Properties

Label 350.6.c.d.99.1
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.d.99.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -10.0000i q^{3} -16.0000 q^{4} -40.0000 q^{6} +49.0000i q^{7} +64.0000i q^{8} +143.000 q^{9} +O(q^{10})\) \(q-4.00000i q^{2} -10.0000i q^{3} -16.0000 q^{4} -40.0000 q^{6} +49.0000i q^{7} +64.0000i q^{8} +143.000 q^{9} -336.000 q^{11} +160.000i q^{12} -584.000i q^{13} +196.000 q^{14} +256.000 q^{16} -1458.00i q^{17} -572.000i q^{18} -470.000 q^{19} +490.000 q^{21} +1344.00i q^{22} +4200.00i q^{23} +640.000 q^{24} -2336.00 q^{26} -3860.00i q^{27} -784.000i q^{28} -4866.00 q^{29} -7372.00 q^{31} -1024.00i q^{32} +3360.00i q^{33} -5832.00 q^{34} -2288.00 q^{36} +14330.0i q^{37} +1880.00i q^{38} -5840.00 q^{39} +6222.00 q^{41} -1960.00i q^{42} -3704.00i q^{43} +5376.00 q^{44} +16800.0 q^{46} -1812.00i q^{47} -2560.00i q^{48} -2401.00 q^{49} -14580.0 q^{51} +9344.00i q^{52} +37242.0i q^{53} -15440.0 q^{54} -3136.00 q^{56} +4700.00i q^{57} +19464.0i q^{58} -34302.0 q^{59} +24476.0 q^{61} +29488.0i q^{62} +7007.00i q^{63} -4096.00 q^{64} +13440.0 q^{66} -17452.0i q^{67} +23328.0i q^{68} +42000.0 q^{69} +28224.0 q^{71} +9152.00i q^{72} -3602.00i q^{73} +57320.0 q^{74} +7520.00 q^{76} -16464.0i q^{77} +23360.0i q^{78} -42872.0 q^{79} -3851.00 q^{81} -24888.0i q^{82} +35202.0i q^{83} -7840.00 q^{84} -14816.0 q^{86} +48660.0i q^{87} -21504.0i q^{88} -26730.0 q^{89} +28616.0 q^{91} -67200.0i q^{92} +73720.0i q^{93} -7248.00 q^{94} -10240.0 q^{96} -16978.0i q^{97} +9604.00i q^{98} -48048.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 80 q^{6} + 286 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} - 80 q^{6} + 286 q^{9} - 672 q^{11} + 392 q^{14} + 512 q^{16} - 940 q^{19} + 980 q^{21} + 1280 q^{24} - 4672 q^{26} - 9732 q^{29} - 14744 q^{31} - 11664 q^{34} - 4576 q^{36} - 11680 q^{39} + 12444 q^{41} + 10752 q^{44} + 33600 q^{46} - 4802 q^{49} - 29160 q^{51} - 30880 q^{54} - 6272 q^{56} - 68604 q^{59} + 48952 q^{61} - 8192 q^{64} + 26880 q^{66} + 84000 q^{69} + 56448 q^{71} + 114640 q^{74} + 15040 q^{76} - 85744 q^{79} - 7702 q^{81} - 15680 q^{84} - 29632 q^{86} - 53460 q^{89} + 57232 q^{91} - 14496 q^{94} - 20480 q^{96} - 96096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) − 10.0000i − 0.641500i −0.947164 0.320750i \(-0.896065\pi\)
0.947164 0.320750i \(-0.103935\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −40.0000 −0.453609
\(7\) 49.0000i 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) 143.000 0.588477
\(10\) 0 0
\(11\) −336.000 −0.837255 −0.418627 0.908158i \(-0.637489\pi\)
−0.418627 + 0.908158i \(0.637489\pi\)
\(12\) 160.000i 0.320750i
\(13\) − 584.000i − 0.958417i −0.877701 0.479208i \(-0.840924\pi\)
0.877701 0.479208i \(-0.159076\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 1458.00i − 1.22359i −0.791017 0.611794i \(-0.790448\pi\)
0.791017 0.611794i \(-0.209552\pi\)
\(18\) − 572.000i − 0.416116i
\(19\) −470.000 −0.298685 −0.149343 0.988786i \(-0.547716\pi\)
−0.149343 + 0.988786i \(0.547716\pi\)
\(20\) 0 0
\(21\) 490.000 0.242464
\(22\) 1344.00i 0.592028i
\(23\) 4200.00i 1.65550i 0.561096 + 0.827751i \(0.310380\pi\)
−0.561096 + 0.827751i \(0.689620\pi\)
\(24\) 640.000 0.226805
\(25\) 0 0
\(26\) −2336.00 −0.677703
\(27\) − 3860.00i − 1.01901i
\(28\) − 784.000i − 0.188982i
\(29\) −4866.00 −1.07443 −0.537214 0.843446i \(-0.680523\pi\)
−0.537214 + 0.843446i \(0.680523\pi\)
\(30\) 0 0
\(31\) −7372.00 −1.37778 −0.688892 0.724864i \(-0.741903\pi\)
−0.688892 + 0.724864i \(0.741903\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 3360.00i 0.537099i
\(34\) −5832.00 −0.865207
\(35\) 0 0
\(36\) −2288.00 −0.294239
\(37\) 14330.0i 1.72085i 0.509581 + 0.860423i \(0.329800\pi\)
−0.509581 + 0.860423i \(0.670200\pi\)
\(38\) 1880.00i 0.211202i
\(39\) −5840.00 −0.614825
\(40\) 0 0
\(41\) 6222.00 0.578057 0.289028 0.957321i \(-0.406668\pi\)
0.289028 + 0.957321i \(0.406668\pi\)
\(42\) − 1960.00i − 0.171448i
\(43\) − 3704.00i − 0.305492i −0.988265 0.152746i \(-0.951188\pi\)
0.988265 0.152746i \(-0.0488116\pi\)
\(44\) 5376.00 0.418627
\(45\) 0 0
\(46\) 16800.0 1.17062
\(47\) − 1812.00i − 0.119650i −0.998209 0.0598251i \(-0.980946\pi\)
0.998209 0.0598251i \(-0.0190543\pi\)
\(48\) − 2560.00i − 0.160375i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −14580.0 −0.784932
\(52\) 9344.00i 0.479208i
\(53\) 37242.0i 1.82114i 0.413355 + 0.910570i \(0.364357\pi\)
−0.413355 + 0.910570i \(0.635643\pi\)
\(54\) −15440.0 −0.720548
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 4700.00i 0.191607i
\(58\) 19464.0i 0.759735i
\(59\) −34302.0 −1.28289 −0.641445 0.767169i \(-0.721665\pi\)
−0.641445 + 0.767169i \(0.721665\pi\)
\(60\) 0 0
\(61\) 24476.0 0.842201 0.421101 0.907014i \(-0.361644\pi\)
0.421101 + 0.907014i \(0.361644\pi\)
\(62\) 29488.0i 0.974240i
\(63\) 7007.00i 0.222424i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 13440.0 0.379786
\(67\) − 17452.0i − 0.474961i −0.971392 0.237481i \(-0.923678\pi\)
0.971392 0.237481i \(-0.0763216\pi\)
\(68\) 23328.0i 0.611794i
\(69\) 42000.0 1.06201
\(70\) 0 0
\(71\) 28224.0 0.664466 0.332233 0.943197i \(-0.392198\pi\)
