Properties

Label 350.6.c.b.99.2
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.b.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +11.0000i q^{3} -16.0000 q^{4} -44.0000 q^{6} +49.0000i q^{7} -64.0000i q^{8} +122.000 q^{9} -267.000 q^{11} -176.000i q^{12} +1087.00i q^{13} -196.000 q^{14} +256.000 q^{16} -513.000i q^{17} +488.000i q^{18} +802.000 q^{19} -539.000 q^{21} -1068.00i q^{22} +1290.00i q^{23} +704.000 q^{24} -4348.00 q^{26} +4015.00i q^{27} -784.000i q^{28} -1779.00 q^{29} -2584.00 q^{31} +1024.00i q^{32} -2937.00i q^{33} +2052.00 q^{34} -1952.00 q^{36} +13862.0i q^{37} +3208.00i q^{38} -11957.0 q^{39} -11904.0 q^{41} -2156.00i q^{42} +598.000i q^{43} +4272.00 q^{44} -5160.00 q^{46} -17019.0i q^{47} +2816.00i q^{48} -2401.00 q^{49} +5643.00 q^{51} -17392.0i q^{52} -27852.0i q^{53} -16060.0 q^{54} +3136.00 q^{56} +8822.00i q^{57} -7116.00i q^{58} -30912.0 q^{59} -1780.00 q^{61} -10336.0i q^{62} +5978.00i q^{63} -4096.00 q^{64} +11748.0 q^{66} +25052.0i q^{67} +8208.00i q^{68} -14190.0 q^{69} -51984.0 q^{71} -7808.00i q^{72} -47690.0i q^{73} -55448.0 q^{74} -12832.0 q^{76} -13083.0i q^{77} -47828.0i q^{78} +102121. q^{79} -14519.0 q^{81} -47616.0i q^{82} +83676.0i q^{83} +8624.00 q^{84} -2392.00 q^{86} -19569.0i q^{87} +17088.0i q^{88} +32400.0 q^{89} -53263.0 q^{91} -20640.0i q^{92} -28424.0i q^{93} +68076.0 q^{94} -11264.0 q^{96} -148645. i q^{97} -9604.00i q^{98} -32574.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 88 q^{6} + 244 q^{9} - 534 q^{11} - 392 q^{14} + 512 q^{16} + 1604 q^{19} - 1078 q^{21} + 1408 q^{24} - 8696 q^{26} - 3558 q^{29} - 5168 q^{31} + 4104 q^{34} - 3904 q^{36} - 23914 q^{39}+ \cdots - 65148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 11.0000i 0.705650i 0.935689 + 0.352825i \(0.114779\pi\)
−0.935689 + 0.352825i \(0.885221\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −44.0000 −0.498970
\(7\) 49.0000i 0.377964i
\(8\) − 64.0000i − 0.353553i
\(9\) 122.000 0.502058
\(10\) 0 0
\(11\) −267.000 −0.665318 −0.332659 0.943047i \(-0.607946\pi\)
−0.332659 + 0.943047i \(0.607946\pi\)
\(12\) − 176.000i − 0.352825i
\(13\) 1087.00i 1.78390i 0.452131 + 0.891951i \(0.350664\pi\)
−0.452131 + 0.891951i \(0.649336\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 513.000i − 0.430522i −0.976557 0.215261i \(-0.930940\pi\)
0.976557 0.215261i \(-0.0690602\pi\)
\(18\) 488.000i 0.355008i
\(19\) 802.000 0.509672 0.254836 0.966984i \(-0.417979\pi\)
0.254836 + 0.966984i \(0.417979\pi\)
\(20\) 0 0
\(21\) −539.000 −0.266711
\(22\) − 1068.00i − 0.470451i
\(23\) 1290.00i 0.508476i 0.967142 + 0.254238i \(0.0818246\pi\)
−0.967142 + 0.254238i \(0.918175\pi\)
\(24\) 704.000 0.249485
\(25\) 0 0
\(26\) −4348.00 −1.26141
\(27\) 4015.00i 1.05993i
\(28\) − 784.000i − 0.188982i
\(29\) −1779.00 −0.392809 −0.196404 0.980523i \(-0.562926\pi\)
−0.196404 + 0.980523i \(0.562926\pi\)
\(30\) 0 0
\(31\) −2584.00 −0.482935 −0.241467 0.970409i \(-0.577629\pi\)
−0.241467 + 0.970409i \(0.577629\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 2937.00i − 0.469482i
\(34\) 2052.00 0.304425
\(35\) 0 0
