Properties

Label 350.6.c.e.99.1
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.e.99.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +3.00000i q^{3} -16.0000 q^{4} +12.0000 q^{6} +49.0000i q^{7} +64.0000i q^{8} +234.000 q^{9} +O(q^{10})\) \(q-4.00000i q^{2} +3.00000i q^{3} -16.0000 q^{4} +12.0000 q^{6} +49.0000i q^{7} +64.0000i q^{8} +234.000 q^{9} +405.000 q^{11} -48.0000i q^{12} +391.000i q^{13} +196.000 q^{14} +256.000 q^{16} +999.000i q^{17} -936.000i q^{18} -2342.00 q^{19} -147.000 q^{21} -1620.00i q^{22} -2430.00i q^{23} -192.000 q^{24} +1564.00 q^{26} +1431.00i q^{27} -784.000i q^{28} -8259.00 q^{29} +4016.00 q^{31} -1024.00i q^{32} +1215.00i q^{33} +3996.00 q^{34} -3744.00 q^{36} -7042.00i q^{37} +9368.00i q^{38} -1173.00 q^{39} +3336.00 q^{41} +588.000i q^{42} +23518.0i q^{43} -6480.00 q^{44} -9720.00 q^{46} +10317.0i q^{47} +768.000i q^{48} -2401.00 q^{49} -2997.00 q^{51} -6256.00i q^{52} -3084.00i q^{53} +5724.00 q^{54} -3136.00 q^{56} -7026.00i q^{57} +33036.0i q^{58} +18816.0 q^{59} +21668.0 q^{61} -16064.0i q^{62} +11466.0i q^{63} -4096.00 q^{64} +4860.00 q^{66} +52124.0i q^{67} -15984.0i q^{68} +7290.00 q^{69} -28560.0 q^{71} +14976.0i q^{72} +70342.0i q^{73} -28168.0 q^{74} +37472.0 q^{76} +19845.0i q^{77} +4692.00i q^{78} -58823.0 q^{79} +52569.0 q^{81} -13344.0i q^{82} -756.000i q^{83} +2352.00 q^{84} +94072.0 q^{86} -24777.0i q^{87} +25920.0i q^{88} -135384. q^{89} -19159.0 q^{91} +38880.0i q^{92} +12048.0i q^{93} +41268.0 q^{94} +3072.00 q^{96} +110435. i q^{97} +9604.00i q^{98} +94770.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 24 q^{6} + 468 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} + 24 q^{6} + 468 q^{9} + 810 q^{11} + 392 q^{14} + 512 q^{16} - 4684 q^{19} - 294 q^{21} - 384 q^{24} + 3128 q^{26} - 16518 q^{29} + 8032 q^{31} + 7992 q^{34} - 7488 q^{36} - 2346 q^{39} + 6672 q^{41} - 12960 q^{44} - 19440 q^{46} - 4802 q^{49} - 5994 q^{51} + 11448 q^{54} - 6272 q^{56} + 37632 q^{59} + 43336 q^{61} - 8192 q^{64} + 9720 q^{66} + 14580 q^{69} - 57120 q^{71} - 56336 q^{74} + 74944 q^{76} - 117646 q^{79} + 105138 q^{81} + 4704 q^{84} + 188144 q^{86} - 270768 q^{89} - 38318 q^{91} + 82536 q^{94} + 6144 q^{96} + 189540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) 3.00000i 0.192450i 0.995360 + 0.0962250i \(0.0306768\pi\)
−0.995360 + 0.0962250i \(0.969323\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 12.0000 0.136083
\(7\) 49.0000i 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) 234.000 0.962963
\(10\) 0 0
\(11\) 405.000 1.00919 0.504595 0.863356i \(-0.331642\pi\)
0.504595 + 0.863356i \(0.331642\pi\)
\(12\) − 48.0000i − 0.0962250i
\(13\) 391.000i 0.641680i 0.947133 + 0.320840i \(0.103965\pi\)
−0.947133 + 0.320840i \(0.896035\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 999.000i 0.838384i 0.907898 + 0.419192i \(0.137687\pi\)
−0.907898 + 0.419192i \(0.862313\pi\)
\(18\) − 936.000i − 0.680918i
\(19\) −2342.00 −1.48834 −0.744171 0.667989i \(-0.767155\pi\)
−0.744171 + 0.667989i \(0.767155\pi\)
\(20\) 0 0
\(21\) −147.000 −0.0727393
\(22\) − 1620.00i − 0.713606i
\(23\) − 2430.00i − 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(24\) −192.000 −0.0680414
\(25\) 0 0
\(26\) 1564.00 0.453736
\(27\) 1431.00i 0.377772i
\(28\) − 784.000i − 0.188982i
\(29\) −8259.00 −1.82361 −0.911806 0.410621i \(-0.865312\pi\)
−0.911806 + 0.410621i \(0.865312\pi\)
\(30\) 0 0
\(31\) 4016.00 0.750567 0.375284 0.926910i \(-0.377545\pi\)
0.375284 + 0.926910i \(0.377545\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 1215.00i 0.194219i
\(34\) 3996.00 0.592827
\(35\) 0 0
\(36\) −3744.00 −0.481481
\(37\) − 7042.00i − 0.845652i −0.906211 0.422826i \(-0.861038\pi\)
0.906211 0.422826i \(-0.138962\pi\)
\(38\) 9368.00i 1.05242i
\(39\) −1173.00 −0.123491
\(40\) 0 0
\(41\) 3336.00 0.309932 0.154966 0.987920i \(-0.450473\pi\)
0.154966 + 0.987920i \(0.450473\pi\)
\(42\) 588.000i 0.0514344i
\(43\) 23518.0i 1.93968i 0.243750 + 0.969838i \(0.421622\pi\)
−0.243750 + 0.969838i \(0.578378\pi\)
\(44\) −6480.00 −0.504595
\(45\) 0 0
\(46\) −9720.00 −0.677285
\(47\) 10317.0i 0.681254i 0.940199 + 0.340627i \(0.110639\pi\)
−0.940199 + 0.340627i \(0.889361\pi\)
\(48\) 768.000i 0.0481125i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −2997.00 −0.161347
\(52\) − 6256.00i − 0.320840i
\(53\) − 3084.00i − 0.150808i −0.997153 0.0754041i \(-0.975975\pi\)
0.997153 0.0754041i \(-0.0240247\pi\)
\(54\) 5724.00 0.267125
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) − 7026.00i − 0.286432i
\(58\) 33036.0i 1.28949i
\(59\) 18816.0 0.703716 0.351858 0.936053i \(-0.385550\pi\)
0.351858 + 0.936053i \(0.385550\pi\)
\(60\) 0 0
\(61\) 21668.0 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(62\) − 16064.0i − 0.530731i
\(63\) 11466.0i 0.363966i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 4860.00 0.137333
\(67\) 52124.0i 1.41857i 0.704922 + 0.709285i \(0.250982\pi\)
−0.704922 + 0.709285i \(0.749018\pi\)
\(68\) − 15984.0i − 0.419192i
\(69\) 7290.00 0.184334
\(70\) 0 0