0.332233 + 0.943197i \(0.392198\pi\)
\(72\) 9152.00i 0.208058i
\(73\) − 3602.00i − 0.0791109i −0.999217 0.0395555i \(-0.987406\pi\)
0.999217 0.0395555i \(-0.0125942\pi\)
\(74\) 57320.0 1.21682
\(75\) 0 0
\(76\) 7520.00 0.149343
\(77\) − 16464.0i − 0.316453i
\(78\) 23360.0i 0.434747i
\(79\) −42872.0 −0.772869 −0.386435 0.922317i \(-0.626294\pi\)
−0.386435 + 0.922317i \(0.626294\pi\)
\(80\) 0 0
\(81\) −3851.00 −0.0652170
\(82\) − 24888.0i − 0.408748i
\(83\) 35202.0i 0.560883i 0.959871 + 0.280441i \(0.0904808\pi\)
−0.959871 + 0.280441i \(0.909519\pi\)
\(84\) −7840.00 −0.121232
\(85\) 0 0
\(86\) −14816.0 −0.216015
\(87\) 48660.0i 0.689246i
\(88\) − 21504.0i − 0.296014i
\(89\) −26730.0 −0.357704 −0.178852 0.983876i \(-0.557238\pi\)
−0.178852 + 0.983876i \(0.557238\pi\)
\(90\) 0 0
\(91\) 28616.0 0.362248
\(92\) − 67200.0i − 0.827751i
\(93\) 73720.0i 0.883849i
\(94\) −7248.00 −0.0846055
\(95\) 0 0
\(96\) −10240.0 −0.113402
\(97\) − 16978.0i − 0.183213i −0.995795 0.0916067i \(-0.970800\pi\)
0.995795 0.0916067i \(-0.0292003\pi\)
\(98\) 9604.00i 0.101015i
\(99\) −48048.0 −0.492705
\(100\) 0 0
\(101\) 99204.0 0.967667 0.483833 0.875160i \(-0.339244\pi\)
0.483833 + 0.875160i \(0.339244\pi\)
\(102\) 58320.0i 0.555031i
\(103\) 131644.i 1.22267i 0.791373 + 0.611333i \(0.209366\pi\)
−0.791373 + 0.611333i \(0.790634\pi\)
\(104\) 37376.0 0.338852
\(105\) 0 0
\(106\) 148968. 1.28774
\(107\) 48852.0i 0.412499i 0.978499 + 0.206250i \(0.0661259\pi\)
−0.978499 + 0.206250i \(0.933874\pi\)
\(108\) 61760.0i 0.509504i
\(109\) 56374.0 0.454478 0.227239 0.973839i \(-0.427030\pi\)
0.227239 + 0.973839i \(0.427030\pi\)
\(110\) 0 0
\(111\) 143300. 1.10392
\(112\) 12544.0i 0.0944911i
\(113\) − 8742.00i − 0.0644043i −0.999481 0.0322021i \(-0.989748\pi\)
0.999481 0.0322021i \(-0.0102520\pi\)
\(114\) 18800.0 0.135486
\(115\) 0 0
\(116\) 77856.0 0.537214
\(117\) − 83512.0i − 0.564007i
\(118\) 137208.i 0.907140i
\(119\) 71442.0 0.462473
\(120\) 0 0
\(121\) −48155.0 −0.299005
\(122\) − 97904.0i − 0.595526i
\(123\) − 62220.0i − 0.370823i
\(124\) 117952. 0.688892
\(125\) 0 0
\(126\) 28028.0 0.157277
\(127\) 315992.i 1.73847i 0.494401 + 0.869234i \(0.335388\pi\)
−0.494401 + 0.869234i \(0.664612\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −37040.0 −0.195973
\(130\) 0 0
\(131\) −24666.0 −0.125580 −0.0627900 0.998027i \(-0.520000\pi\)
−0.0627900 + 0.998027i \(0.520000\pi\)
\(132\) − 53760.0i − 0.268550i
\(133\) − 23030.0i − 0.112892i
\(134\) −69808.0 −0.335848
\(135\) 0 0
\(136\) 93312.0 0.432604
\(137\) 303234.i 1.38031i 0.723662 + 0.690155i \(0.242458\pi\)
−0.723662 + 0.690155i \(0.757542\pi\)
\(138\) − 168000.i − 0.750951i
\(139\) −250586. −1.10007 −0.550034 0.835142i \(-0.685385\pi\)
−0.550034 + 0.835142i \(0.685385\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) − 112896.i − 0.469848i
\(143\) 196224.i 0.802439i
\(144\) 36608.0 0.147119
\(145\) 0 0
\(146\) −14408.0 −0.0559399
\(147\) 24010.0i 0.0916429i
\(148\) − 229280.i − 0.860423i
\(149\) 60594.0 0.223596 0.111798 0.993731i \(-0.464339\pi\)
0.111798 + 0.993731i \(0.464339\pi\)
\(150\) 0 0
\(151\) 124448. 0.444166 0.222083 0.975028i \(-0.428714\pi\)
0.222083 + 0.975028i \(0.428714\pi\)
\(152\) − 30080.0i − 0.105601i
\(153\) − 208494.i − 0.720054i
\(154\) −65856.0 −0.223766
\(155\) 0 0
\(156\) 93440.0 0.307412
\(157\) 76040.0i 0.246203i 0.992394 + 0.123101i \(0.0392840\pi\)
−0.992394 + 0.123101i \(0.960716\pi\)
\(158\) 171488.i 0.546501i
\(159\) 372420. 1.16826
\(160\) 0 0
\(161\) −205800. −0.625721
\(162\) 15404.0i 0.0461154i
\(163\) − 124256.i − 0.366310i −0.983084 0.183155i \(-0.941369\pi\)
0.983084 0.183155i \(-0.0586310\pi\)
\(164\) −99552.0 −0.289028
\(165\) 0 0
\(166\) 140808. 0.396604
\(167\) − 72420.0i − 0.200940i −0.994940 0.100470i \(-0.967965\pi\)
0.994940 0.100470i \(-0.0320347\pi\)
\(168\) 31360.0i 0.0857241i
\(169\) 30237.0 0.0814370
\(170\) 0 0
\(171\) −67210.0 −0.175770
\(172\) 59264.0i 0.152746i
\(173\) 441552.i 1.12167i 0.827926 + 0.560837i \(0.189521\pi\)
−0.827926 + 0.560837i \(0.810479\pi\)
\(174\) 194640. 0.487370
\(175\) 0 0
\(176\) −86016.0 −0.209314
\(177\) 343020.i 0.822974i
\(178\) 106920.i 0.252935i
\(179\) 10692.0 0.0249417 0.0124709 0.999922i \(-0.496030\pi\)
0.0124709 + 0.999922i \(0.496030\pi\)
\(180\) 0 0
\(181\) −546064. −1.23893 −0.619465 0.785024i \(-0.712651\pi\)
−0.619465 + 0.785024i \(0.712651\pi\)
\(182\) − 114464.i − 0.256148i
\(183\) − 244760.i − 0.540272i
\(184\) −268800. −0.585308
\(185\) 0 0
\(186\) 294880. 0.624975
\(187\) 489888.i 1.02445i
\(188\) 28992.0i 0.0598251i
\(189\) 189140. 0.385149
\(190\) 0 0
\(191\) −575976. −1.14241 −0.571204 0.820808i \(-0.693523\pi\)
−0.571204 + 0.820808i \(0.693523\pi\)
\(192\) 40960.0i 0.0801875i
\(193\) 413938.i 0.799912i 0.916534 + 0.399956i \(0.130975\pi\)
−0.916534 + 0.399956i \(0.869025\pi\)
\(194\) −67912.0 −0.129551
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) − 494946.i − 0.908641i −0.890838 0.454320i \(-0.849882\pi\)
0.890838 0.454320i \(-0.150118\pi\)
\(198\) 192192.i 0.348395i
\(199\) −520364. −0.931482 −0.465741 0.884921i \(-0.654212\pi\)