\(36\) −1952.00 −0.251029
\(37\) 13862.0i 1.66464i 0.554292 + 0.832322i \(0.312989\pi\)
−0.554292 + 0.832322i \(0.687011\pi\)
\(38\) 3208.00i 0.360392i
\(39\) −11957.0 −1.25881
\(40\) 0 0
\(41\) −11904.0 −1.10594 −0.552972 0.833200i \(-0.686506\pi\)
−0.552972 + 0.833200i \(0.686506\pi\)
\(42\) − 2156.00i − 0.188593i
\(43\) 598.000i 0.0493208i 0.999696 + 0.0246604i \(0.00785044\pi\)
−0.999696 + 0.0246604i \(0.992150\pi\)
\(44\) 4272.00 0.332659
\(45\) 0 0
\(46\) −5160.00 −0.359547
\(47\) − 17019.0i − 1.12380i −0.827205 0.561900i \(-0.810070\pi\)
0.827205 0.561900i \(-0.189930\pi\)
\(48\) 2816.00i 0.176413i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 5643.00 0.303798
\(52\) − 17392.0i − 0.891951i
\(53\) − 27852.0i − 1.36197i −0.732299 0.680984i \(-0.761552\pi\)
0.732299 0.680984i \(-0.238448\pi\)
\(54\) −16060.0 −0.749482
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) 8822.00i 0.359650i
\(58\) − 7116.00i − 0.277758i
\(59\) −30912.0 −1.15610 −0.578052 0.816000i \(-0.696187\pi\)
−0.578052 + 0.816000i \(0.696187\pi\)
\(60\) 0 0
\(61\) −1780.00 −0.0612485 −0.0306242 0.999531i \(-0.509750\pi\)
−0.0306242 + 0.999531i \(0.509750\pi\)
\(62\) − 10336.0i − 0.341486i
\(63\) 5978.00i 0.189760i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 11748.0 0.331974
\(67\) 25052.0i 0.681797i 0.940100 + 0.340899i \(0.110731\pi\)
−0.940100 + 0.340899i \(0.889269\pi\)
\(68\) 8208.00i 0.215261i
\(69\) −14190.0 −0.358806
\(70\) 0 0
\(71\) −51984.0 −1.22384 −0.611919 0.790921i \(-0.709602\pi\)
−0.611919 + 0.790921i \(0.709602\pi\)
\(72\) − 7808.00i − 0.177504i
\(73\) − 47690.0i − 1.04742i −0.851897 0.523709i \(-0.824548\pi\)
0.851897 0.523709i \(-0.175452\pi\)
\(74\) −55448.0 −1.17708
\(75\) 0 0
\(76\) −12832.0 −0.254836
\(77\) − 13083.0i − 0.251467i
\(78\) − 47828.0i − 0.890114i
\(79\) 102121. 1.84097 0.920486 0.390775i \(-0.127793\pi\)
0.920486 + 0.390775i \(0.127793\pi\)
\(80\) 0 0
\(81\) −14519.0 −0.245881
\(82\) − 47616.0i − 0.782021i
\(83\) 83676.0i 1.33323i 0.745401 + 0.666616i \(0.232258\pi\)
−0.745401 + 0.666616i \(0.767742\pi\)
\(84\) 8624.00 0.133355
\(85\) 0 0
\(86\) −2392.00 −0.0348751
\(87\) − 19569.0i − 0.277185i
\(88\) 17088.0i 0.235226i
\(89\) 32400.0 0.433581 0.216790 0.976218i \(-0.430441\pi\)
0.216790 + 0.976218i \(0.430441\pi\)
\(90\) 0 0
\(91\) −53263.0 −0.674252
\(92\) − 20640.0i − 0.254238i
\(93\) − 28424.0i − 0.340783i
\(94\) 68076.0 0.794647
\(95\) 0 0
\(96\) −11264.0 −0.124743
\(97\) − 148645.i − 1.60406i −0.597283 0.802031i \(-0.703753\pi\)
0.597283 0.802031i \(-0.296247\pi\)
\(98\) − 9604.00i − 0.101015i
\(99\) −32574.0 −0.334028
\(100\) 0 0
\(101\) −41310.0 −0.402951 −0.201475 0.979494i \(-0.564574\pi\)
−0.201475 + 0.979494i \(0.564574\pi\)
\(102\) 22572.0i 0.214817i
\(103\) − 108785.i − 1.01036i −0.863014 0.505180i \(-0.831426\pi\)
0.863014 0.505180i \(-0.168574\pi\)
\(104\) 69568.0 0.630705
\(105\) 0 0
\(106\) 111408. 0.963056
\(107\) − 106098.i − 0.895876i −0.894065 0.447938i \(-0.852159\pi\)
0.894065 0.447938i \(-0.147841\pi\)
\(108\) − 64240.0i − 0.529964i
\(109\) 124111. 1.00056 0.500281 0.865863i \(-0.333230\pi\)