\(71\) −28560.0 −0.672376 −0.336188 0.941795i \(-0.609138\pi\)
−0.336188 + 0.941795i \(0.609138\pi\)
\(72\) 14976.0i 0.340459i
\(73\) 70342.0i 1.54493i 0.635060 + 0.772463i \(0.280975\pi\)
−0.635060 + 0.772463i \(0.719025\pi\)
\(74\) −28168.0 −0.597966
\(75\) 0 0
\(76\) 37472.0 0.744171
\(77\) 19845.0i 0.381438i
\(78\) 4692.00i 0.0873216i
\(79\) −58823.0 −1.06042 −0.530212 0.847865i \(-0.677888\pi\)
−0.530212 + 0.847865i \(0.677888\pi\)
\(80\) 0 0
\(81\) 52569.0 0.890261
\(82\) − 13344.0i − 0.219155i
\(83\) − 756.000i − 0.0120455i −0.999982 0.00602277i \(-0.998083\pi\)
0.999982 0.00602277i \(-0.00191712\pi\)
\(84\) 2352.00 0.0363696
\(85\) 0 0
\(86\) 94072.0 1.37156
\(87\) − 24777.0i − 0.350954i
\(88\) 25920.0i 0.356803i
\(89\) −135384. −1.81173 −0.905863 0.423572i \(-0.860776\pi\)
−0.905863 + 0.423572i \(0.860776\pi\)
\(90\) 0 0
\(91\) −19159.0 −0.242532
\(92\) 38880.0i 0.478913i
\(93\) 12048.0i 0.144447i
\(94\) 41268.0 0.481719
\(95\) 0 0
\(96\) 3072.00 0.0340207
\(97\) 110435.i 1.19173i 0.803085 + 0.595864i \(0.203190\pi\)
−0.803085 + 0.595864i \(0.796810\pi\)
\(98\) 9604.00i 0.101015i
\(99\) 94770.0 0.971813
\(100\) 0 0
\(101\) 33450.0 0.326282 0.163141 0.986603i \(-0.447838\pi\)
0.163141 + 0.986603i \(0.447838\pi\)
\(102\) 11988.0i 0.114090i
\(103\) 110311.i 1.02453i 0.858827 + 0.512266i \(0.171194\pi\)
−0.858827 + 0.512266i \(0.828806\pi\)
\(104\) −25024.0 −0.226868
\(105\) 0 0
\(106\) −12336.0 −0.106637
\(107\) 35358.0i 0.298558i 0.988795 + 0.149279i \(0.0476952\pi\)
−0.988795 + 0.149279i \(0.952305\pi\)
\(108\) − 22896.0i − 0.188886i
\(109\) 151183. 1.21881 0.609406 0.792858i \(-0.291408\pi\)
0.609406 + 0.792858i \(0.291408\pi\)
\(110\) 0 0
\(111\) 21126.0 0.162746
\(112\) 12544.0i 0.0944911i
\(113\) 133686.i 0.984895i 0.870342 + 0.492447i \(0.163898\pi\)
−0.870342 + 0.492447i \(0.836102\pi\)
\(114\) −28104.0 −0.202538
\(115\) 0 0
\(116\) 132144. 0.911806
\(117\) 91494.0i 0.617914i
\(118\) − 75264.0i − 0.497602i
\(119\) −48951.0 −0.316880
\(120\) 0 0
\(121\) 2974.00 0.0184662
\(122\) − 86672.0i − 0.527205i
\(123\) 10008.0i 0.0596464i
\(124\) −64256.0 −0.375284
\(125\) 0 0
\(126\) 45864.0 0.257363
\(127\) − 283984.i − 1.56237i −0.624298 0.781186i \(-0.714615\pi\)
0.624298 0.781186i \(-0.285385\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −70554.0 −0.373291
\(130\) 0 0
\(131\) 261438. 1.33104 0.665519 0.746381i \(-0.268210\pi\)
0.665519 + 0.746381i \(0.268210\pi\)
\(132\) − 19440.0i − 0.0971094i
\(133\) − 114758.i − 0.562541i
\(134\) 208496. 1.00308
\(135\) 0 0
\(136\) −63936.0 −0.296414
\(137\) 39672.0i 0.180585i 0.995915 + 0.0902927i \(0.0287803\pi\)
−0.995915 + 0.0902927i \(0.971220\pi\)
\(138\) − 29160.0i − 0.130344i
\(139\) 182626. 0.801725 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(140\) 0 0
\(141\) −30951.0 −0.131107
\(142\) 114240.i 0.475442i
\(143\) 158355.i 0.647577i
\(144\) 59904.0 0.240741
\(145\) 0 0
\(146\) 281368. 1.09243
\(147\) − 7203.00i − 0.0274929i
\(148\) 112672.i 0.422826i
\(149\) 12078.0 0.0445686 0.0222843 0.999752i \(-0.492906\pi\)
0.0222843 + 0.999752i \(0.492906\pi\)
\(150\) 0 0
\(151\) −208417. −0.743859 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(152\) − 149888.i − 0.526209i
\(153\) 233766.i 0.807333i
\(154\) 79380.0 0.269718
\(155\) 0 0
\(156\) 18768.0 0.0617457
\(157\) 364094.i 1.17887i 0.807817 + 0.589433i \(0.200649\pi\)
−0.807817 + 0.589433i \(0.799351\pi\)
\(158\) 235292.i 0.749833i
\(159\) 9252.00 0.0290230
\(160\) 0 0
\(161\) 119070. 0.362024
\(162\) − 210276.i − 0.629509i
\(163\) − 626.000i − 0.00184546i −1.00000 0.000922731i \(-0.999706\pi\)
1.00000 0.000922731i \(-0.000293715\pi\)
\(164\) −53376.0 −0.154966
\(165\) 0 0
\(166\) −3024.00 −0.00851749
\(167\) 445617.i 1.23643i 0.786008 + 0.618216i \(0.212144\pi\)
−0.786008 + 0.618216i \(0.787856\pi\)
\(168\) − 9408.00i − 0.0257172i
\(169\) 218412. 0.588247
\(170\) 0 0
\(171\) −548028. −1.43322
\(172\) − 376288.i − 0.969838i
\(173\) − 643467.i − 1.63460i −0.576214 0.817299i \(-0.695470\pi\)
0.576214 0.817299i \(-0.304530\pi\)
\(174\) −99108.0 −0.248162
\(175\) 0 0
\(176\) 103680. 0.252298
\(177\) 56448.0i 0.135430i
\(178\) 541536.i 1.28108i
\(179\) −245148. −0.571868 −0.285934 0.958249i \(-0.592304\pi\)
−0.285934 + 0.958249i \(0.592304\pi\)
\(180\) 0 0
\(181\) 686180. 1.55683 0.778416 0.627749i \(-0.216024\pi\)
0.778416 + 0.627749i \(0.216024\pi\)
\(182\) 76636.0i 0.171496i
\(183\) 65004.0i 0.143487i
\(184\) 155520. 0.338643
\(185\) 0 0
\(186\) 48192.0 0.102139
\(187\) 404595.i 0.846090i
\(188\) − 165072.i − 0.340627i
\(189\) −70119.0 −0.142785
\(190\) 0 0
\(191\) −527031. −1.04533 −0.522664 0.852539i \(-0.675062\pi\)
−0.522664 + 0.852539i \(0.675062\pi\)
\(192\) − 12288.0i − 0.0240563i
\(193\) − 143216.i − 0.276757i −0.990379 0.138378i \(-0.955811\pi\)
0.990379 0.138378i \(-0.0441890\pi\)
\(194\) 441740. 0.842679
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 348468.i 0.639731i 0.947463 + 0.319865i \(0.103638\pi\)
−0.947463 + 0.319865i \(0.896362\pi\)
\(198\) − 379080.i − 0.687176i