−0.465741 + 0.884921i \(0.654212\pi\)
\(200\) 0 0
\(201\) −174520. −0.304688
\(202\) − 396816.i − 0.684244i
\(203\) − 238434.i − 0.406095i
\(204\) 233280. 0.392466
\(205\) 0 0
\(206\) 526576. 0.864556
\(207\) 600600.i 0.974225i
\(208\) − 149504.i − 0.239604i
\(209\) 157920. 0.250076
\(210\) 0 0
\(211\) 183284. 0.283412 0.141706 0.989909i \(-0.454741\pi\)
0.141706 + 0.989909i \(0.454741\pi\)
\(212\) − 595872.i − 0.910570i
\(213\) − 282240.i − 0.426255i
\(214\) 195408. 0.291681
\(215\) 0 0
\(216\) 247040. 0.360274
\(217\) − 361228.i − 0.520753i
\(218\) − 225496.i − 0.321364i
\(219\) −36020.0 −0.0507497
\(220\) 0 0
\(221\) −851472. −1.17271
\(222\) − 573200.i − 0.780591i
\(223\) 1.27746e6i 1.72023i 0.510100 + 0.860115i \(0.329608\pi\)
−0.510100 + 0.860115i \(0.670392\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −34968.0 −0.0455407
\(227\) − 1.28764e6i − 1.65856i −0.558835 0.829279i \(-0.688752\pi\)
0.558835 0.829279i \(-0.311248\pi\)
\(228\) − 75200.0i − 0.0958034i
\(229\) −350936. −0.442221 −0.221110 0.975249i \(-0.570968\pi\)
−0.221110 + 0.975249i \(0.570968\pi\)
\(230\) 0 0
\(231\) −164640. −0.203004
\(232\) − 311424.i − 0.379867i
\(233\) − 836154.i − 1.00901i −0.863408 0.504506i \(-0.831675\pi\)
0.863408 0.504506i \(-0.168325\pi\)
\(234\) −334048. −0.398813
\(235\) 0 0
\(236\) 548832. 0.641445
\(237\) 428720.i 0.495796i
\(238\) − 285768.i − 0.327018i
\(239\) −774336. −0.876869 −0.438434 0.898763i \(-0.644467\pi\)
−0.438434 + 0.898763i \(0.644467\pi\)
\(240\) 0 0
\(241\) −1.15285e6 −1.27859 −0.639293 0.768963i \(-0.720773\pi\)
−0.639293 + 0.768963i \(0.720773\pi\)
\(242\) 192620.i 0.211428i
\(243\) − 899470.i − 0.977172i
\(244\) −391616. −0.421101
\(245\) 0 0
\(246\) −248880. −0.262212
\(247\) 274480.i 0.286265i
\(248\) − 471808.i − 0.487120i
\(249\) 352020. 0.359806
\(250\) 0 0
\(251\) 1.35801e6 1.36056 0.680282 0.732951i \(-0.261858\pi\)
0.680282 + 0.732951i \(0.261858\pi\)
\(252\) − 112112.i − 0.111212i
\(253\) − 1.41120e6i − 1.38608i
\(254\) 1.26397e6 1.22928
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 317742.i − 0.300083i −0.988680 0.150042i \(-0.952059\pi\)
0.988680 0.150042i \(-0.0479408\pi\)
\(258\) 148160.i 0.138574i
\(259\) −702170. −0.650418
\(260\) 0 0
\(261\) −695838. −0.632276
\(262\) 98664.0i 0.0887985i
\(263\) − 1.05101e6i − 0.936951i −0.883477 0.468475i \(-0.844804\pi\)
0.883477 0.468475i \(-0.155196\pi\)
\(264\) −215040. −0.189893
\(265\) 0 0
\(266\) −92120.0 −0.0798270
\(267\) 267300.i 0.229467i
\(268\) 279232.i 0.237481i
\(269\) −1.18958e6 −1.00234 −0.501169 0.865349i \(-0.667097\pi\)
−0.501169 + 0.865349i \(0.667097\pi\)
\(270\) 0 0
\(271\) −1.43008e6 −1.18287 −0.591435 0.806353i \(-0.701438\pi\)
−0.591435 + 0.806353i \(0.701438\pi\)
\(272\) − 373248.i − 0.305897i
\(273\) − 286160.i − 0.232382i
\(274\) 1.21294e6 0.976026
\(275\) 0 0
\(276\) −672000. −0.531003
\(277\) 63302.0i 0.0495699i 0.999693 + 0.0247849i \(0.00789010\pi\)
−0.999693 + 0.0247849i \(0.992110\pi\)
\(278\) 1.00234e6i 0.777866i
\(279\) −1.05420e6 −0.810795
\(280\) 0 0
\(281\) −496614. −0.375192 −0.187596 0.982246i \(-0.560070\pi\)
−0.187596 + 0.982246i \(0.560070\pi\)
\(282\) 72480.0i 0.0542744i
\(283\) 1.15842e6i 0.859803i 0.902876 + 0.429902i \(0.141452\pi\)
−0.902876 + 0.429902i \(0.858548\pi\)
\(284\) −451584. −0.332233
\(285\) 0 0
\(286\) 784896. 0.567410
\(287\) 304878.i 0.218485i
\(288\) − 146432.i − 0.104029i
\(289\) −705907. −0.497168
\(290\) 0 0
\(291\) −169780. −0.117531
\(292\) 57632.0i 0.0395555i
\(293\) − 1.43886e6i − 0.979151i −0.871961 0.489575i \(-0.837152\pi\)
0.871961 0.489575i \(-0.162848\pi\)
\(294\) 96040.0 0.0648013
\(295\) 0 0
\(296\) −917120. −0.608411
\(297\) 1.29696e6i 0.853170i
\(298\) − 242376.i − 0.158106i
\(299\) 2.45280e6 1.58666
\(300\) 0 0
\(301\) 181496. 0.115465
\(302\) − 497792.i − 0.314073i
\(303\) − 992040.i − 0.620758i
\(304\) −120320. −0.0746713
\(305\) 0 0
\(306\) −833976. −0.509155
\(307\) − 989098.i − 0.598954i −0.954104 0.299477i \(-0.903188\pi\)
0.954104 0.299477i \(-0.0968122\pi\)
\(308\) 263424.i 0.158226i
\(309\) 1.31644e6 0.784341
\(310\) 0 0
\(311\) −2.22050e6 −1.30182 −0.650909 0.759155i \(-0.725612\pi\)
−0.650909 + 0.759155i \(0.725612\pi\)
\(312\) − 373760.i − 0.217373i
\(313\) − 2.33008e6i − 1.34434i −0.740396 0.672171i \(-0.765362\pi\)
0.740396 0.672171i \(-0.234638\pi\)
\(314\) 304160. 0.174092
\(315\) 0 0
\(316\) 685952. 0.386435
\(317\) 427542.i 0.238963i 0.992836 + 0.119481i \(0.0381232\pi\)
−0.992836 + 0.119481i \(0.961877\pi\)
\(318\) − 1.48968e6i − 0.826086i
\(319\) 1.63498e6 0.899569
\(320\) 0 0
\(321\) 488520. 0.264618
\(322\) 823200.i 0.442452i
\(323\) 685260.i 0.365468i
\(324\) 61616.0 0.0326085
\(325\) 0 0
\(326\) −497024. −0.259020
\(327\) − 563740.i − 0.291548i
\(328\) 398208.i 0.204374i
\(329\) 88788.0 0.0452235
\(330\) 0 0
\(331\) −396616. −0.198976 −0.0994879 0.995039i \(-0.531720\pi\)
−0.0994879 + 0.995039i \(0.531720\pi\)
\(332\) − 563232.i − 0.280441i
\(333\) 2.04919e6i 1.01268i
\(334\) −289680. −0.142086
\(335\) 0 0
\(336\) 125440. 0.0606161
\(337\) − 3.21819e6i − 1.54361i −0.635860 0.771805i \(-0.719354\pi\)
0.635860 0.771805i \(-0.280646\pi\)