0.500281 + 0.865863i \(0.333230\pi\)
\(110\) 0 0
\(111\) −152482. −1.17466
\(112\) 12544.0i 0.0944911i
\(113\) − 192834.i − 1.42065i −0.703873 0.710326i \(-0.748548\pi\)
0.703873 0.710326i \(-0.251452\pi\)
\(114\) −35288.0 −0.254311
\(115\) 0 0
\(116\) 28464.0 0.196404
\(117\) 132614.i 0.895622i
\(118\) − 123648.i − 0.817489i
\(119\) 25137.0 0.162722
\(120\) 0 0
\(121\) −89762.0 −0.557351
\(122\) − 7120.00i − 0.0433092i
\(123\) − 130944.i − 0.780410i
\(124\) 41344.0 0.241467
\(125\) 0 0
\(126\) −23912.0 −0.134181
\(127\) 99248.0i 0.546025i 0.962010 + 0.273012i \(0.0880200\pi\)
−0.962010 + 0.273012i \(0.911980\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) −6578.00 −0.0348032
\(130\) 0 0
\(131\) −276810. −1.40930 −0.704650 0.709555i \(-0.748896\pi\)
−0.704650 + 0.709555i \(0.748896\pi\)
\(132\) 46992.0i 0.234741i
\(133\) 39298.0i 0.192638i
\(134\) −100208. −0.482104
\(135\) 0 0
\(136\) −32832.0 −0.152212
\(137\) 237744.i 1.08220i 0.840958 + 0.541101i \(0.181992\pi\)
−0.840958 + 0.541101i \(0.818008\pi\)
\(138\) − 56760.0i − 0.253714i
\(139\) −160478. −0.704496 −0.352248 0.935907i \(-0.614583\pi\)
−0.352248 + 0.935907i \(0.614583\pi\)
\(140\) 0 0
\(141\) 187209. 0.793011
\(142\) − 207936.i − 0.865384i
\(143\) − 290229.i − 1.18686i
\(144\) 31232.0 0.125514
\(145\) 0 0
\(146\) 190760. 0.740637
\(147\) − 26411.0i − 0.100807i
\(148\) − 221792.i − 0.832322i
\(149\) 99678.0 0.367819 0.183909 0.982943i \(-0.441125\pi\)
0.183909 + 0.982943i \(0.441125\pi\)
\(150\) 0 0
\(151\) −206017. −0.735293 −0.367647 0.929966i \(-0.619836\pi\)
−0.367647 + 0.929966i \(0.619836\pi\)
\(152\) − 51328.0i − 0.180196i
\(153\) − 62586.0i − 0.216147i
\(154\) 52332.0 0.177814
\(155\) 0 0
\(156\) 191312. 0.629406
\(157\) 581150.i 1.88165i 0.338891 + 0.940826i \(0.389948\pi\)
−0.338891 + 0.940826i \(0.610052\pi\)
\(158\) 408484.i 1.30176i
\(159\) 306372. 0.961073
\(160\) 0 0
\(161\) −63210.0 −0.192186
\(162\) − 58076.0i − 0.173864i
\(163\) − 346610.i − 1.02181i −0.859636 0.510907i \(-0.829310\pi\)
0.859636 0.510907i \(-0.170690\pi\)
\(164\) 190464. 0.552972
\(165\) 0 0
\(166\) −334704. −0.942737
\(167\) − 448887.i − 1.24551i −0.782418 0.622753i \(-0.786014\pi\)
0.782418 0.622753i \(-0.213986\pi\)
\(168\) 34496.0i 0.0942965i
\(169\) −810276. −2.18231
\(170\) 0 0
\(171\) 97844.0 0.255884
\(172\) − 9568.00i − 0.0246604i
\(173\) 262509.i 0.666851i 0.942776 + 0.333426i \(0.108205\pi\)
−0.942776 + 0.333426i \(0.891795\pi\)
\(174\) 78276.0 0.196000
\(175\) 0 0
\(176\) −68352.0 −0.166330
\(177\) − 340032.i − 0.815805i
\(178\) 129600.i 0.306588i
\(179\) 111012. 0.258963 0.129481 0.991582i \(-0.458669\pi\)
0.129481 + 0.991582i \(0.458669\pi\)
\(180\) 0 0
\(181\) 112772. 0.255861 0.127931 0.991783i \(-0.459166\pi\)
0.127931 + 0.991783i \(0.459166\pi\)
\(182\) − 213052.i − 0.476768i
\(183\) − 19580.0i − 0.0432200i
\(184\) 82560.0 0.179773
\(185\) 0 0
\(186\) 113696. 0.240970
\(187\) 136971.i 0.286434i
\(188\) 272304.i 0.561900i
\(189\) −196735. −0.400615
\(190\) 0 0
\(191\) −731991. −1.45185 −0.725926 0.687773i \(-0.758589\pi\)
−0.725926 + 0.687773i \(0.758589\pi\)