\(199\) −754520. −1.35064 −0.675318 0.737527i \(-0.735993\pi\)
−0.675318 + 0.737527i \(0.735993\pi\)
\(200\) 0 0
\(201\) −156372. −0.273004
\(202\) − 133800.i − 0.230716i
\(203\) − 404691.i − 0.689261i
\(204\) 47952.0 0.0806736
\(205\) 0 0
\(206\) 441244. 0.724454
\(207\) − 568620.i − 0.922351i
\(208\) 100096.i 0.160420i
\(209\) −948510. −1.50202
\(210\) 0 0
\(211\) −590749. −0.913475 −0.456738 0.889601i \(-0.650982\pi\)
−0.456738 + 0.889601i \(0.650982\pi\)
\(212\) 49344.0i 0.0754041i
\(213\) − 85680.0i − 0.129399i
\(214\) 141432. 0.211112
\(215\) 0 0
\(216\) −91584.0 −0.133563
\(217\) 196784.i 0.283688i
\(218\) − 604732.i − 0.861830i
\(219\) −211026. −0.297321
\(220\) 0 0
\(221\) −390609. −0.537974
\(222\) − 84504.0i − 0.115079i
\(223\) 396103.i 0.533391i 0.963781 + 0.266696i \(0.0859319\pi\)
−0.963781 + 0.266696i \(0.914068\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 534744. 0.696426
\(227\) 9537.00i 0.0122842i 0.999981 + 0.00614210i \(0.00195510\pi\)
−0.999981 + 0.00614210i \(0.998045\pi\)
\(228\) 112416.i 0.143216i
\(229\) −705056. −0.888454 −0.444227 0.895914i \(-0.646522\pi\)
−0.444227 + 0.895914i \(0.646522\pi\)
\(230\) 0 0
\(231\) −59535.0 −0.0734078
\(232\) − 528576.i − 0.644744i
\(233\) − 534216.i − 0.644655i −0.946628 0.322327i \(-0.895535\pi\)
0.946628 0.322327i \(-0.104465\pi\)
\(234\) 365976. 0.436931
\(235\) 0 0
\(236\) −301056. −0.351858
\(237\) − 176469.i − 0.204079i
\(238\) 195804.i 0.224068i
\(239\) 901221. 1.02056 0.510278 0.860010i \(-0.329543\pi\)
0.510278 + 0.860010i \(0.329543\pi\)
\(240\) 0 0
\(241\) −952390. −1.05626 −0.528132 0.849162i \(-0.677107\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(242\) − 11896.0i − 0.0130576i
\(243\) 505440.i 0.549103i
\(244\) −346688. −0.372790
\(245\) 0 0
\(246\) 40032.0 0.0421764
\(247\) − 915722.i − 0.955039i
\(248\) 257024.i 0.265366i
\(249\) 2268.00 0.00231817
\(250\) 0 0
\(251\) −1.10024e6 −1.10231 −0.551153 0.834404i \(-0.685812\pi\)
−0.551153 + 0.834404i \(0.685812\pi\)
\(252\) − 183456.i − 0.181983i
\(253\) − 984150.i − 0.966629i
\(254\) −1.13594e6 −1.10476
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 1.08230e6i − 1.02215i −0.859537 0.511074i \(-0.829248\pi\)
0.859537 0.511074i \(-0.170752\pi\)
\(258\) 282216.i 0.263957i
\(259\) 345058. 0.319626
\(260\) 0 0
\(261\) −1.93261e6 −1.75607
\(262\) − 1.04575e6i − 0.941186i
\(263\) − 82950.0i − 0.0739481i −0.999316 0.0369740i \(-0.988228\pi\)
0.999316 0.0369740i \(-0.0117719\pi\)
\(264\) −77760.0 −0.0686667
\(265\) 0 0
\(266\) −459032. −0.397776
\(267\) − 406152.i − 0.348667i
\(268\) − 833984.i − 0.709285i
\(269\) 633822. 0.534056 0.267028 0.963689i \(-0.413958\pi\)
0.267028 + 0.963689i \(0.413958\pi\)
\(270\) 0 0
\(271\) −278956. −0.230734 −0.115367 0.993323i \(-0.536804\pi\)
−0.115367 + 0.993323i \(0.536804\pi\)
\(272\) 255744.i 0.209596i
\(273\) − 57477.0i − 0.0466753i
\(274\) 158688. 0.127693
\(275\) 0 0
\(276\) −116640. −0.0921669
\(277\) 2.17523e6i 1.70336i 0.524064 + 0.851679i \(0.324415\pi\)
−0.524064 + 0.851679i \(0.675585\pi\)
\(278\) − 730504.i − 0.566905i
\(279\) 939744. 0.722768
\(280\) 0 0
\(281\) −692901. −0.523486 −0.261743 0.965138i \(-0.584297\pi\)
−0.261743 + 0.965138i \(0.584297\pi\)
\(282\) 123804.i 0.0927069i
\(283\) − 1.04021e6i − 0.772065i −0.922485 0.386032i \(-0.873845\pi\)
0.922485 0.386032i \(-0.126155\pi\)
\(284\) 456960. 0.336188
\(285\) 0 0
\(286\) 633420. 0.457906
\(287\) 163464.i 0.117143i
\(288\) − 239616.i − 0.170229i
\(289\) 421856. 0.297112
\(290\) 0 0
\(291\) −331305. −0.229348
\(292\) − 1.12547e6i − 0.772463i
\(293\) 1.08565e6i 0.738789i 0.929273 + 0.369394i \(0.120435\pi\)
−0.929273 + 0.369394i \(0.879565\pi\)
\(294\) −28812.0 −0.0194404
\(295\) 0 0
\(296\) 450688. 0.298983
\(297\) 579555.i 0.381244i
\(298\) − 48312.0i − 0.0315148i
\(299\) 950130. 0.614618
\(300\) 0 0
\(301\) −1.15238e6 −0.733129
\(302\) 833668.i 0.525988i
\(303\) 100350.i 0.0627929i
\(304\) −599552. −0.372086
\(305\) 0 0
\(306\) 935064. 0.570871
\(307\) 1463.00i 0 0.000885928i 1.00000 0.000442964i \(0.000141000\pi\)
−1.00000 0.000442964i \(0.999859\pi\)
\(308\) − 317520.i − 0.190719i
\(309\) −330933. −0.197171
\(310\) 0 0
\(311\) 3.11977e6 1.82903 0.914515 0.404551i \(-0.132572\pi\)
0.914515 + 0.404551i \(0.132572\pi\)
\(312\) − 75072.0i − 0.0436608i
\(313\) − 831425.i − 0.479692i −0.970811 0.239846i \(-0.922903\pi\)
0.970811 0.239846i \(-0.0770969\pi\)
\(314\) 1.45638e6 0.833584
\(315\) 0 0
\(316\) 941168. 0.530212
\(317\) − 1.25851e6i − 0.703408i −0.936111 0.351704i \(-0.885602\pi\)
0.936111 0.351704i \(-0.114398\pi\)
\(318\) − 37008.0i − 0.0205224i
\(319\) −3.34489e6 −1.84037
\(320\) 0 0
\(321\) −106074. −0.0574575
\(322\) − 476280.i − 0.255990i
\(323\) − 2.33966e6i − 1.24780i
\(324\) −841104. −0.445130
\(325\) 0 0
\(326\) −2504.00 −0.00130494
\(327\) 453549.i 0.234560i
\(328\) 213504.i 0.109578i
\(329\) −505533. −0.257490
\(330\) 0 0
\(331\) −2.30465e6 −1.15621 −0.578103 0.815964i \(-0.696207\pi\)
−0.578103 + 0.815964i \(0.696207\pi\)
\(332\) 12096.0i 0.00602277i
\(333\) − 1.64783e6i − 0.814332i
