.732309 0.680973i \(-0.238443\pi\)
0.732309 + 0.680973i \(0.238443\pi\)
\(600\) 0 0
\(601\) 1.58163e6 0.178615 0.0893074 0.996004i \(-0.471535\pi\)
0.0893074 + 0.996004i \(0.471535\pi\)
\(602\) 117992.i 0.0132697i
\(603\) 1.89057e7i 2.11739i
\(604\) −6.13333e6 −0.684075
\(605\) 0 0
\(606\) −5.25780e6 −0.581597
\(607\) 688297.i 0.0758236i 0.999281 + 0.0379118i \(0.0120706\pi\)
−0.999281 + 0.0379118i \(0.987929\pi\)
\(608\) 2.08691e6i 0.228952i
\(609\) −5.63613e6 −0.615797
\(610\) 0 0
\(611\) 5.58228e6 0.604935
\(612\) 6.82282e6i 0.736351i
\(613\) − 6.02150e6i − 0.647223i −0.946190 0.323611i \(-0.895103\pi\)
0.946190 0.323611i \(-0.104897\pi\)
\(614\) 9.32241e6 0.997947
\(615\) 0 0
\(616\) −1.74048e6 −0.184807
\(617\) − 3.36137e6i − 0.355471i −0.984078 0.177735i \(-0.943123\pi\)
0.984078 0.177735i \(-0.0568771\pi\)
\(618\) 1.06618e7i 1.12295i
\(619\) −1.31769e7 −1.38225 −0.691126 0.722734i \(-0.742885\pi\)
−0.691126 + 0.722734i \(0.742885\pi\)
\(620\) 0 0
\(621\) 1.21647e6 0.126582
\(622\) 2.82506e6i 0.292787i
\(623\) − 3.51212e6i − 0.362535i
\(624\) −1.41901e6 −0.145889
\(625\) 0 0
\(626\) 734260. 0.0748883
\(627\) − 2.60151e7i − 2.64275i
\(628\) 5.53462e6i 0.560001i
\(629\) −8.35258e6 −0.841771
\(630\) 0 0
\(631\) 1.26264e6 0.126243 0.0631213 0.998006i \(-0.479895\pi\)
0.0631213 + 0.998006i \(0.479895\pi\)
\(632\) − 4.10541e6i − 0.408850i
\(633\) 2.82021e7i 2.79752i
\(634\) 1.08266e7 1.06972
\(635\) 0 0
\(636\) 9.30893e6 0.912550
\(637\) 578641.i 0.0565016i
\(638\) 1.11022e7i 1.07984i
\(639\) −4.59888e6 −0.445554
\(640\) 0 0
\(641\) −1.58859e7 −1.52710 −0.763550 0.645749i \(-0.776545\pi\)
−0.763550 + 0.645749i \(0.776545\pi\)
\(642\) 1.26833e7i 1.21449i
\(643\) 1.80880e6i 0.172529i 0.996272 + 0.0862647i \(0.0274931\pi\)
−0.996272 + 0.0862647i \(0.972507\pi\)
\(644\) 964320. 0.0916234
\(645\) 0 0
\(646\) −1.21546e7 −1.14594
\(647\) − 95712.0i − 0.00898888i −0.999990 0.00449444i \(-0.998569\pi\)
0.999990 0.00449444i \(-0.00143063\pi\)
\(648\) 2.99206e6i 0.279920i
\(649\) −3.17682e6 −0.296061
\(650\) 0 0
\(651\) −6.41939e6 −0.593665
\(652\) − 1.46538e6i − 0.134999i
\(653\) 3.06736e6i 0.281502i 0.990045 + 0.140751i \(0.0449518\pi\)
−0.990045 + 0.140751i \(0.955048\pi\)
\(654\) −8.13252e6 −0.743500
\(655\) 0 0
\(656\) −620544. −0.0563006
\(657\) 2.30179e7i 2.08042i
\(658\) 4.53995e6i 0.408777i
\(659\) 1.32961e6 0.119264 0.0596321 0.998220i \(-0.481007\pi\)
0.0596321 + 0.998220i \(0.481007\pi\)
\(660\) 0 0
\(661\) −7.37188e6 −0.656258 −0.328129 0.944633i \(-0.606418\pi\)
−0.328129 + 0.944633i \(0.606418\pi\)