\(338\) − 120948.i − 0.0575847i
\(339\) −87420.0 −0.0413154
\(340\) 0 0
\(341\) 2.47699e6 1.15356
\(342\) 268840.i 0.124288i
\(343\) − 117649.i − 0.0539949i
\(344\) 237056. 0.108008
\(345\) 0 0
\(346\) 1.76621e6 0.793143
\(347\) 2.78018e6i 1.23951i 0.784796 + 0.619755i \(0.212768\pi\)
−0.784796 + 0.619755i \(0.787232\pi\)
\(348\) − 778560.i − 0.344623i
\(349\) 338800. 0.148895 0.0744475 0.997225i \(-0.476281\pi\)
0.0744475 + 0.997225i \(0.476281\pi\)
\(350\) 0 0
\(351\) −2.25424e6 −0.976635
\(352\) 344064.i 0.148007i
\(353\) 362046.i 0.154642i 0.997006 + 0.0773209i \(0.0246366\pi\)
−0.997006 + 0.0773209i \(0.975363\pi\)
\(354\) 1.37208e6 0.581931
\(355\) 0 0
\(356\) 427680. 0.178852
\(357\) − 714420.i − 0.296676i
\(358\) − 42768.0i − 0.0176365i
\(359\) −876528. −0.358946 −0.179473 0.983763i \(-0.557439\pi\)
−0.179473 + 0.983763i \(0.557439\pi\)
\(360\) 0 0
\(361\) −2.25520e6 −0.910787
\(362\) 2.18426e6i 0.876056i
\(363\) 481550.i 0.191812i
\(364\) −457856. −0.181124
\(365\) 0 0
\(366\) −979040. −0.382030
\(367\) 2.98062e6i 1.15516i 0.816335 + 0.577578i \(0.196002\pi\)
−0.816335 + 0.577578i \(0.803998\pi\)
\(368\) 1.07520e6i 0.413875i
\(369\) 889746. 0.340173
\(370\) 0 0
\(371\) −1.82486e6 −0.688326
\(372\) − 1.17952e6i − 0.441924i
\(373\) − 3.91441e6i − 1.45678i −0.685162 0.728391i \(-0.740268\pi\)
0.685162 0.728391i \(-0.259732\pi\)
\(374\) 1.95955e6 0.724399
\(375\) 0 0
\(376\) 115968. 0.0423027
\(377\) 2.84174e6i 1.02975i
\(378\) − 756560.i − 0.272342i
\(379\) −3.60661e6 −1.28974 −0.644868 0.764294i \(-0.723088\pi\)
−0.644868 + 0.764294i \(0.723088\pi\)
\(380\) 0 0
\(381\) 3.15992e6 1.11523
\(382\) 2.30390e6i 0.807804i
\(383\) 2.66644e6i 0.928826i 0.885619 + 0.464413i \(0.153735\pi\)
−0.885619 + 0.464413i \(0.846265\pi\)
\(384\) 163840. 0.0567012
\(385\) 0 0
\(386\) 1.65575e6 0.565623
\(387\) − 529672.i − 0.179775i
\(388\) 271648.i 0.0916067i
\(389\) 213366. 0.0714910 0.0357455 0.999361i \(-0.488619\pi\)
0.0357455 + 0.999361i \(0.488619\pi\)
\(390\) 0 0
\(391\) 6.12360e6 2.02565
\(392\) − 153664.i − 0.0505076i
\(393\) 246660.i 0.0805596i
\(394\) −1.97978e6 −0.642506
\(395\) 0 0
\(396\) 768768. 0.246353
\(397\) − 4.09408e6i − 1.30371i −0.758345 0.651854i \(-0.773992\pi\)
0.758345 0.651854i \(-0.226008\pi\)
\(398\) 2.08146e6i 0.658657i
\(399\) −230300. −0.0724205
\(400\) 0 0
\(401\) 942366. 0.292657 0.146328 0.989236i \(-0.453254\pi\)
0.146328 + 0.989236i \(0.453254\pi\)
\(402\) 698080.i 0.215447i
\(403\) 4.30525e6i 1.32049i
\(404\) −1.58726e6 −0.483833
\(405\) 0 0
\(406\) −953736. −0.287153
\(407\) − 4.81488e6i − 1.44079i
\(408\) − 933120.i − 0.277515i
\(409\) 4.84561e6 1.43232 0.716160 0.697936i \(-0.245898\pi\)
0.716160 + 0.697936i \(0.245898\pi\)
\(410\) 0 0
\(411\) 3.03234e6 0.885469
\(412\) − 2.10630e6i − 0.611333i
\(413\) − 1.68080e6i − 0.484887i
\(414\) 2.40240e6 0.688881
\(415\) 0 0
\(416\) −598016. −0.169426
\(417\) 2.50586e6i 0.705694i
\(418\) − 631680.i − 0.176830i
\(419\) 1.73485e6 0.482754 0.241377 0.970431i \(-0.422401\pi\)
0.241377 + 0.970431i \(0.422401\pi\)
\(420\) 0 0
\(421\) −1.65145e6 −0.454109 −0.227055 0.973882i \(-0.572910\pi\)
−0.227055 + 0.973882i \(0.572910\pi\)
\(422\) − 733136.i − 0.200403i
\(423\) − 259116.i − 0.0704115i
\(424\) −2.38349e6 −0.643870
\(425\) 0 0
\(426\) −1.12896e6 −0.301408
\(427\) 1.19932e6i 0.318322i
\(428\) − 781632.i − 0.206250i
\(429\) 1.96224e6 0.514765
\(430\) 0 0
\(431\) 4.14360e6 1.07445 0.537223 0.843440i \(-0.319473\pi\)
0.537223 + 0.843440i \(0.319473\pi\)
\(432\) − 988160.i − 0.254752i
\(433\) 3.03966e6i 0.779121i 0.921001 + 0.389561i \(0.127373\pi\)
−0.921001 + 0.389561i \(0.872627\pi\)
\(434\) −1.44491e6 −0.368228
\(435\) 0 0
\(436\) −901984. −0.227239
\(437\) − 1.97400e6i − 0.494474i
\(438\) 144080.i 0.0358855i
\(439\) −2.54271e6 −0.629703 −0.314852 0.949141i \(-0.601955\pi\)
−0.314852 + 0.949141i \(0.601955\pi\)
\(440\) 0 0
\(441\) −343343. −0.0840682
\(442\) 3.40589e6i 0.829229i
\(443\) 2.43210e6i 0.588806i 0.955681 + 0.294403i \(0.0951208\pi\)
−0.955681 + 0.294403i \(0.904879\pi\)
\(444\) −2.29280e6 −0.551961
\(445\) 0 0
\(446\) 5.10986e6 1.21639
\(447\) − 605940.i − 0.143437i
\(448\) − 200704.i − 0.0472456i
\(449\) −1.82853e6 −0.428042 −0.214021 0.976829i \(-0.568656\pi\)
−0.214021 + 0.976829i \(0.568656\pi\)
\(450\) 0 0
\(451\) −2.09059e6 −0.483981
\(452\) 139872.i 0.0322021i
\(453\) − 1.24448e6i − 0.284933i
\(454\) −5.15057e6 −1.17278
\(455\) 0 0
\(456\) −300800. −0.0677432
\(457\) 1.58063e6i 0.354030i 0.984208 + 0.177015i \(0.0566441\pi\)
−0.984208 + 0.177015i \(0.943356\pi\)
\(458\) 1.40374e6i 0.312697i
\(459\) −5.62788e6 −1.24685
\(460\) 0 0
\(461\) 5.09604e6 1.11681 0.558407 0.829567i \(-0.311413\pi\)
0.558407 + 0.829567i \(0.311413\pi\)
\(462\) 658560.i 0.143546i
\(463\) 7.02338e6i 1.52263i 0.648384 + 0.761313i \(0.275445\pi\)
−0.648384 + 0.761313i \(0.724555\pi\)
\(464\) −1.24570e6 −0.268607
\(465\) 0 0
\(466\) −3.34462e6 −0.713479
\(467\) − 4.24845e6i − 0.901443i −0.892665 0.450722i \(-0.851167\pi\)
0.892665 0.450722i \(-0.148833\pi\)
\(468\) 1.33619e6i 0.282003i
\(469\) 855148. 0.179518
\(470\) 0 0