\(334\) 1.78247e6 0.874290
\(335\) 0 0
\(336\) −37632.0 −0.0181848
\(337\) 769166.i 0.368931i 0.982839 + 0.184466i \(0.0590554\pi\)
−0.982839 + 0.184466i \(0.940945\pi\)
\(338\) − 873648.i − 0.415953i
\(339\) −401058. −0.189543
\(340\) 0 0
\(341\) 1.62648e6 0.757465
\(342\) 2.19211e6i 1.01344i
\(343\) − 117649.i − 0.0539949i
\(344\) −1.50515e6 −0.685779
\(345\) 0 0
\(346\) −2.57387e6 −1.15584
\(347\) 382074.i 0.170343i 0.996366 + 0.0851714i \(0.0271438\pi\)
−0.996366 + 0.0851714i \(0.972856\pi\)
\(348\) 396432.i 0.175477i
\(349\) 3.88710e6 1.70829 0.854146 0.520034i \(-0.174081\pi\)
0.854146 + 0.520034i \(0.174081\pi\)
\(350\) 0 0
\(351\) −559521. −0.242409
\(352\) − 414720.i − 0.178401i
\(353\) 366453.i 0.156524i 0.996933 + 0.0782621i \(0.0249371\pi\)
−0.996933 + 0.0782621i \(0.975063\pi\)
\(354\) 225792. 0.0957636
\(355\) 0 0
\(356\) 2.16614e6 0.905863
\(357\) − 146853.i − 0.0609835i
\(358\) 980592.i 0.404372i
\(359\) 3.14858e6 1.28937 0.644687 0.764446i \(-0.276988\pi\)
0.644687 + 0.764446i \(0.276988\pi\)
\(360\) 0 0
\(361\) 3.00887e6 1.21516
\(362\) − 2.74472e6i − 1.10085i
\(363\) 8922.00i 0.00355382i
\(364\) 306544. 0.121266
\(365\) 0 0
\(366\) 260016. 0.101461
\(367\) 2.13740e6i 0.828362i 0.910195 + 0.414181i \(0.135932\pi\)
−0.910195 + 0.414181i \(0.864068\pi\)
\(368\) − 622080.i − 0.239457i
\(369\) 780624. 0.298453
\(370\) 0 0
\(371\) 151116. 0.0570001
\(372\) − 192768.i − 0.0722233i
\(373\) 205624.i 0.0765247i 0.999268 + 0.0382624i \(0.0121823\pi\)
−0.999268 + 0.0382624i \(0.987818\pi\)
\(374\) 1.61838e6 0.598276
\(375\) 0 0
\(376\) −660288. −0.240860
\(377\) − 3.22927e6i − 1.17018i
\(378\) 280476.i 0.100964i
\(379\) −3.50536e6 −1.25353 −0.626766 0.779208i \(-0.715622\pi\)
−0.626766 + 0.779208i \(0.715622\pi\)
\(380\) 0 0
\(381\) 851952. 0.300679
\(382\) 2.10812e6i 0.739159i
\(383\) − 1.12904e6i − 0.393291i −0.980475 0.196645i \(-0.936995\pi\)
0.980475 0.196645i \(-0.0630048\pi\)
\(384\) −49152.0 −0.0170103
\(385\) 0 0
\(386\) −572864. −0.195697
\(387\) 5.50321e6i 1.86784i
\(388\) − 1.76696e6i − 0.595864i
\(389\) 1.20003e6 0.402084 0.201042 0.979583i \(-0.435567\pi\)
0.201042 + 0.979583i \(0.435567\pi\)
\(390\) 0 0
\(391\) 2.42757e6 0.803026
\(392\) − 153664.i − 0.0505076i
\(393\) 784314.i 0.256158i
\(394\) 1.39387e6 0.452358
\(395\) 0 0
\(396\) −1.51632e6 −0.485907
\(397\) − 4.41836e6i − 1.40697i −0.710709 0.703486i \(-0.751626\pi\)
0.710709 0.703486i \(-0.248374\pi\)
\(398\) 3.01808e6i 0.955043i
\(399\) 344274. 0.108261
\(400\) 0 0
\(401\) −3.13278e6 −0.972903 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(402\) 625488.i 0.193043i
\(403\) 1.57026e6i 0.481624i
\(404\) −535200. −0.163141
\(405\) 0 0
\(406\) −1.61876e6 −0.487381
\(407\) − 2.85201e6i − 0.853424i
\(408\) − 191808.i − 0.0570448i
\(409\) −861494. −0.254650 −0.127325 0.991861i \(-0.540639\pi\)
−0.127325 + 0.991861i \(0.540639\pi\)
\(410\) 0 0
\(411\) −119016. −0.0347537
\(412\) − 1.76498e6i − 0.512266i
\(413\) 921984.i 0.265980i
\(414\) −2.27448e6 −0.652201
\(415\) 0 0
\(416\) 400384. 0.113434
\(417\) 547878.i 0.154292i
\(418\) 3.79404e6i 1.06209i
\(419\) −4.65796e6 −1.29617 −0.648083 0.761570i \(-0.724429\pi\)
−0.648083 + 0.761570i \(0.724429\pi\)
\(420\) 0 0
\(421\) 6.99894e6 1.92454 0.962271 0.272093i \(-0.0877159\pi\)
0.962271 + 0.272093i \(0.0877159\pi\)
\(422\) 2.36300e6i 0.645925i
\(423\) 2.41418e6i 0.656022i
\(424\) 197376. 0.0533187
\(425\) 0 0
\(426\) −342720. −0.0914988
\(427\) 1.06173e6i 0.281803i
\(428\) − 565728.i − 0.149279i
\(429\) −475065. −0.124626
\(430\) 0 0
\(431\) −227091. −0.0588853 −0.0294426 0.999566i \(-0.509373\pi\)
−0.0294426 + 0.999566i \(0.509373\pi\)
\(432\) 366336.i 0.0944431i
\(433\) 7.09613e6i 1.81887i 0.415846 + 0.909435i \(0.363485\pi\)
−0.415846 + 0.909435i \(0.636515\pi\)
\(434\) 787136. 0.200597
\(435\) 0 0
\(436\) −2.41893e6 −0.609406
\(437\) 5.69106e6i 1.42557i
\(438\) 844104.i 0.210238i
\(439\) −593258. −0.146920 −0.0734602 0.997298i \(-0.523404\pi\)
−0.0734602 + 0.997298i \(0.523404\pi\)
\(440\) 0 0
\(441\) −561834. −0.137566
\(442\) 1.56244e6i 0.380405i
\(443\) 3.27692e6i 0.793334i 0.917963 + 0.396667i \(0.129833\pi\)
−0.917963 + 0.396667i \(0.870167\pi\)
\(444\) −338016. −0.0813729
\(445\) 0 0
\(446\) 1.58441e6 0.377165
\(447\) 36234.0i 0.00857724i
\(448\) − 200704.i − 0.0472456i
\(449\) 4.32930e6 1.01345 0.506724 0.862108i \(-0.330856\pi\)
0.506724 + 0.862108i \(0.330856\pi\)
\(450\) 0 0
\(451\) 1.35108e6 0.312781
\(452\) − 2.13898e6i − 0.492447i
\(453\) − 625251.i − 0.143156i
\(454\) 38148.0 0.00868625
\(455\) 0 0
\(456\) 449664. 0.101269
\(457\) − 4.91638e6i − 1.10117i −0.834779 0.550586i \(-0.814404\pi\)
0.834779 0.550586i \(-0.185596\pi\)
\(458\) 2.82022e6i 0.628232i
\(459\) −1.42957e6 −0.316718
\(460\) 0 0
\(461\) 7.02919e6 1.54047 0.770235 0.637761i \(-0.220139\pi\)
0.770235 + 0.637761i \(0.220139\pi\)
\(462\) 238140.i 0.0519072i
\(463\) − 2.88559e6i − 0.625579i −0.949823 0.312789i \(-0.898737\pi\)
0.949823 0.312789i \(-0.101263\pi\)
\(464\) −2.11430e6 −0.455903
\(465\) 0 0