\(662\) − 8.57349e6i − 0.760348i
\(663\) − 8.26461e6i − 0.730195i
\(664\) −6.80218e6 −0.598725
\(665\) 0 0
\(666\) 6.40869e6 0.559865
\(667\) − 6.15123e6i − 0.535362i
\(668\) 609552.i 0.0528530i
\(669\) 1.42889e7 1.23434
\(670\) 0 0
\(671\) −2.00422e7 −1.71846
\(672\) − 1.15405e6i − 0.0985827i
\(673\) 8.48476e6i 0.722108i 0.932545 + 0.361054i \(0.117583\pi\)
−0.932545 + 0.361054i \(0.882417\pi\)
\(674\) 2.62138e6 0.222270
\(675\) 0 0
\(676\) −5.01139e6 −0.421785
\(677\) 4.35891e6i 0.365516i 0.983158 + 0.182758i \(0.0585025\pi\)
−0.983158 + 0.182758i \(0.941497\pi\)
\(678\) 1.89110e7i 1.57994i
\(679\) −7.40022e6 −0.615985
\(680\) 0 0
\(681\) −2.98466e7 −2.46619
\(682\) 1.26451e7i 1.04103i
\(683\) − 1.58732e7i − 1.30200i −0.759077 0.651001i \(-0.774349\pi\)
0.759077 0.651001i \(-0.225651\pi\)
\(684\) 9.32589e6 0.762167
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) − 2.85807e6i − 0.231037i
\(688\) 154112.i 0.0124127i
\(689\) −6.09634e6 −0.489239
\(690\) 0 0
\(691\) −554956. −0.0442144 −0.0221072 0.999756i \(-0.507038\pi\)
−0.0221072 + 0.999756i \(0.507038\pi\)
\(692\) 8.66309e6i 0.687713i
\(693\) 7.77777e6i 0.615208i
\(694\) −1.68910e7 −1.33124
\(695\) 0 0
\(696\) −7.36147e6 −0.576025
\(697\) − 3.61418e6i − 0.281792i
\(698\) − 1.20684e7i − 0.937587i
\(699\) 2.50106e7 1.93611
\(700\) 0 0
\(701\) −7.74720e6 −0.595456 −0.297728 0.954651i \(-0.596229\pi\)
−0.297728 + 0.954651i \(0.596229\pi\)
\(702\) 953396.i 0.0730181i
\(703\) 1.14169e7i 0.871282i
\(704\) −2.27328e6 −0.172871
\(705\) 0 0
\(706\) −9.01031e6 −0.680343
\(707\) 2.80035e6i 0.210700i
\(708\) − 2.10643e6i − 0.157930i
\(709\) 1.89055e7 1.41245 0.706225 0.707987i \(-0.250397\pi\)
0.706225 + 0.707987i \(0.250397\pi\)
\(710\) 0 0
\(711\) −1.83460e7 −1.36103
\(712\) − 4.58726e6i − 0.339120i
\(713\) − 7.00608e6i − 0.516121i
\(714\) 6.72143e6 0.493419
\(715\) 0 0
\(716\) 2.65901e6 0.193837
\(717\) − 1.25495e7i − 0.911652i
\(718\) 7.35802e6i 0.532659i
\(719\) 1.83928e7 1.32686 0.663430 0.748238i \(-0.269100\pi\)
0.663430 + 0.748238i \(0.269100\pi\)
\(720\) 0 0
\(721\) 5.67856e6 0.406818
\(722\) 6.70938e6i 0.479004i
\(723\) − 1.86601e7i − 1.32761i
\(724\) 3.15712e6 0.223844
\(725\) 0 0
\(726\) 1.35216e7 0.952109
\(727\) 1.34259e7i 0.942123i 0.882100 + 0.471061i \(0.156129\pi\)
−0.882100 + 0.471061i \(0.843871\pi\)
\(728\) 755776.i 0.0528524i
\(729\) 1.88983e7 1.31706
\(730\) 0 0
\(731\) −897582. −0.0621270
\(732\) − 1.32892e7i − 0.916688i
\(733\) 1.08473e7i 0.745697i 0.927892 + 0.372848i \(0.121619\pi\)
−0.927892 + 0.372848i \(0.878381\pi\)
