Properties

Label 350.6.c.g
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 i q^{2} + 9 i q^{3} - 16 q^{4} + 36 q^{6} - 49 i q^{7} + 64 i q^{8} + 162 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 4 i q^{2} + 9 i q^{3} - 16 q^{4} + 36 q^{6} - 49 i q^{7} + 64 i q^{8} + 162 q^{9} - 187 q^{11} - 144 i q^{12} - 627 i q^{13} - 196 q^{14} + 256 q^{16} + 1813 i q^{17} - 648 i q^{18} - 258 q^{19} + 441 q^{21} + 748 i q^{22} - 2970 i q^{23} - 576 q^{24} - 2508 q^{26} + 3645 i q^{27} + 784 i q^{28} - 1299 q^{29} + 1916 q^{31} - 1024 i q^{32} - 1683 i q^{33} + 7252 q^{34} - 2592 q^{36} + 6578 i q^{37} + 1032 i q^{38} + 5643 q^{39} + 6676 q^{41} - 1764 i q^{42} - 3178 i q^{43} + 2992 q^{44} - 11880 q^{46} - 22001 i q^{47} + 2304 i q^{48} - 2401 q^{49} - 16317 q^{51} + 10032 i q^{52} - 26168 i q^{53} + 14580 q^{54} + 3136 q^{56} - 2322 i q^{57} + 5196 i q^{58} - 3932 q^{59} - 48740 q^{61} - 7664 i q^{62} - 7938 i q^{63} - 4096 q^{64} - 6732 q^{66} - 44832 i q^{67} - 29008 i q^{68} + 26730 q^{69} + 63736 q^{71} + 10368 i q^{72} - 60470 i q^{73} + 26312 q^{74} + 4128 q^{76} + 9163 i q^{77} - 22572 i q^{78} + 43721 q^{79} + 6561 q^{81} - 26704 i q^{82} - 97276 i q^{83} - 7056 q^{84} - 12712 q^{86} - 11691 i q^{87} - 11968 i q^{88} - 45560 q^{89} - 30723 q^{91} + 47520 i q^{92} + 17244 i q^{93} - 88004 q^{94} + 9216 q^{96} - 57295 i q^{97} + 9604 i q^{98} - 30294 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 72 q^{6} + 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} + 72 q^{6} + 324 q^{9} - 374 q^{11} - 392 q^{14} + 512 q^{16} - 516 q^{19} + 882 q^{21} - 1152 q^{24} - 5016 q^{26} - 2598 q^{29} + 3832 q^{31} + 14504 q^{34} - 5184 q^{36} + 11286 q^{39} + 13352 q^{41} + 5984 q^{44} - 23760 q^{46} - 4802 q^{49} - 32634 q^{51} + 29160 q^{54} + 6272 q^{56} - 7864 q^{59} - 97480 q^{61} - 8192 q^{64} - 13464 q^{66} + 53460 q^{69} + 127472 q^{71} + 52624 q^{74} + 8256 q^{76} + 87442 q^{79} + 13122 q^{81} - 14112 q^{84} - 25424 q^{86} - 91120 q^{89} - 61446 q^{91} - 176008 q^{94} + 18432 q^{96} - 60588 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
4.00000i 9.00000i −16.0000 0 36.0000 49.0000i 64.0000i 162.000 0
99.2 4.00000i 9.00000i −16.0000 0 36.0000 49.0000i 64.0000i 162.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.g 2
5.b even 2 1 inner 350.6.c.g 2
5.c odd 4 1 70.6.a.b 1
5.c odd 4 1 350.6.a.l 1
15.e even 4 1 630.6.a.i 1
20.e even 4 1 560.6.a.e 1
35.f even 4 1 490.6.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.b 1 5.c odd 4 1
350.6.a.l 1 5.c odd 4 1
350.6.c.g 2 1.a even 1 1 trivial
350.6.c.g 2 5.b even 2 1 inner
490.6.a.g 1 35.f even 4 1
560.6.a.e 1 20.e even 4 1
630.6.a.i 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{2} + 81 \) Copy content Toggle raw display
\( T_{11} + 187 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2401 \) Copy content Toggle raw display
$11$ \( (T + 187)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 393129 \) Copy content Toggle raw display
$17$ \( T^{2} + 3286969 \) Copy content Toggle raw display
$19$ \( (T + 258)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8820900 \) Copy content Toggle raw display
$29$ \( (T + 1299)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1916)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 43270084 \) Copy content Toggle raw display
$41$ \( (T - 6676)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 10099684 \) Copy content Toggle raw display
$47$ \( T^{2} + 484044001 \) Copy content Toggle raw display
$53$ \( T^{2} + 684764224 \) Copy content Toggle raw display
$59$ \( (T + 3932)^{2} \) Copy content Toggle raw display
$61$ \( (T + 48740)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2009908224 \) Copy content Toggle raw display
$71$ \( (T - 63736)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 3656620900 \) Copy content Toggle raw display
$79$ \( (T - 43721)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 9462620176 \) Copy content Toggle raw display
$89$ \( (T + 45560)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 3282717025 \) Copy content Toggle raw display
show more
show less