\(466\) −2.13686e6 −0.455840
\(467\) − 6.00583e6i − 1.27433i −0.770729 0.637163i \(-0.780108\pi\)
0.770729 0.637163i \(-0.219892\pi\)
\(468\) − 1.46390e6i − 0.308957i
\(469\) −2.55408e6 −0.536169
\(470\) 0 0
\(471\) −1.09228e6 −0.226873
\(472\) 1.20422e6i 0.248801i
\(473\) 9.52479e6i 1.95750i
\(474\) −705876. −0.144305
\(475\) 0 0
\(476\) 783216. 0.158440
\(477\) − 721656.i − 0.145223i
\(478\) − 3.60488e6i − 0.721642i
\(479\) −941094. −0.187411 −0.0937053 0.995600i \(-0.529871\pi\)
−0.0937053 + 0.995600i \(0.529871\pi\)
\(480\) 0 0
\(481\) 2.75342e6 0.542638
\(482\) 3.80956e6i 0.746891i
\(483\) 357210.i 0.0696716i
\(484\) −47584.0 −0.00923310
\(485\) 0 0
\(486\) 2.02176e6 0.388275
\(487\) 1.91121e6i 0.365162i 0.983191 + 0.182581i \(0.0584451\pi\)
−0.983191 + 0.182581i \(0.941555\pi\)
\(488\) 1.38675e6i 0.263602i
\(489\) 1878.00 0.000355160 0
\(490\) 0 0
\(491\) 3.95490e6 0.740342 0.370171 0.928964i \(-0.379299\pi\)
0.370171 + 0.928964i \(0.379299\pi\)
\(492\) − 160128.i − 0.0298232i
\(493\) − 8.25074e6i − 1.52889i
\(494\) −3.66289e6 −0.675315
\(495\) 0 0
\(496\) 1.02810e6 0.187642
\(497\) − 1.39944e6i − 0.254134i
\(498\) − 9072.00i − 0.00163919i
\(499\) −7.09708e6 −1.27593 −0.637967 0.770063i \(-0.720225\pi\)
−0.637967 + 0.770063i \(0.720225\pi\)
\(500\) 0 0
\(501\) −1.33685e6 −0.237952
\(502\) 4.40095e6i 0.779448i
\(503\) 9.15982e6i 1.61424i 0.590390 + 0.807118i \(0.298974\pi\)
−0.590390 + 0.807118i \(0.701026\pi\)
\(504\) −733824. −0.128681
\(505\) 0 0
\(506\) −3.93660e6 −0.683510
\(507\) 655236.i 0.113208i
\(508\) 4.54374e6i 0.781186i
\(509\) 9.42509e6 1.61247 0.806234 0.591596i \(-0.201502\pi\)
0.806234 + 0.591596i \(0.201502\pi\)
\(510\) 0 0
\(511\) −3.44676e6 −0.583927
\(512\) − 262144.i − 0.0441942i
\(513\) − 3.35140e6i − 0.562255i
\(514\) −4.32919e6 −0.722768
\(515\) 0 0
\(516\) 1.12886e6 0.186645
\(517\) 4.17838e6i 0.687515i
\(518\) − 1.38023e6i − 0.226010i
\(519\) 1.93040e6 0.314579
\(520\) 0 0
\(521\) −6.18917e6 −0.998938 −0.499469 0.866332i \(-0.666471\pi\)
−0.499469 + 0.866332i \(0.666471\pi\)
\(522\) 7.73042e6i 1.24173i
\(523\) 3.81497e6i 0.609870i 0.952373 + 0.304935i \(0.0986347\pi\)
−0.952373 + 0.304935i \(0.901365\pi\)
\(524\) −4.18301e6 −0.665519
\(525\) 0 0
\(526\) −331800. −0.0522892
\(527\) 4.01198e6i 0.629264i
\(528\) 311040.i 0.0485547i
\(529\) 531443. 0.0825691
\(530\) 0 0
\(531\) 4.40294e6 0.677652
\(532\) 1.83613e6i 0.281270i
\(533\) 1.30438e6i 0.198877i
\(534\) −1.62461e6 −0.246545
\(535\) 0 0
\(536\) −3.33594e6 −0.501540
\(537\) − 735444.i − 0.110056i
\(538\) − 2.53529e6i − 0.377634i
\(539\) −972405. −0.144170
\(540\) 0 0
\(541\) 6.30404e6 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(542\) 1.11582e6i 0.163154i
\(543\) 2.05854e6i 0.299612i
\(544\) 1.02298e6 0.148207
\(545\) 0 0
\(546\) −229908. −0.0330044
\(547\) − 8.48475e6i − 1.21247i −0.795286 0.606234i \(-0.792679\pi\)
0.795286 0.606234i \(-0.207321\pi\)
\(548\) − 634752.i − 0.0902927i
\(549\) 5.07031e6 0.717966
\(550\) 0 0
\(551\) 1.93426e7 2.71416
\(552\) 466560.i 0.0651718i
\(553\) − 2.88233e6i − 0.400802i
\(554\) 8.70092e6 1.20446
\(555\) 0 0
\(556\) −2.92202e6 −0.400863
\(557\) 6.87794e6i 0.939335i 0.882843 + 0.469668i \(0.155626\pi\)
−0.882843 + 0.469668i \(0.844374\pi\)
\(558\) − 3.75898e6i − 0.511074i
\(559\) −9.19554e6 −1.24465
\(560\) 0 0
\(561\) −1.21378e6 −0.162830
\(562\) 2.77160e6i 0.370161i
\(563\) 1.02257e7i 1.35964i 0.733379 + 0.679820i \(0.237942\pi\)
−0.733379 + 0.679820i \(0.762058\pi\)
\(564\) 495216. 0.0655537
\(565\) 0 0
\(566\) −4.16083e6 −0.545932
\(567\) 2.57588e6i 0.336487i
\(568\) − 1.82784e6i − 0.237721i
\(569\) 1.26751e7 1.64123 0.820614 0.571482i \(-0.193631\pi\)
0.820614 + 0.571482i \(0.193631\pi\)
\(570\) 0 0
\(571\) −6.67155e6 −0.856321 −0.428160 0.903703i \(-0.640838\pi\)
−0.428160 + 0.903703i \(0.640838\pi\)
\(572\) − 2.53368e6i − 0.323789i
\(573\) − 1.58109e6i − 0.201174i
\(574\) 653856. 0.0828328
\(575\) 0 0
\(576\) −958464. −0.120370
\(577\) − 3.36511e6i − 0.420784i −0.977617 0.210392i \(-0.932526\pi\)
0.977617 0.210392i \(-0.0674741\pi\)
\(578\) − 1.68742e6i − 0.210090i
\(579\) 429648. 0.0532619
\(580\) 0 0
\(581\) 37044.0 0.00455279
\(582\) 1.32522e6i 0.162174i
\(583\) − 1.24902e6i − 0.152194i
\(584\) −4.50189e6 −0.546214
\(585\) 0 0
\(586\) 4.34260e6 0.522403
\(587\) − 1.10055e7i − 1.31830i −0.752012 0.659150i \(-0.770916\pi\)
0.752012 0.659150i \(-0.229084\pi\)
\(588\) 115248.i 0.0137464i
\(589\) −9.40547e6 −1.11710
\(590\) 0 0
\(591\) −1.04540e6 −0.123116
\(592\) − 1.80275e6i − 0.211413i
\(593\) − 1.40222e6i − 0.163749i −0.996643 0.0818747i \(-0.973909\pi\)
0.996643 0.0818747i \(-0.0260907\pi\)
\(594\) 2.31822e6 0.269581
\(595\) 0 0
\(596\) −193248. −0.0222843
\(597\) − 2.26356e6i − 0.259930i
\(598\) − 3.80052e6i − 0.434600i
\(599\) −1.93034e6 −0.219820 −0.109910 0.993942i \(-0.535056\pi\)
−0.109910 + 0.993942i \(0.535056\pi\)
\(600\) 0 0
\(601\) −1.82271e6 −0.205841 −0.102921 0.994690i \(-0.532819\pi\)
−0.102921 + 0.994690i \(0.532819\pi\)
\(602\) 4.60953e6i 0.518400i
\(603\) 1.21970e7i 1.36603i