\(471\) 760400. 0.157939
\(472\) − 2.19533e6i − 0.453570i
\(473\) 1.24454e6i 0.255775i
\(474\) 1.71488e6 0.350581
\(475\) 0 0
\(476\) −1.14307e6 −0.231236
\(477\) 5.32561e6i 1.07170i
\(478\) 3.09734e6i 0.620040i
\(479\) −559284. −0.111377 −0.0556883 0.998448i \(-0.517735\pi\)
−0.0556883 + 0.998448i \(0.517735\pi\)
\(480\) 0 0
\(481\) 8.36872e6 1.64929
\(482\) 4.61140e6i 0.904097i
\(483\) 2.05800e6i 0.401400i
\(484\) 770480. 0.149502
\(485\) 0 0
\(486\) −3.59788e6 −0.690965
\(487\) − 1.32057e6i − 0.252312i −0.992010 0.126156i \(-0.959736\pi\)
0.992010 0.126156i \(-0.0402640\pi\)
\(488\) 1.56646e6i 0.297763i
\(489\) −1.24256e6 −0.234988
\(490\) 0 0
\(491\) 6.27193e6 1.17408 0.587040 0.809558i \(-0.300293\pi\)
0.587040 + 0.809558i \(0.300293\pi\)
\(492\) 995520.i 0.185412i
\(493\) 7.09463e6i 1.31466i
\(494\) 1.09792e6 0.202420
\(495\) 0 0
\(496\) −1.88723e6 −0.344446
\(497\) 1.38298e6i 0.251144i
\(498\) − 1.40808e6i − 0.254422i
\(499\) 3.93785e6 0.707959 0.353979 0.935253i \(-0.384828\pi\)
0.353979 + 0.935253i \(0.384828\pi\)
\(500\) 0 0
\(501\) −724200. −0.128903
\(502\) − 5.43204e6i − 0.962063i
\(503\) 7.59830e6i 1.33905i 0.742790 + 0.669525i \(0.233502\pi\)
−0.742790 + 0.669525i \(0.766498\pi\)
\(504\) −448448. −0.0786386
\(505\) 0 0
\(506\) −5.64480e6 −0.980104
\(507\) − 302370.i − 0.0522419i
\(508\) − 5.05587e6i − 0.869234i
\(509\) 7.82664e6 1.33900 0.669501 0.742812i \(-0.266508\pi\)
0.669501 + 0.742812i \(0.266508\pi\)
\(510\) 0 0
\(511\) 176498. 0.0299011
\(512\) − 262144.i − 0.0441942i
\(513\) 1.81420e6i 0.304363i
\(514\) −1.27097e6 −0.212191
\(515\) 0 0
\(516\) 592640. 0.0979866
\(517\) 608832.i 0.100178i
\(518\) 2.80868e6i 0.459915i
\(519\) 4.41552e6 0.719554
\(520\) 0 0
\(521\) 8.94454e6 1.44366 0.721828 0.692072i \(-0.243302\pi\)
0.721828 + 0.692072i \(0.243302\pi\)
\(522\) 2.78335e6i 0.447087i
\(523\) − 4.07481e6i − 0.651407i −0.945472 0.325704i \(-0.894399\pi\)
0.945472 0.325704i \(-0.105601\pi\)
\(524\) 394656. 0.0627900
\(525\) 0 0
\(526\) −4.20403e6 −0.662524
\(527\) 1.07484e7i 1.68584i
\(528\) 860160.i 0.134275i
\(529\) −1.12037e7 −1.74069
\(530\) 0 0
\(531\) −4.90519e6 −0.754952
\(532\) 368480.i 0.0564462i
\(533\) − 3.63365e6i − 0.554019i
\(534\) 1.06920e6 0.162258
\(535\) 0 0
\(536\) 1.11693e6 0.167924
\(537\) − 106920.i − 0.0160001i
\(538\) 4.75834e6i 0.708760i
\(539\) 806736. 0.119608
\(540\) 0 0
\(541\) −1.18676e7 −1.74329 −0.871644 0.490140i \(-0.836946\pi\)
−0.871644 + 0.490140i \(0.836946\pi\)
\(542\) 5.72032e6i 0.836416i
\(543\) 5.46064e6i 0.794775i
\(544\) −1.49299e6 −0.216302
\(545\) 0 0
\(546\) −1.14464e6 −0.164319
\(547\) − 5.37801e6i − 0.768516i −0.923226 0.384258i \(-0.874457\pi\)
0.923226 0.384258i \(-0.125543\pi\)
\(548\) − 4.85174e6i − 0.690155i
\(549\) 3.50007e6 0.495616
\(550\) 0 0
\(551\) 2.28702e6 0.320916
\(552\) 2.68800e6i 0.375475i
\(553\) − 2.10073e6i − 0.292117i
\(554\) 253208. 0.0350512
\(555\) 0 0
\(556\) 4.00938e6 0.550034
\(557\) − 5.64878e6i − 0.771466i −0.922611 0.385733i \(-0.873949\pi\)
0.922611 0.385733i \(-0.126051\pi\)
\(558\) 4.21678e6i 0.573318i
\(559\) −2.16314e6 −0.292789
\(560\) 0 0
\(561\) 4.89888e6 0.657188
\(562\) 1.98646e6i 0.265301i
\(563\) − 4.56407e6i − 0.606850i −0.952855 0.303425i \(-0.901870\pi\)
0.952855 0.303425i \(-0.0981303\pi\)
\(564\) 289920. 0.0383778
\(565\) 0 0
\(566\) 4.63367e6 0.607973
\(567\) − 188699.i − 0.0246497i
\(568\) 1.80634e6i 0.234924i
\(569\) −8.00165e6 −1.03609 −0.518047 0.855352i \(-0.673341\pi\)
−0.518047 + 0.855352i \(0.673341\pi\)
\(570\) 0 0
\(571\) −1.37164e7 −1.76055 −0.880275 0.474464i \(-0.842642\pi\)
−0.880275 + 0.474464i \(0.842642\pi\)
\(572\) − 3.13958e6i − 0.401220i
\(573\) 5.75976e6i 0.732855i
\(574\) 1.21951e6 0.154492
\(575\) 0 0
\(576\) −585728. −0.0735597
\(577\) 6.09797e6i 0.762510i 0.924470 + 0.381255i \(0.124508\pi\)
−0.924470 + 0.381255i \(0.875492\pi\)
\(578\) 2.82363e6i 0.351551i
\(579\) 4.13938e6 0.513144
\(580\) 0 0
\(581\) −1.72490e6 −0.211994
\(582\) 679120.i 0.0831073i
\(583\) − 1.25133e7i − 1.52476i
\(584\) 230528. 0.0279699
\(585\) 0 0
\(586\) −5.75544e6 −0.692364
\(587\) − 8.08462e6i − 0.968422i −0.874951 0.484211i \(-0.839107\pi\)
0.874951 0.484211i \(-0.160893\pi\)
\(588\) − 384160.i − 0.0458214i
\(589\) 3.46484e6 0.411524
\(590\) 0 0
\(591\) −4.94946e6 −0.582893
\(592\) 3.66848e6i 0.430211i
\(593\) − 1.41575e6i − 0.165330i −0.996577 0.0826649i \(-0.973657\pi\)
0.996577 0.0826649i \(-0.0263431\pi\)
\(594\) 5.18784e6 0.603282
\(595\) 0 0
\(596\) −969504. −0.111798
\(597\) 5.20364e6i 0.597546i
\(598\) − 9.81120e6i − 1.12194i
\(599\) −8.75460e6 −0.996941 −0.498470 0.866907i \(-0.666105\pi\)
−0.498470 + 0.866907i \(0.666105\pi\)
\(600\) 0 0
\(601\) 8.70276e6 0.982813 0.491407 0.870930i \(-0.336483\pi\)
0.491407 + 0.870930i \(0.336483\pi\)
\(602\) − 725984.i − 0.0816462i
\(603\) − 2.49564e6i − 0.279504i
\(604\) −1.99117e6 −0.222083
\(605\) 0 0
\(606\) −3.96816e6 −0.438942
\(607\) − 1.69578e7i − 1.86809i −0.357157 0.934045i \(-0.616254\pi\)
0.357157 0.934045i \(-0.383746\pi\)
\(608\) 481280.i 0.0528006i
\(609\) −2.38434e6 −0.260510
\(610\) 0 0
\(611\) −1.05821e6 −0.114675