\(734\) −6.75329e6 −0.462674
\(735\) 0 0
\(736\) 1.25952e6 0.0857059
\(737\) − 3.66877e7i − 2.48801i
\(738\) 2.77306e6i 0.187421i
\(739\) −2.64323e7 −1.78043 −0.890214 0.455542i \(-0.849445\pi\)
−0.890214 + 0.455542i \(0.849445\pi\)
\(740\) 0 0
\(741\) −1.12966e7 −0.755794
\(742\) − 4.95802e6i − 0.330596i
\(743\) 2.03120e7i 1.34984i 0.737893 + 0.674918i \(0.235821\pi\)
−0.737893 + 0.674918i \(0.764179\pi\)
\(744\) −8.38451e6 −0.555323
\(745\) 0 0
\(746\) −7.24846e6 −0.476869
\(747\) 3.03972e7i 1.99312i
\(748\) − 1.32401e7i − 0.865240i
\(749\) 6.75524e6 0.439983
\(750\) 0 0
\(751\) −3.95388e6 −0.255813 −0.127907 0.991786i \(-0.540826\pi\)
−0.127907 + 0.991786i \(0.540826\pi\)
\(752\) 5.92973e6i 0.382376i
\(753\) 2.06480e7i 1.32706i
\(754\) 4.82096e6 0.308820
\(755\) 0 0
\(756\) −775376. −0.0493410
\(757\) 2.62165e7i 1.66278i 0.555688 + 0.831391i \(0.312455\pi\)
−0.555688 + 0.831391i \(0.687545\pi\)
\(758\) 1.90683e7i 1.20542i
\(759\) −1.57010e7 −0.989285
\(760\) 0 0
\(761\) 1.14329e7 0.715638 0.357819 0.933791i \(-0.383521\pi\)
0.357819 + 0.933791i \(0.383521\pi\)
\(762\) − 2.30843e7i − 1.44022i
\(763\) 4.33145e6i 0.269353i
\(764\) 5.39554e6 0.334427
\(765\) 0 0
\(766\) 279984. 0.0172410
\(767\) 1.37948e6i 0.0846697i
\(768\) − 1.50733e6i − 0.0922157i
\(769\) −2.37076e7 −1.44568 −0.722840 0.691015i \(-0.757164\pi\)
−0.722840 + 0.691015i \(0.757164\pi\)
\(770\) 0 0
\(771\) 1.36776e7 0.828655
\(772\) − 4.16826e6i − 0.251716i
\(773\) − 1.24180e7i − 0.747484i −0.927533 0.373742i \(-0.878075\pi\)
0.927533 0.373742i \(-0.121925\pi\)
\(774\) 688688. 0.0413209
\(775\) 0 0
\(776\) −9.66560e6 −0.576202
\(777\) − 6.31345e6i − 0.375158i
\(778\) − 1.59558e7i − 0.945083i
\(779\) −4.94011e6 −0.291671
\(780\) 0 0
\(781\) 8.92440e6 0.523542
\(782\) 7.33572e6i 0.428969i
\(783\) 4.94599e6i 0.288303i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) −4.79522e6 −0.276855
\(787\) − 3.06553e7i − 1.76428i −0.470984 0.882142i \(-0.656101\pi\)
0.470984 0.882142i \(-0.343899\pi\)
\(788\) − 6.54739e6i − 0.375624i
\(789\) 2.36525e7 1.35265
\(790\) 0 0
\(791\) 1.00721e7 0.572375
\(792\) 1.01587e7i 0.575474i
\(793\) 8.70299e6i 0.491457i
\(794\) −1.22361e7 −0.688800
\(795\) 0 0
\(796\) 4.81568e6 0.269386
\(797\) 1.51870e7i 0.846886i 0.905923 + 0.423443i \(0.139179\pi\)
−0.905923 + 0.423443i \(0.860821\pi\)
\(798\) − 9.18730e6i − 0.510718i
\(799\) −3.45360e7 −1.91384
\(800\) 0 0
\(801\) −2.04993e7 −1.12891
\(802\) 1.72317e7i 0.946005i
\(803\) − 4.46675e7i − 2.44457i
\(804\) 2.43263e7 1.32720
\(805\) 0 0
\(806\) 5.49094e6 0.297721