\(604\) 3.33467e6 0.371930
\(605\) 0 0
\(606\) 401400. 0.0444013
\(607\) − 1.36917e7i − 1.50830i −0.656704 0.754148i \(-0.728050\pi\)
0.656704 0.754148i \(-0.271950\pi\)
\(608\) 2.39821e6i 0.263104i
\(609\) 1.21407e6 0.132648
\(610\) 0 0
\(611\) −4.03395e6 −0.437147
\(612\) − 3.74026e6i − 0.403667i
\(613\) − 1.11975e7i − 1.20357i −0.798658 0.601785i \(-0.794456\pi\)
0.798658 0.601785i \(-0.205544\pi\)
\(614\) 5852.00 0.000626446 0
\(615\) 0 0
\(616\) −1.27008e6 −0.134859
\(617\) − 1.37060e7i − 1.44944i −0.689045 0.724718i \(-0.741970\pi\)
0.689045 0.724718i \(-0.258030\pi\)
\(618\) 1.32373e6i 0.139421i
\(619\) 7.93359e6 0.832230 0.416115 0.909312i \(-0.363391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(620\) 0 0
\(621\) 3.47733e6 0.361840
\(622\) − 1.24791e7i − 1.29332i
\(623\) − 6.63382e6i − 0.684768i
\(624\) −300288. −0.0308728
\(625\) 0 0
\(626\) −3.32570e6 −0.339193
\(627\) − 2.84553e6i − 0.289064i
\(628\) − 5.82550e6i − 0.589433i
\(629\) 7.03496e6 0.708981
\(630\) 0 0
\(631\) −1.31143e7 −1.31121 −0.655604 0.755105i \(-0.727586\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(632\) − 3.76467e6i − 0.374916i
\(633\) − 1.77225e6i − 0.175798i
\(634\) −5.03402e6 −0.497384
\(635\) 0 0
\(636\) −148032. −0.0145115
\(637\) − 938791.i − 0.0916685i
\(638\) 1.33796e7i 1.30134i
\(639\) −6.68304e6 −0.647473
\(640\) 0 0
\(641\) −1.27270e7 −1.22344 −0.611719 0.791075i \(-0.709522\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(642\) 424296.i 0.0406286i
\(643\) − 1.88399e7i − 1.79701i −0.438964 0.898505i \(-0.644655\pi\)
0.438964 0.898505i \(-0.355345\pi\)
\(644\) −1.90512e6 −0.181012
\(645\) 0 0
\(646\) −9.35863e6 −0.882330
\(647\) − 944688.i − 0.0887213i −0.999016 0.0443606i \(-0.985875\pi\)
0.999016 0.0443606i \(-0.0141251\pi\)
\(648\) 3.36442e6i 0.314755i
\(649\) 7.62048e6 0.710184
\(650\) 0 0
\(651\) −590352. −0.0545957
\(652\) 10016.0i 0 0.000922731i
\(653\) − 2.01024e7i − 1.84486i −0.386158 0.922432i \(-0.626198\pi\)
0.386158 0.922432i \(-0.373802\pi\)
\(654\) 1.81420e6 0.165859
\(655\) 0 0
\(656\) 854016. 0.0774830
\(657\) 1.64600e7i 1.48771i
\(658\) 2.02213e6i 0.182073i
\(659\) 1.97097e7 1.76793 0.883967 0.467549i \(-0.154863\pi\)
0.883967 + 0.467549i \(0.154863\pi\)
\(660\) 0 0
\(661\) −227080. −0.0202151 −0.0101075 0.999949i \(-0.503217\pi\)
−0.0101075 + 0.999949i \(0.503217\pi\)
\(662\) 9.21861e6i 0.817561i
\(663\) − 1.17183e6i − 0.103533i
\(664\) 48384.0 0.00425874
\(665\) 0 0
\(666\) −6.59131e6 −0.575819
\(667\) 2.00694e7i 1.74670i
\(668\) − 7.12987e6i − 0.618216i
\(669\) −1.18831e6 −0.102651
\(670\) 0 0
\(671\) 8.77554e6 0.752433
\(672\) 150528.i 0.0128586i
\(673\) − 1.93220e7i − 1.64443i −0.569178 0.822214i \(-0.692739\pi\)
0.569178 0.822214i \(-0.307261\pi\)
\(674\) 3.07666e6 0.260874
\(675\) 0 0
\(676\) −3.49459e6 −0.294124
\(677\) 3.35334e6i 0.281194i 0.990067 + 0.140597i \(0.0449021\pi\)
−0.990067 + 0.140597i \(0.955098\pi\)
\(678\) 1.60423e6i 0.134027i
\(679\) −5.41132e6 −0.450431
\(680\) 0 0
\(681\) −28611.0 −0.00236410
\(682\) − 6.50592e6i − 0.535609i
\(683\) − 1.60555e7i − 1.31696i −0.752598 0.658481i \(-0.771199\pi\)
0.752598 0.658481i \(-0.228801\pi\)
\(684\) 8.76845e6 0.716609
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) − 2.11517e6i − 0.170983i
\(688\) 6.02061e6i 0.484919i
\(689\) 1.20584e6 0.0967705
\(690\) 0 0
\(691\) 1.35824e7 1.08213 0.541066 0.840980i \(-0.318021\pi\)
0.541066 + 0.840980i \(0.318021\pi\)
\(692\) 1.02955e7i 0.817299i
\(693\) 4.64373e6i 0.367311i
\(694\) 1.52830e6 0.120451
\(695\) 0 0
\(696\) 1.58573e6 0.124081
\(697\) 3.33266e6i 0.259842i
\(698\) − 1.55484e7i − 1.20794i
\(699\) 1.60265e6 0.124064
\(700\) 0 0
\(701\) 2.05454e7 1.57913 0.789567 0.613664i \(-0.210305\pi\)
0.789567 + 0.613664i \(0.210305\pi\)
\(702\) 2.23808e6i 0.171409i
\(703\) 1.64924e7i 1.25862i
\(704\) −1.65888e6 −0.126149
\(705\) 0 0
\(706\) 1.46581e6 0.110679
\(707\) 1.63905e6i 0.123323i
\(708\) − 903168.i − 0.0677151i
\(709\) −2.57278e7 −1.92215 −0.961075 0.276287i \(-0.910896\pi\)
−0.961075 + 0.276287i \(0.910896\pi\)
\(710\) 0 0
\(711\) −1.37646e7 −1.02115
\(712\) − 8.66458e6i − 0.640542i
\(713\) − 9.75888e6i − 0.718913i
\(714\) −587412. −0.0431218
\(715\) 0 0
\(716\) 3.92237e6 0.285934
\(717\) 2.70366e6i 0.196406i
\(718\) − 1.25943e7i − 0.911726i
\(719\) −7.04806e6 −0.508449 −0.254225 0.967145i \(-0.581820\pi\)
−0.254225 + 0.967145i \(0.581820\pi\)
\(720\) 0 0
\(721\) −5.40524e6 −0.387237
\(722\) − 1.20355e7i − 0.859250i
\(723\) − 2.85717e6i − 0.203278i
\(724\) −1.09789e7 −0.778416
\(725\) 0 0
\(726\) 35688.0 0.00251293
\(727\) − 1.90997e7i − 1.34027i −0.742240 0.670134i \(-0.766237\pi\)
0.742240 0.670134i \(-0.233763\pi\)
\(728\) − 1.22618e6i − 0.0857481i
\(729\) 1.12579e7 0.784586
\(730\) 0 0
\(731\) −2.34945e7 −1.62619
\(732\) − 1.04006e6i − 0.0717435i
\(733\) 2.30424e6i 0.158404i 0.996859 + 0.0792021i \(0.0252373\pi\)
−0.996859 + 0.0792021i \(0.974763\pi\)
\(734\) 8.54959e6 0.585740
\(735\) 0 0
\(736\) −2.48832e6 −0.169321
\(737\) 2.11102e7i 1.43161i
\(738\) − 3.12250e6i − 0.211038i