\(612\) 3.33590e6i 0.360027i
\(613\) − 1.76743e7i − 1.89973i −0.312658 0.949866i \(-0.601220\pi\)
0.312658 0.949866i \(-0.398780\pi\)
\(614\) −3.95639e6 −0.423524
\(615\) 0 0
\(616\) 1.05370e6 0.111883
\(617\) − 9.70636e6i − 1.02646i −0.858250 0.513232i \(-0.828448\pi\)
0.858250 0.513232i \(-0.171552\pi\)
\(618\) − 5.26576e6i − 0.554613i
\(619\) −1.48739e7 −1.56027 −0.780133 0.625613i \(-0.784849\pi\)
−0.780133 + 0.625613i \(0.784849\pi\)
\(620\) 0 0
\(621\) 1.62120e7 1.68697
\(622\) 8.88202e6i 0.920525i
\(623\) − 1.30977e6i − 0.135199i
\(624\) −1.49504e6 −0.153706
\(625\) 0 0
\(626\) −9.32031e6 −0.950593
\(627\) − 1.57920e6i − 0.160424i
\(628\) − 1.21664e6i − 0.123101i
\(629\) 2.08931e7 2.10561
\(630\) 0 0
\(631\) 1.26353e7 1.26331 0.631656 0.775248i \(-0.282375\pi\)
0.631656 + 0.775248i \(0.282375\pi\)
\(632\) − 2.74381e6i − 0.273251i
\(633\) − 1.83284e6i − 0.181809i
\(634\) 1.71017e6 0.168972
\(635\) 0 0
\(636\) −5.95872e6 −0.584131
\(637\) 1.40218e6i 0.136917i
\(638\) − 6.53990e6i − 0.636092i
\(639\) 4.03603e6 0.391023
\(640\) 0 0
\(641\) 6.23398e6 0.599267 0.299634 0.954054i \(-0.403136\pi\)
0.299634 + 0.954054i \(0.403136\pi\)
\(642\) − 1.95408e6i − 0.187113i
\(643\) − 1.06874e7i − 1.01940i −0.860352 0.509701i \(-0.829756\pi\)
0.860352 0.509701i \(-0.170244\pi\)
\(644\) 3.29280e6 0.312860
\(645\) 0 0
\(646\) 2.74104e6 0.258425
\(647\) 1.83258e7i 1.72109i 0.509376 + 0.860544i \(0.329876\pi\)
−0.509376 + 0.860544i \(0.670124\pi\)
\(648\) − 246464.i − 0.0230577i
\(649\) 1.15255e7 1.07411
\(650\) 0 0
\(651\) −3.61228e6 −0.334063
\(652\) 1.98810e6i 0.183155i
\(653\) 7.28857e6i 0.668897i 0.942414 + 0.334448i \(0.108550\pi\)
−0.942414 + 0.334448i \(0.891450\pi\)
\(654\) −2.25496e6 −0.206155
\(655\) 0 0
\(656\) 1.59283e6 0.144514
\(657\) − 515086.i − 0.0465550i
\(658\) − 355152.i − 0.0319779i
\(659\) −4.54337e6 −0.407534 −0.203767 0.979019i \(-0.565319\pi\)
−0.203767 + 0.979019i \(0.565319\pi\)
\(660\) 0 0
\(661\) −2.10021e7 −1.86964 −0.934821 0.355120i \(-0.884440\pi\)
−0.934821 + 0.355120i \(0.884440\pi\)
\(662\) 1.58646e6i 0.140697i
\(663\) 8.51472e6i 0.752292i
\(664\) −2.25293e6 −0.198302
\(665\) 0 0
\(666\) 8.19676e6 0.716072
\(667\) − 2.04372e7i − 1.77872i
\(668\) 1.15872e6i 0.100470i
\(669\) 1.27746e7 1.10353
\(670\) 0 0
\(671\) −8.22394e6 −0.705137
\(672\) − 501760.i − 0.0428620i
\(673\) − 3.46923e6i − 0.295253i −0.989043 0.147627i \(-0.952837\pi\)
0.989043 0.147627i \(-0.0471634\pi\)
\(674\) −1.28728e7 −1.09150
\(675\) 0 0
\(676\) −483792. −0.0407185
\(677\) − 1.80916e7i − 1.51707i −0.651631 0.758536i \(-0.725915\pi\)
0.651631 0.758536i \(-0.274085\pi\)
\(678\) 349680.i 0.0292144i
\(679\) 831922. 0.0692481
\(680\) 0 0
\(681\) −1.28764e7 −1.06397
\(682\) − 9.90797e6i − 0.815687i
\(683\) − 4.67752e6i − 0.383675i −0.981427 0.191838i \(-0.938555\pi\)
0.981427 0.191838i \(-0.0614447\pi\)
\(684\) 1.07536e6 0.0878848
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) 3.50936e6i 0.283685i
\(688\) − 948224.i − 0.0763730i
\(689\) 2.17493e7 1.74541
\(690\) 0 0
\(691\) 1.68960e7 1.34614 0.673069 0.739579i \(-0.264976\pi\)
0.673069 + 0.739579i \(0.264976\pi\)
\(692\) − 7.06483e6i − 0.560837i
\(693\) − 2.35435e6i − 0.186225i
\(694\) 1.11207e7 0.876466
\(695\) 0 0
\(696\) −3.11424e6 −0.243685
\(697\) − 9.07168e6i − 0.707303i
\(698\) − 1.35520e6i − 0.105285i
\(699\) −8.36154e6 −0.647282
\(700\) 0 0
\(701\) 2.40964e6 0.185207 0.0926035 0.995703i \(-0.470481\pi\)
0.0926035 + 0.995703i \(0.470481\pi\)
\(702\) 9.01696e6i 0.690585i
\(703\) − 6.73510e6i − 0.513991i
\(704\) 1.37626e6 0.104657
\(705\) 0 0
\(706\) 1.44818e6 0.109348
\(707\) 4.86100e6i 0.365744i
\(708\) − 5.48832e6i − 0.411487i
\(709\) 5.77010e6 0.431090 0.215545 0.976494i \(-0.430847\pi\)
0.215545 + 0.976494i \(0.430847\pi\)
\(710\) 0 0
\(711\) −6.13070e6 −0.454816
\(712\) − 1.71072e6i − 0.126468i
\(713\) − 3.09624e7i − 2.28092i
\(714\) −2.85768e6 −0.209782
\(715\) 0 0
\(716\) −171072. −0.0124709
\(717\) 7.74336e6i 0.562512i
\(718\) 3.50611e6i 0.253813i
\(719\) 1.43716e7 1.03677 0.518385 0.855147i \(-0.326533\pi\)
0.518385 + 0.855147i \(0.326533\pi\)
\(720\) 0 0
\(721\) −6.45056e6 −0.462124
\(722\) 9.02080e6i 0.644024i
\(723\) 1.15285e7i 0.820214i
\(724\) 8.73702e6 0.619465
\(725\) 0 0
\(726\) 1.92620e6 0.135631
\(727\) − 1.40705e7i − 0.987353i −0.869646 0.493676i \(-0.835653\pi\)
0.869646 0.493676i \(-0.164347\pi\)
\(728\) 1.83142e6i 0.128074i
\(729\) −9.93049e6 −0.692073
\(730\) 0 0
\(731\) −5.40043e6 −0.373796
\(732\) 3.91616e6i 0.270136i
\(733\) 3.75000e6i 0.257793i 0.991658 + 0.128897i \(0.0411436\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(734\) 1.19225e7 0.816819
\(735\) 0 0
\(736\) 4.30080e6 0.292654
\(737\) 5.86387e6i 0.397664i
\(738\) − 3.55898e6i − 0.240539i
\(739\) −2.61318e7 −1.76019 −0.880093 0.474802i \(-0.842520\pi\)
−0.880093 + 0.474802i \(0.842520\pi\)
\(740\) 0 0
\(741\) 2.74480e6 0.183639
\(742\) 7.29943e6i 0.486720i
\(743\) 159072.i 0.0105711i 0.999986 + 0.00528557i \(0.00168246\pi\)
−0.999986 + 0.00528557i \(0.998318\pi\)
\(744\) −4.71808e6 −0.312488
\(745\) 0 0
\(746\) −1.56577e7 −1.03010
\(747\) 5.03389e6i 0.330067i