\(807\) − 2.86097e7i − 1.54643i
\(808\) 3.65760e6i 0.197091i
\(809\) −539721. −0.0289933 −0.0144967 0.999895i \(-0.504615\pi\)
−0.0144967 + 0.999895i \(0.504615\pi\)
\(810\) 0 0
\(811\) 1.39772e7 0.746221 0.373111 0.927787i \(-0.378291\pi\)
0.373111 + 0.927787i \(0.378291\pi\)
\(812\) 3.92078e6i 0.208681i
\(813\) − 1.69654e7i − 0.900195i
\(814\) −1.24364e7 −0.657862
\(815\) 0 0
\(816\) 8.77901e6 0.461551
\(817\) 1.22688e6i 0.0643051i
\(818\) 956824.i 0.0499976i
\(819\) 3.37737e6 0.175942
\(820\) 0 0
\(821\) −1.78137e7 −0.922350 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(822\) 1.24631e7i 0.643347i
\(823\) 1.91010e7i 0.983005i 0.870876 + 0.491502i \(0.163552\pi\)
−0.870876 + 0.491502i \(0.836448\pi\)
\(824\) 7.41690e6 0.380543
\(825\) 0 0
\(826\) −1.12190e6 −0.0572144
\(827\) − 3.19225e6i − 0.162305i −0.996702 0.0811526i \(-0.974140\pi\)
0.996702 0.0811526i \(-0.0258601\pi\)
\(828\) − 5.62848e6i − 0.285309i
\(829\) −8.56842e6 −0.433026 −0.216513 0.976280i \(-0.569468\pi\)
−0.216513 + 0.976280i \(0.569468\pi\)
\(830\) 0 0
\(831\) 5.06145e7 2.54257
\(832\) 987136.i 0.0494389i
\(833\) − 3.57989e6i − 0.178755i
\(834\) 3.21527e7 1.60067
\(835\) 0 0
\(836\) −1.80974e7 −0.895574
\(837\) 5.63334e6i 0.277941i
\(838\) − 1.85385e7i − 0.911935i
\(839\) −3.56751e7 −1.74969 −0.874843 0.484407i \(-0.839036\pi\)
−0.874843 + 0.484407i \(0.839036\pi\)
\(840\) 0 0
\(841\) 4.49885e6 0.219337
\(842\) − 8.40430e6i − 0.408528i
\(843\) − 4.00152e6i − 0.193935i
\(844\) 1.96189e7 0.948021
\(845\) 0 0
\(846\) 2.64985e7 1.27290
\(847\) − 7.20173e6i − 0.344928i
\(848\) − 6.47578e6i − 0.309245i
\(849\) −1.26742e7 −0.603465
\(850\) 0 0
\(851\) 6.89046e6 0.326155
\(852\) 5.91744e6i 0.279277i
\(853\) 3.06355e7i 1.44163i 0.693129 + 0.720814i \(0.256232\pi\)
−0.693129 + 0.720814i \(0.743768\pi\)
\(854\) −7.07795e6 −0.332095
\(855\) 0 0
\(856\) 8.82317e6 0.411567
\(857\) 4.46188e6i 0.207523i 0.994602 + 0.103761i \(0.0330879\pi\)
−0.994602 + 0.103761i \(0.966912\pi\)
\(858\) − 1.23055e7i − 0.570663i
\(859\) −2.63974e7 −1.22061 −0.610307 0.792165i \(-0.708954\pi\)
−0.610307 + 0.792165i \(0.708954\pi\)
\(860\) 0 0
\(861\) 2.73185e6 0.125588
\(862\) 6.61936e6i 0.303422i
\(863\) − 2.17530e7i − 0.994244i −0.867681 0.497122i \(-0.834390\pi\)
0.867681 0.497122i \(-0.165610\pi\)
\(864\) −1.01274e6 −0.0461543
\(865\) 0 0
\(866\) 7.36122e6 0.333546
\(867\) 1.84742e7i 0.834674i
\(868\) 4.46566e6i 0.201181i
\(869\) 3.56016e7 1.59926
\(870\) 0 0
\(871\) −1.59311e7 −0.711540
\(872\) 5.65741e6i 0.251957i
\(873\) 4.31932e7i 1.91814i