\(739\) −3.62955e6 −0.244479 −0.122240 0.992501i \(-0.539008\pi\)
−0.122240 + 0.992501i \(0.539008\pi\)
\(740\) 0 0
\(741\) 2.74717e6 0.183797
\(742\) − 604464.i − 0.0403052i
\(743\) 9.73856e6i 0.647177i 0.946198 + 0.323588i \(0.104889\pi\)
−0.946198 + 0.323588i \(0.895111\pi\)
\(744\) −771072. −0.0510696
\(745\) 0 0
\(746\) 822496. 0.0541111
\(747\) − 176904.i − 0.0115994i
\(748\) − 6.47352e6i − 0.423045i
\(749\) −1.73254e6 −0.112844
\(750\) 0 0
\(751\) −2.48272e7 −1.60630 −0.803152 0.595774i \(-0.796845\pi\)
−0.803152 + 0.595774i \(0.796845\pi\)
\(752\) 2.64115e6i 0.170313i
\(753\) − 3.30071e6i − 0.212139i
\(754\) −1.29171e7 −0.827439
\(755\) 0 0
\(756\) 1.12190e6 0.0713923
\(757\) − 1.28400e7i − 0.814376i −0.913344 0.407188i \(-0.866509\pi\)
0.913344 0.407188i \(-0.133491\pi\)
\(758\) 1.40215e7i 0.886380i
\(759\) 2.95245e6 0.186028
\(760\) 0 0
\(761\) 2.89560e7 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) − 3.40781e6i − 0.212612i
\(763\) 7.40797e6i 0.460668i
\(764\) 8.43250e6 0.522664
\(765\) 0 0
\(766\) −4.51618e6 −0.278099
\(767\) 7.35706e6i 0.451560i
\(768\) 196608.i 0.0120281i
\(769\) 1.78116e7 1.08614 0.543071 0.839687i \(-0.317261\pi\)
0.543071 + 0.839687i \(0.317261\pi\)
\(770\) 0 0
\(771\) 3.24689e6 0.196713
\(772\) 2.29146e6i 0.138378i
\(773\) − 1.73536e7i − 1.04458i −0.852768 0.522290i \(-0.825078\pi\)
0.852768 0.522290i \(-0.174922\pi\)
\(774\) 2.20128e7 1.32076
\(775\) 0 0
\(776\) −7.06784e6 −0.421340
\(777\) 1.03517e6i 0.0615121i
\(778\) − 4.80011e6i − 0.284316i
\(779\) −7.81291e6 −0.461285
\(780\) 0 0
\(781\) −1.15668e7 −0.678556
\(782\) − 9.71028e6i − 0.567825i
\(783\) − 1.18186e7i − 0.688910i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 3.13726e6 0.181131
\(787\) 812177.i 0.0467427i 0.999727 + 0.0233714i \(0.00744001\pi\)
−0.999727 + 0.0233714i \(0.992560\pi\)
\(788\) − 5.57549e6i − 0.319865i
\(789\) 248850. 0.0142313
\(790\) 0 0
\(791\) −6.55061e6 −0.372255
\(792\) 6.06528e6i 0.343588i
\(793\) 8.47219e6i 0.478424i
\(794\) −1.76735e7 −0.994879
\(795\) 0 0
\(796\) 1.20723e7 0.675318
\(797\) − 8.58201e6i − 0.478568i −0.970950 0.239284i \(-0.923087\pi\)
0.970950 0.239284i \(-0.0769126\pi\)
\(798\) − 1.37710e6i − 0.0765521i
\(799\) −1.03067e7 −0.571152
\(800\) 0 0
\(801\) −3.16799e7 −1.74462
\(802\) 1.25311e7i 0.687946i
\(803\) 2.84885e7i 1.55912i
\(804\) 2.50195e6 0.136502
\(805\) 0 0
\(806\) 6.28102e6 0.340559
\(807\) 1.90147e6i 0.102779i
\(808\) 2.14080e6i 0.115358i
\(809\) 2.83000e6 0.152025 0.0760125 0.997107i \(-0.475781\pi\)
0.0760125 + 0.997107i \(0.475781\pi\)
\(810\) 0 0
\(811\) −1.06484e7 −0.568504 −0.284252 0.958750i \(-0.591745\pi\)
−0.284252 + 0.958750i \(0.591745\pi\)
\(812\) 6.47506e6i 0.344630i
\(813\) − 836868.i − 0.0444049i
\(814\) −1.14080e7 −0.603462
\(815\) 0 0
\(816\) −767232. −0.0403368
\(817\) − 5.50792e7i − 2.88690i
\(818\) 3.44598e6i 0.180065i
\(819\) −4.48321e6 −0.233549
\(820\) 0 0
\(821\) −2.59970e7 −1.34606 −0.673032 0.739613i \(-0.735008\pi\)
−0.673032 + 0.739613i \(0.735008\pi\)
\(822\) 476064.i 0.0245746i
\(823\) 2.03099e7i 1.04522i 0.852571 + 0.522611i \(0.175042\pi\)
−0.852571 + 0.522611i \(0.824958\pi\)
\(824\) −7.05990e6 −0.362227
\(825\) 0 0
\(826\) 3.68794e6 0.188076
\(827\) 1.68001e6i 0.0854175i 0.999088 + 0.0427088i \(0.0135988\pi\)
−0.999088 + 0.0427088i \(0.986401\pi\)
\(828\) 9.09792e6i 0.461176i
\(829\) 6.71070e6 0.339142 0.169571 0.985518i \(-0.445762\pi\)
0.169571 + 0.985518i \(0.445762\pi\)
\(830\) 0 0
\(831\) −6.52569e6 −0.327811
\(832\) − 1.60154e6i − 0.0802100i
\(833\) − 2.39860e6i − 0.119769i
\(834\) 2.19151e6 0.109101
\(835\) 0 0
\(836\) 1.51762e7 0.751011
\(837\) 5.74690e6i 0.283543i
\(838\) 1.86318e7i 0.916527i
\(839\) −2.60856e7 −1.27937 −0.639686 0.768637i \(-0.720935\pi\)
−0.639686 + 0.768637i \(0.720935\pi\)
\(840\) 0 0
\(841\) 4.76999e7 2.32556
\(842\) − 2.79958e7i − 1.36086i
\(843\) − 2.07870e6i − 0.100745i
\(844\) 9.45198e6 0.456738
\(845\) 0 0
\(846\) 9.65671e6 0.463878
\(847\) 145726.i 0.00697957i
\(848\) − 789504.i − 0.0377020i
\(849\) 3.12062e6 0.148584
\(850\) 0 0
\(851\) −1.71121e7 −0.809988
\(852\) 1.37088e6i 0.0646994i
\(853\) − 9.54873e6i − 0.449338i −0.974435 0.224669i \(-0.927870\pi\)
0.974435 0.224669i \(-0.0721300\pi\)
\(854\) 4.24693e6 0.199265
\(855\) 0 0
\(856\) −2.26291e6 −0.105556
\(857\) 3.51377e7i 1.63426i 0.576453 + 0.817130i \(0.304436\pi\)
−0.576453 + 0.817130i \(0.695564\pi\)
\(858\) 1.90026e6i 0.0881241i
\(859\) 1.60428e7 0.741816 0.370908 0.928670i \(-0.379047\pi\)
0.370908 + 0.928670i \(0.379047\pi\)
\(860\) 0 0
\(861\) −490392. −0.0225442
\(862\) 908364.i 0.0416382i
\(863\) 2.77776e7i 1.26960i 0.772675 + 0.634802i \(0.218918\pi\)
−0.772675 + 0.634802i \(0.781082\pi\)
\(864\) 1.46534e6 0.0667814
\(865\) 0 0
\(866\) 2.83845e7 1.28614
\(867\) 1.26557e6i 0.0571792i
\(868\) − 3.14854e6i − 0.141844i
\(869\) −2.38233e7 −1.07017
\(870\) 0 0
\(871\) −2.03805e7 −0.910268
\(872\) 9.67571e6i 0.430915i
\(873\) 2.58418e7i 1.14759i
\(874\) 2.27642e7 1.00803
\(875\) 0 0
\(876\) 3.37642e6 0.148661