\(748\) − 7.83821e6i − 0.512227i
\(749\) −2.39375e6 −0.155910
\(750\) 0 0
\(751\) −2.65311e7 −1.71654 −0.858272 0.513196i \(-0.828461\pi\)
−0.858272 + 0.513196i \(0.828461\pi\)
\(752\) − 463872.i − 0.0299126i
\(753\) − 1.35801e7i − 0.872802i
\(754\) 1.13670e7 0.728143
\(755\) 0 0
\(756\) −3.02624e6 −0.192575
\(757\) − 1.52032e7i − 0.964260i −0.876100 0.482130i \(-0.839863\pi\)
0.876100 0.482130i \(-0.160137\pi\)
\(758\) 1.44264e7i 0.911981i
\(759\) −1.41120e7 −0.889169
\(760\) 0 0
\(761\) 4.71380e6 0.295059 0.147530 0.989058i \(-0.452868\pi\)
0.147530 + 0.989058i \(0.452868\pi\)
\(762\) − 1.26397e7i − 0.788585i
\(763\) 2.76233e6i 0.171776i
\(764\) 9.21562e6 0.571204
\(765\) 0 0
\(766\) 1.06657e7 0.656779
\(767\) 2.00324e7i 1.22954i
\(768\) − 655360.i − 0.0400938i
\(769\) 1.58977e6 0.0969434 0.0484717 0.998825i \(-0.484565\pi\)
0.0484717 + 0.998825i \(0.484565\pi\)
\(770\) 0 0
\(771\) −3.17742e6 −0.192504
\(772\) − 6.62301e6i − 0.399956i
\(773\) 9.69095e6i 0.583334i 0.956520 + 0.291667i \(0.0942100\pi\)
−0.956520 + 0.291667i \(0.905790\pi\)
\(774\) −2.11869e6 −0.127120
\(775\) 0 0
\(776\) 1.08659e6 0.0647757
\(777\) 7.02170e6i 0.417244i
\(778\) − 853464.i − 0.0505518i
\(779\) −2.92434e6 −0.172657
\(780\) 0 0
\(781\) −9.48326e6 −0.556327
\(782\) − 2.44944e7i − 1.43235i
\(783\) 1.87828e7i 1.09485i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 986640. 0.0569642
\(787\) − 1.57170e6i − 0.0904549i −0.998977 0.0452275i \(-0.985599\pi\)
0.998977 0.0452275i \(-0.0144013\pi\)
\(788\) 7.91914e6i 0.454320i
\(789\) −1.05101e7 −0.601054
\(790\) 0 0
\(791\) 428358. 0.0243425
\(792\) − 3.07507e6i − 0.174198i
\(793\) − 1.42940e7i − 0.807180i
\(794\) −1.63763e7 −0.921860
\(795\) 0 0
\(796\) 8.32582e6 0.465741
\(797\) − 2.25298e6i − 0.125635i −0.998025 0.0628175i \(-0.979991\pi\)
0.998025 0.0628175i \(-0.0200086\pi\)
\(798\) 921200.i 0.0512090i
\(799\) −2.64190e6 −0.146403
\(800\) 0 0
\(801\) −3.82239e6 −0.210501
\(802\) − 3.76946e6i − 0.206940i
\(803\) 1.21027e6i 0.0662360i
\(804\) 2.79232e6 0.152344
\(805\) 0 0
\(806\) 1.72210e7 0.933728
\(807\) 1.18958e7i 0.643000i
\(808\) 6.34906e6i 0.342122i
\(809\) 2.37938e7 1.27818 0.639090 0.769132i \(-0.279311\pi\)
0.639090 + 0.769132i \(0.279311\pi\)
\(810\) 0 0
\(811\) 5.32300e6 0.284187 0.142093 0.989853i \(-0.454617\pi\)
0.142093 + 0.989853i \(0.454617\pi\)
\(812\) 3.81494e6i 0.203048i
\(813\) 1.43008e7i 0.758812i
\(814\) −1.92595e7 −1.01879
\(815\) 0 0
\(816\) −3.73248e6 −0.196233
\(817\) 1.74088e6i 0.0912460i
\(818\) − 1.93824e7i − 1.01280i
\(819\) 4.09209e6 0.213174
\(820\) 0 0
\(821\) 1.48802e7 0.770464 0.385232 0.922820i \(-0.374121\pi\)
0.385232 + 0.922820i \(0.374121\pi\)
\(822\) − 1.21294e7i − 0.626121i
\(823\) − 2.00601e7i − 1.03236i −0.856479 0.516182i \(-0.827353\pi\)
0.856479 0.516182i \(-0.172647\pi\)
\(824\) −8.42522e6 −0.432278
\(825\) 0 0
\(826\) −6.72319e6 −0.342867
\(827\) 1.21539e7i 0.617949i 0.951070 + 0.308975i \(0.0999858\pi\)
−0.951070 + 0.308975i \(0.900014\pi\)
\(828\) − 9.60960e6i − 0.487113i
\(829\) −3.21197e7 −1.62325 −0.811625 0.584179i \(-0.801417\pi\)
−0.811625 + 0.584179i \(0.801417\pi\)
\(830\) 0 0
\(831\) 633020. 0.0317991
\(832\) 2.39206e6i 0.119802i
\(833\) 3.50066e6i 0.174798i
\(834\) 1.00234e7 0.499001
\(835\) 0 0
\(836\) −2.52672e6 −0.125038
\(837\) 2.84559e7i 1.40397i
\(838\) − 6.93938e6i − 0.341359i
\(839\) 1.01320e6 0.0496922 0.0248461 0.999691i \(-0.492090\pi\)
0.0248461 + 0.999691i \(0.492090\pi\)
\(840\) 0 0
\(841\) 3.16681e6 0.154394
\(842\) 6.60580e6i 0.321104i
\(843\) 4.96614e6i 0.240686i
\(844\) −2.93254e6 −0.141706
\(845\) 0 0
\(846\) −1.03646e6 −0.0497884
\(847\) − 2.35960e6i − 0.113013i
\(848\) 9.53395e6i 0.455285i
\(849\) 1.15842e7 0.551564
\(850\) 0 0
\(851\) −6.01860e7 −2.84886
\(852\) 4.51584e6i 0.213128i
\(853\) − 234824.i − 0.0110502i −0.999985 0.00552510i \(-0.998241\pi\)
0.999985 0.00552510i \(-0.00175870\pi\)
\(854\) 4.79730e6 0.225088
\(855\) 0 0
\(856\) −3.12653e6 −0.145840
\(857\) 2.83802e7i 1.31997i 0.751279 + 0.659985i \(0.229437\pi\)
−0.751279 + 0.659985i \(0.770563\pi\)
\(858\) − 7.84896e6i − 0.363994i
\(859\) −4.00081e7 −1.84997 −0.924986 0.380001i \(-0.875924\pi\)
−0.924986 + 0.380001i \(0.875924\pi\)
\(860\) 0 0
\(861\) 3.04878e6 0.140158
\(862\) − 1.65744e7i − 0.759748i
\(863\) 2.08030e7i 0.950823i 0.879764 + 0.475411i \(0.157701\pi\)
−0.879764 + 0.475411i \(0.842299\pi\)
\(864\) −3.95264e6 −0.180137
\(865\) 0 0
\(866\) 1.21586e7 0.550922
\(867\) 7.05907e6i 0.318933i
\(868\) 5.77965e6i 0.260377i
\(869\) 1.44050e7 0.647088
\(870\) 0 0
\(871\) −1.01920e7 −0.455211
\(872\) 3.60794e6i 0.160682i
\(873\) − 2.42785e6i − 0.107817i
\(874\) −7.89600e6 −0.349646
\(875\) 0 0
\(876\) 576320. 0.0253748
\(877\) 3.03559e7i 1.33273i 0.745624 + 0.666367i \(0.232152\pi\)
−0.745624 + 0.666367i \(0.767848\pi\)
\(878\) 1.01708e7i 0.445267i
\(879\) −1.43886e7 −0.628125
\(880\) 0 0
\(881\) −2.58936e7 −1.12396 −0.561981 0.827150i \(-0.689961\pi\)
−0.561981 + 0.827150i \(0.689961\pi\)
\(882\) 1.37337e6i 0.0594452i
\(883\) 1.88813e7i 0.814950i 0.913216 + 0.407475i \(0.133591\pi\)
−0.913216 + 0.407475i \(0.866409\pi\)