\(874\) 1.00270e7 0.444008
\(875\) 0 0
\(876\) 2.96174e7 1.30403
\(877\) 1.58383e7i 0.695361i 0.937613 + 0.347680i \(0.113031\pi\)
−0.937613 + 0.347680i \(0.886969\pi\)
\(878\) − 2.33474e7i − 1.02212i
\(879\) −3.85277e7 −1.68190
\(880\) 0 0
\(881\) 1.97427e7 0.856974 0.428487 0.903548i \(-0.359047\pi\)
0.428487 + 0.903548i \(0.359047\pi\)
\(882\) 2.74674e6i 0.118890i
\(883\) − 1.72899e7i − 0.746263i −0.927779 0.373131i \(-0.878284\pi\)
0.927779 0.373131i \(-0.121716\pi\)
\(884\) −5.74930e6 −0.247448
\(885\) 0 0
\(886\) −4.78817e6 −0.204920
\(887\) 4.44693e7i 1.89780i 0.315574 + 0.948901i \(0.397803\pi\)
−0.315574 + 0.948901i \(0.602197\pi\)
\(888\) − 8.24614e6i − 0.350928i
\(889\) −1.22949e7 −0.521759
\(890\) 0 0
\(891\) −2.59468e7 −1.09494
\(892\) − 9.94011e6i − 0.418292i
\(893\) 4.72062e7i 1.98094i
\(894\) −1.61995e7 −0.677890
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 6.81789e6i 0.282923i
\(898\) 1.37028e7i 0.567046i
\(899\) 2.84857e7 1.17551
\(900\) 0 0
\(901\) 3.77163e7 1.54781
\(902\) − 5.38128e6i − 0.220226i
\(903\) − 678454.i − 0.0276886i
\(904\) 1.31555e7 0.535408
\(905\) 0 0
\(906\) 3.52666e7 1.42739
\(907\) − 2.56887e6i − 0.103687i −0.998655 0.0518434i \(-0.983490\pi\)
0.998655 0.0518434i \(-0.0165097\pi\)
\(908\) 2.07628e7i 0.835742i
\(909\) 1.63449e7 0.656104
\(910\) 0 0
\(911\) 1.12692e7 0.449882 0.224941 0.974372i \(-0.427781\pi\)
0.224941 + 0.974372i \(0.427781\pi\)
\(912\) − 1.19997e7i − 0.477733i
\(913\) − 5.89876e7i − 2.34198i
\(914\) 2.11897e7 0.838994
\(915\) 0 0
\(916\) −1.98822e6 −0.0782937
\(917\) 2.55398e6i 0.100298i
\(918\) − 5.89840e6i − 0.231008i
\(919\) −3.18378e7 −1.24353 −0.621763 0.783205i \(-0.713583\pi\)
−0.621763 + 0.783205i \(0.713583\pi\)
\(920\) 0 0
\(921\) −5.36039e7 −2.08232
\(922\) 3.55092e7i 1.37567i
\(923\) − 3.87528e6i − 0.149727i
\(924\) 1.00078e7 0.385618
\(925\) 0 0
\(926\) 8.69901e6 0.333382
\(927\) − 3.31443e7i − 1.26680i
\(928\) 5.12102e6i 0.195203i
\(929\) −1.88558e7 −0.716813 −0.358407 0.933566i \(-0.616680\pi\)
−0.358407 + 0.933566i \(0.616680\pi\)
\(930\) 0 0
\(931\) −4.89324e6 −0.185021
\(932\) − 1.73987e7i − 0.656109i
\(933\) − 1.62441e7i − 0.610931i
\(934\) −1.51588e6 −0.0568586
\(935\) 0 0
\(936\) 4.41126e6 0.164579
\(937\) − 1.12946e7i − 0.420265i −0.977673 0.210132i \(-0.932610\pi\)
0.977673 0.210132i \(-0.0673895\pi\)
\(938\) − 1.29564e7i − 0.480814i
\(939\) −4.22200e6 −0.156262
\(940\) 0 0
\(941\) −2.91941e7 −1.07478 −0.537392 0.843333i \(-0.680590\pi\)
−0.537392 + 0.843333i \(0.680590\pi\)
\(942\) − 3.18241e7i − 1.16850i