\(877\) 2.46748e7i 1.08332i 0.840599 + 0.541658i \(0.182203\pi\)
−0.840599 + 0.541658i \(0.817797\pi\)
\(878\) 2.37303e6i 0.103888i
\(879\) −3.25695e6 −0.142180
\(880\) 0 0
\(881\) −1.27792e7 −0.554707 −0.277353 0.960768i \(-0.589457\pi\)
−0.277353 + 0.960768i \(0.589457\pi\)
\(882\) 2.24734e6i 0.0972739i
\(883\) 2.63417e7i 1.13695i 0.822700 + 0.568476i \(0.192467\pi\)
−0.822700 + 0.568476i \(0.807533\pi\)
\(884\) 6.24974e6 0.268987
\(885\) 0 0
\(886\) 1.31077e7 0.560972
\(887\) 2.60037e7i 1.10975i 0.831932 + 0.554877i \(0.187235\pi\)
−0.831932 + 0.554877i \(0.812765\pi\)
\(888\) 1.35206e6i 0.0575393i
\(889\) 1.39152e7 0.590521
\(890\) 0 0
\(891\) 2.12904e7 0.898443
\(892\) − 6.33765e6i − 0.266696i
\(893\) − 2.41624e7i − 1.01394i
\(894\) 144936. 0.00606502
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 2.85039e6i 0.118283i
\(898\) − 1.73172e7i − 0.716616i
\(899\) −3.31681e7 −1.36874
\(900\) 0 0
\(901\) 3.08092e6 0.126435
\(902\) − 5.40432e6i − 0.221169i
\(903\) − 3.45715e6i − 0.141091i
\(904\) −8.55590e6 −0.348213
\(905\) 0 0
\(906\) −2.50100e6 −0.101226
\(907\) − 4.11852e7i − 1.66235i −0.556008 0.831177i \(-0.687668\pi\)
0.556008 0.831177i \(-0.312332\pi\)
\(908\) − 152592.i − 0.00614210i
\(909\) 7.82730e6 0.314197
\(910\) 0 0
\(911\) −7.92211e6 −0.316261 −0.158130 0.987418i \(-0.550547\pi\)
−0.158130 + 0.987418i \(0.550547\pi\)
\(912\) − 1.79866e6i − 0.0716079i
\(913\) − 306180.i − 0.0121563i
\(914\) −1.96655e7 −0.778646
\(915\) 0 0
\(916\) 1.12809e7 0.444227
\(917\) 1.28105e7i 0.503085i
\(918\) 5.71828e6i 0.223954i
\(919\) −1.59154e7 −0.621624 −0.310812 0.950471i \(-0.600601\pi\)
−0.310812 + 0.950471i \(0.600601\pi\)
\(920\) 0 0
\(921\) −4389.00 −0.000170497 0
\(922\) − 2.81168e7i − 1.08928i
\(923\) − 1.11670e7i − 0.431450i
\(924\) 952560. 0.0367039
\(925\) 0 0
\(926\) −1.15424e7 −0.442351
\(927\) 2.58128e7i 0.986587i
\(928\) 8.45722e6i 0.322372i
\(929\) 3.37148e7 1.28169 0.640843 0.767672i \(-0.278585\pi\)
0.640843 + 0.767672i \(0.278585\pi\)
\(930\) 0 0
\(931\) 5.62314e6 0.212620
\(932\) 8.54746e6i 0.322327i
\(933\) 9.35930e6i 0.351997i
\(934\) −2.40233e7 −0.901085
\(935\) 0 0
\(936\) −5.85562e6 −0.218466
\(937\) − 4.04362e7i − 1.50460i −0.658820 0.752300i \(-0.728944\pi\)
0.658820 0.752300i \(-0.271056\pi\)
\(938\) 1.02163e7i 0.379129i
\(939\) 2.49428e6 0.0923167
\(940\) 0 0
\(941\) 3.62378e7 1.33410 0.667048 0.745015i \(-0.267557\pi\)
0.667048 + 0.745015i \(0.267557\pi\)
\(942\) 4.36913e6i 0.160423i
\(943\) − 8.10648e6i − 0.296861i
\(944\) 4.81690e6 0.175929
\(945\) 0 0
\(946\) 3.80992e7 1.38416
\(947\) 2.94238e7i 1.06616i 0.846064 + 0.533082i \(0.178966\pi\)
−0.846064 + 0.533082i \(0.821034\pi\)
\(948\) 2.82350e6i 0.102039i
\(949\) −2.75037e7 −0.991348
\(950\) 0 0
\(951\) 3.77552e6 0.135371
\(952\) − 3.13286e6i − 0.112034i
\(953\) − 3.59497e7i − 1.28222i −0.767449 0.641110i \(-0.778474\pi\)
0.767449 0.641110i \(-0.221526\pi\)
\(954\) −2.88662e6 −0.102688
\(955\) 0 0
\(956\) −1.44195e7 −0.510278
\(957\) − 1.00347e7i − 0.354180i
\(958\) 3.76438e6i 0.132519i
\(959\) −1.94393e6 −0.0682549
\(960\) 0 0
\(961\) −1.25009e7 −0.436649
\(962\) − 1.10137e7i − 0.383703i
\(963\) 8.27377e6i 0.287500i
\(964\) 1.52382e7 0.528132
\(965\) 0 0
\(966\) 1.42884e6 0.0492653
\(967\) 1.19506e6i 0.0410982i 0.999789 + 0.0205491i \(0.00654144\pi\)
−0.999789 + 0.0205491i \(0.993459\pi\)
\(968\) 190336.i 0.00652879i
\(969\) 7.01897e6 0.240140
\(970\) 0 0
\(971\) 3.26221e7 1.11036 0.555180 0.831730i \(-0.312649\pi\)
0.555180 + 0.831730i \(0.312649\pi\)
\(972\) − 8.08704e6i − 0.274552i
\(973\) 8.94867e6i 0.303024i
\(974\) 7.64482e6 0.258208
\(975\) 0 0
\(976\) 5.54701e6 0.186395
\(977\) 5.36858e7i 1.79938i 0.436529 + 0.899690i \(0.356208\pi\)
−0.436529 + 0.899690i \(0.643792\pi\)
\(978\) − 7512.00i 0 0.000251136i
\(979\) −5.48305e7 −1.82838
\(980\) 0 0
\(981\) 3.53768e7 1.17367
\(982\) − 1.58196e7i − 0.523501i
\(983\) 3.31124e7i 1.09297i 0.837469 + 0.546484i \(0.184034\pi\)
−0.837469 + 0.546484i \(0.815966\pi\)
\(984\) −640512. −0.0210882
\(985\) 0 0
\(986\) −3.30030e7 −1.08109
\(987\) − 1.51660e6i − 0.0495539i
\(988\) 1.46516e7i 0.477520i
\(989\) 5.71487e7 1.85787
\(990\) 0 0
\(991\) −1.97082e7 −0.637475 −0.318738 0.947843i \(-0.603259\pi\)
−0.318738 + 0.947843i \(0.603259\pi\)
\(992\) − 4.11238e6i − 0.132683i
\(993\) − 6.91396e6i − 0.222512i
\(994\) −5.59776e6 −0.179700
\(995\) 0 0
\(996\) −36288.0 −0.00115908
\(997\) 3.31940e7i 1.05760i 0.848747 + 0.528800i \(0.177358\pi\)
−0.848747 + 0.528800i \(0.822642\pi\)
\(998\) 2.83883e7i 0.902222i
\(999\) 1.00771e7 0.319464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.e.99.1 2
5.2 odd 4 350.6.a.k.1.1 1
5.3 odd 4 70.6.a.c.1.1 1
5.4 even 2 inner 350.6.c.e.99.2 2
15.8 even 4 630.6.a.n.1.1 1
20.3 even 4 560.6.a.d.1.1 1
35.13 even 4 490.6.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.c.1.1 1 5.3 odd 4
350.6.a.k.1.1 1 5.2 odd 4
350.6.c.e.99.1 2 1.1 even 1 trivial
350.6.c.e.99.2 2 5.4 even 2 inner
490.6.a.e.1.1 1 35.13 even 4
560.6.a.d.1.1 1 20.3 even 4
630.6.a.n.1.1 1 15.8 even 4