\(884\) 1.36236e7 0.586354
\(885\) 0 0
\(886\) 9.72840e6 0.416349
\(887\) − 2.34431e7i − 1.00048i −0.865888 0.500238i \(-0.833246\pi\)
0.865888 0.500238i \(-0.166754\pi\)
\(888\) 9.17120e6i 0.390296i
\(889\) −1.54836e7 −0.657079
\(890\) 0 0
\(891\) 1.29394e6 0.0546033
\(892\) − 2.04394e7i − 0.860115i
\(893\) 851640.i 0.0357378i
\(894\) −2.42376e6 −0.101425
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) − 2.45280e7i − 1.01784i
\(898\) 7.31412e6i 0.302671i
\(899\) 3.58722e7 1.48033
\(900\) 0 0
\(901\) 5.42988e7 2.22833
\(902\) 8.36237e6i 0.342226i
\(903\) − 1.81496e6i − 0.0740709i
\(904\) 559488. 0.0227703
\(905\) 0 0
\(906\) −4.97792e6 −0.201478
\(907\) − 5.60873e6i − 0.226384i −0.993573 0.113192i \(-0.963892\pi\)
0.993573 0.113192i \(-0.0361076\pi\)
\(908\) 2.06023e7i 0.829279i
\(909\) 1.41862e7 0.569450
\(910\) 0 0
\(911\) 2.16215e7 0.863156 0.431578 0.902076i \(-0.357957\pi\)
0.431578 + 0.902076i \(0.357957\pi\)
\(912\) 1.20320e6i 0.0479017i
\(913\) − 1.18279e7i − 0.469602i
\(914\) 6.32252e6 0.250337
\(915\) 0 0
\(916\) 5.61498e6 0.221110
\(917\) − 1.20863e6i − 0.0474648i
\(918\) 2.25115e7i 0.881654i
\(919\) −4.51695e7 −1.76424 −0.882119 0.471028i \(-0.843883\pi\)
−0.882119 + 0.471028i \(0.843883\pi\)
\(920\) 0 0
\(921\) −9.89098e6 −0.384229
\(922\) − 2.03842e7i − 0.789706i
\(923\) − 1.64828e7i − 0.636835i
\(924\) 2.63424e6 0.101502
\(925\) 0 0
\(926\) 2.80935e7 1.07666
\(927\) 1.88251e7i 0.719512i
\(928\) 4.98278e6i 0.189934i
\(929\) 2.28729e7 0.869524 0.434762 0.900545i \(-0.356832\pi\)
0.434762 + 0.900545i \(0.356832\pi\)
\(930\) 0 0
\(931\) 1.12847e6 0.0426693
\(932\) 1.33785e7i 0.504506i
\(933\) 2.22050e7i 0.835117i
\(934\) −1.69938e7 −0.637417
\(935\) 0 0
\(936\) 5.34477e6 0.199406
\(937\) − 1.79616e7i − 0.668336i −0.942514 0.334168i \(-0.891545\pi\)
0.942514 0.334168i \(-0.108455\pi\)
\(938\) − 3.42059e6i − 0.126939i
\(939\) −2.33008e7 −0.862395
\(940\) 0 0
\(941\) −1.79697e7 −0.661558 −0.330779 0.943708i \(-0.607311\pi\)
−0.330779 + 0.943708i \(0.607311\pi\)
\(942\) − 3.04160e6i − 0.111680i
\(943\) 2.61324e7i 0.956974i
\(944\) −8.78131e6 −0.320722
\(945\) 0 0
\(946\) 4.97818e6 0.180860
\(947\) 4.32115e7i 1.56576i 0.622174 + 0.782879i \(0.286250\pi\)
−0.622174 + 0.782879i \(0.713750\pi\)
\(948\) − 6.85952e6i − 0.247898i
\(949\) −2.10357e6 −0.0758213
\(950\) 0 0
\(951\) 4.27542e6 0.153295
\(952\) 4.57229e6i 0.163509i
\(953\) 7.50965e6i 0.267848i 0.990992 + 0.133924i \(0.0427577\pi\)
−0.990992 + 0.133924i \(0.957242\pi\)
\(954\) 2.13024e7 0.757806
\(955\) 0 0
\(956\) 1.23894e7 0.438434
\(957\) − 1.63498e7i − 0.577074i
\(958\) 2.23714e6i 0.0787551i
\(959\) −1.48585e7 −0.521708
\(960\) 0 0
\(961\) 2.57172e7 0.898288
\(962\) − 3.34749e7i − 1.16622i
\(963\) 6.98584e6i 0.242746i
\(964\) 1.84456e7 0.639293
\(965\) 0 0
\(966\) 8.23200e6 0.283833
\(967\) − 1.69305e7i − 0.582242i −0.956686 0.291121i \(-0.905972\pi\)
0.956686 0.291121i \(-0.0940283\pi\)
\(968\) − 3.08192e6i − 0.105714i
\(969\) 6.85260e6 0.234448
\(970\) 0 0
\(971\) 2.86144e7 0.973949 0.486974 0.873416i \(-0.338101\pi\)
0.486974 + 0.873416i \(0.338101\pi\)
\(972\) 1.43915e7i 0.488586i
\(973\) − 1.22787e7i − 0.415787i
\(974\) −5.28227e6 −0.178412
\(975\) 0 0
\(976\) 6.26586e6 0.210550
\(977\) 3.69445e7i 1.23826i 0.785287 + 0.619132i \(0.212515\pi\)
−0.785287 + 0.619132i \(0.787485\pi\)
\(978\) 4.97024e6i 0.166161i
\(979\) 8.98128e6 0.299489
\(980\) 0 0
\(981\) 8.06148e6 0.267450
\(982\) − 2.50877e7i − 0.830200i
\(983\) 3.88787e7i 1.28330i 0.766998 + 0.641650i \(0.221750\pi\)
−0.766998 + 0.641650i \(0.778250\pi\)
\(984\) 3.98208e6 0.131106
\(985\) 0 0
\(986\) 2.83785e7 0.929603
\(987\) − 887880.i − 0.0290109i
\(988\) − 4.39168e6i − 0.143133i
\(989\) 1.55568e7 0.505743
\(990\) 0 0
\(991\) 2.49212e7 0.806092 0.403046 0.915180i \(-0.367951\pi\)
0.403046 + 0.915180i \(0.367951\pi\)
\(992\) 7.54893e6i 0.243560i
\(993\) 3.96616e6i 0.127643i
\(994\) 5.53190e6 0.177586
\(995\) 0 0
\(996\) −5.63232e6 −0.179903
\(997\) 1.01956e7i 0.324845i 0.986721 + 0.162422i \(0.0519307\pi\)
−0.986721 + 0.162422i \(0.948069\pi\)
\(998\) − 1.57514e7i − 0.500603i
\(999\) 5.53138e7 1.75356
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.d.99.1 2
5.2 odd 4 350.6.a.i.1.1 1
5.3 odd 4 14.6.a.a.1.1 1
5.4 even 2 inner 350.6.c.d.99.2 2
15.8 even 4 126.6.a.f.1.1 1
20.3 even 4 112.6.a.c.1.1 1
35.3 even 12 98.6.c.d.79.1 2
35.13 even 4 98.6.a.a.1.1 1
35.18 odd 12 98.6.c.c.79.1 2
35.23 odd 12 98.6.c.c.67.1 2
35.33 even 12 98.6.c.d.67.1 2
40.3 even 4 448.6.a.l.1.1 1
40.13 odd 4 448.6.a.e.1.1 1
60.23 odd 4 1008.6.a.b.1.1 1
105.83 odd 4 882.6.a.x.1.1 1
140.83 odd 4 784.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.a.a.1.1 1 5.3 odd 4
98.6.a.a.1.1 1 35.13 even 4
98.6.c.c.67.1 2 35.23 odd 12
98.6.c.c.79.1 2 35.18 odd 12
98.6.c.d.67.1 2 35.33 even 12
98.6.c.d.79.1 2 35.3 even 12
112.6.a.c.1.1 1 20.3 even 4
126.6.a.f.1.1 1 15.8 even 4
350.6.a.i.1.1 1 5.2 odd 4
350.6.c.d.99.1 2 1.1 even 1 trivial
350.6.c.d.99.2 2 5.4 even 2 inner
448.6.a.e.1.1 1 40.13 odd 4
448.6.a.l.1.1 1 40.3 even 4
784.6.a.i.1.1 1 140.83 odd 4
882.6.a.x.1.1 1 105.83 odd 4
1008.6.a.b.1.1 1 60.23 odd 4