\(943\) 2.98152e6i 0.109184i
\(944\) −1.46534e6 −0.0535192
\(945\) 0 0
\(946\) −1.33644e6 −0.0485536
\(947\) − 1.05892e7i − 0.383697i −0.981425 0.191848i \(-0.938552\pi\)
0.981425 0.191848i \(-0.0614482\pi\)
\(948\) 2.36061e7i 0.853107i
\(949\) −1.93962e7 −0.699118
\(950\) 0 0
\(951\) −6.22530e7 −2.23208
\(952\) − 4.67578e6i − 0.167210i
\(953\) − 3.90317e7i − 1.39215i −0.717970 0.696074i \(-0.754929\pi\)
0.717970 0.696074i \(-0.245071\pi\)
\(954\) −2.89386e7 −1.02945
\(955\) 0 0
\(956\) −8.73010e6 −0.308940
\(957\) − 6.38378e7i − 2.25319i
\(958\) − 7.53958e6i − 0.265420i
\(959\) 6.63793e6 0.233070
\(960\) 0 0
\(961\) 3.81526e6 0.133265
\(962\) 5.40033e6i 0.188141i
\(963\) − 3.94285e7i − 1.37008i
\(964\) −1.29810e7 −0.449898
\(965\) 0 0
\(966\) −5.54484e6 −0.191182
\(967\) 3.43395e7i 1.18094i 0.807059 + 0.590470i \(0.201058\pi\)
−0.807059 + 0.590470i \(0.798942\pi\)
\(968\) − 9.40634e6i − 0.322650i
\(969\) 6.98891e7 2.39111
\(970\) 0 0
\(971\) −1.81464e7 −0.617651 −0.308826 0.951119i \(-0.599936\pi\)
−0.308826 + 0.951119i \(0.599936\pi\)
\(972\) − 2.10496e7i − 0.714625i
\(973\) − 1.71248e7i − 0.579888i
\(974\) 1.47075e7 0.496756
\(975\) 0 0
\(976\) −9.24467e6 −0.310647
\(977\) 1.05223e7i 0.352675i 0.984330 + 0.176338i \(0.0564250\pi\)
−0.984330 + 0.176338i \(0.943575\pi\)
\(978\) 8.42591e6i 0.281689i
\(979\) 3.97802e7 1.32651
\(980\) 0 0
\(981\) 2.52815e7 0.838747
\(982\) 3.81606e7i 1.26281i
\(983\) − 7.91353e6i − 0.261208i −0.991435 0.130604i \(-0.958308\pi\)
0.991435 0.130604i \(-0.0416916\pi\)
\(984\) 3.56813e6 0.117477
\(985\) 0 0
\(986\) −2.98260e7 −0.977017
\(987\) − 2.61047e7i − 0.852954i
\(988\) 7.85853e6i 0.256123i
\(989\) 740460. 0.0240719
\(990\) 0 0
\(991\) 4.01556e7 1.29886 0.649429 0.760422i \(-0.275008\pi\)
0.649429 + 0.760422i \(0.275008\pi\)
\(992\) 5.83270e6i 0.188187i
\(993\) 4.92976e7i 1.58654i
\(994\) 3.15168e6 0.101176
\(995\) 0 0
\(996\) 3.91125e7 1.24930
\(997\) 4.93478e7i 1.57228i 0.618048 + 0.786140i \(0.287924\pi\)
−0.618048 + 0.786140i \(0.712076\pi\)
\(998\) − 1.91297e7i − 0.607970i
\(999\) −5.54038e6 −0.175641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.h.99.2 2
5.2 odd 4 70.6.a.a.1.1 1
5.3 odd 4 350.6.a.n.1.1 1
5.4 even 2 inner 350.6.c.h.99.1 2
15.2 even 4 630.6.a.j.1.1 1
20.7 even 4 560.6.a.i.1.1 1
35.27 even 4 490.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.a.1.1 1 5.2 odd 4
350.6.a.n.1.1 1 5.3 odd 4
350.6.c.h.99.1 2 5.4 even 2 inner
350.6.c.h.99.2 2 1.1 even 1 trivial
490.6.a.i.1.1 1 35.27 even 4
560.6.a.i.1.1 1 20.7 even 4
630.6.a.j.1.1 1 15.2 even 4