\(192\) − 45056.0i − 0.0882063i
\(193\) 186040.i 0.359512i 0.983711 + 0.179756i \(0.0575308\pi\)
−0.983711 + 0.179756i \(0.942469\pi\)
\(194\) 594580. 1.13424
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 121356.i 0.222790i 0.993776 + 0.111395i \(0.0355319\pi\)
−0.993776 + 0.111395i \(0.964468\pi\)
\(198\) − 130296.i − 0.236194i
\(199\) −648584. −1.16100 −0.580502 0.814259i \(-0.697144\pi\)
−0.580502 + 0.814259i \(0.697144\pi\)
\(200\) 0 0
\(201\) −275572. −0.481111
\(202\) − 165240.i − 0.284929i
\(203\) − 87171.0i − 0.148468i
\(204\) −90288.0 −0.151899
\(205\) 0 0
\(206\) 435140. 0.714432
\(207\) 157380.i 0.255284i
\(208\) 278272.i 0.445976i
\(209\) −214134. −0.339094
\(210\) 0 0
\(211\) −149773. −0.231594 −0.115797 0.993273i \(-0.536942\pi\)
−0.115797 + 0.993273i \(0.536942\pi\)
\(212\) 445632.i 0.680984i
\(213\) − 571824.i − 0.863601i
\(214\) 424392. 0.633480
\(215\) 0 0
\(216\) 256960. 0.374741
\(217\) − 126616.i − 0.182532i
\(218\) 496444.i 0.707504i
\(219\) 524590. 0.739111
\(220\) 0 0
\(221\) 557631. 0.768009
\(222\) − 609928.i − 0.830608i
\(223\) 1.10096e6i 1.48255i 0.671202 + 0.741274i \(0.265778\pi\)
−0.671202 + 0.741274i \(0.734222\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 771336. 1.00455
\(227\) − 695127.i − 0.895364i −0.894193 0.447682i \(-0.852250\pi\)
0.894193 0.447682i \(-0.147750\pi\)
\(228\) − 141152.i − 0.179825i
\(229\) −463736. −0.584362 −0.292181 0.956363i \(-0.594381\pi\)
−0.292181 + 0.956363i \(0.594381\pi\)
\(230\) 0 0
\(231\) 143913. 0.177448
\(232\) 113856.i 0.138879i
\(233\) 1.57654e6i 1.90245i 0.308492 + 0.951227i \(0.400176\pi\)
−0.308492 + 0.951227i \(0.599824\pi\)
\(234\) −530456. −0.633300
\(235\) 0 0
\(236\) 494592. 0.578052
\(237\) 1.12333e6i 1.29908i
\(238\) 100548.i 0.115062i
\(239\) 512037. 0.579838 0.289919 0.957051i \(-0.406372\pi\)
0.289919 + 0.957051i \(0.406372\pi\)
\(240\) 0 0
\(241\) 989330. 1.09723 0.548616 0.836074i \(-0.315155\pi\)
0.548616 + 0.836074i \(0.315155\pi\)
\(242\) − 359048.i − 0.394107i
\(243\) 815936.i 0.886422i
\(244\) 28480.0 0.0306242
\(245\) 0 0
\(246\) 523776. 0.551833
\(247\) 871774.i 0.909204i
\(248\) 165376.i 0.170743i
\(249\) −920436. −0.940795
\(250\) 0 0
\(251\) −61230.0 −0.0613451 −0.0306726 0.999529i \(-0.509765\pi\)
−0.0306726 + 0.999529i \(0.509765\pi\)
\(252\) − 95648.0i − 0.0948800i
\(253\) − 344430.i − 0.338298i
\(254\) −396992. −0.386098
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.33887e6i 1.26446i 0.774780 + 0.632231i \(0.217861\pi\)
−0.774780 + 0.632231i \(0.782139\pi\)
\(258\) − 26312.0i − 0.0246096i
\(259\) −679238. −0.629177
\(260\) 0 0
\(261\) −217038. −0.197213
\(262\) − 1.10724e6i − 0.996526i
\(263\) 1.65619e6i 1.47645i 0.674553 + 0.738227i \(0.264337\pi\)
−0.674553 + 0.738227i \(0.735663\pi\)
\(264\) −187968. −0.165987
\(265\) 0 0
\(266\) −157192. −0.136215
\(267\) 356400.i 0.305956i
\(268\) − 400832.i − 0.340899i
\(269\) 750606. 0.632457 0.316229 0.948683i \(-0.397583\pi\)
0.316229 + 0.948683i \(0.397583\pi\)
\(270\) 0 0
\(271\) −557908. −0.461466 −0.230733 0.973017i \(-0.574112\pi\)
−0.230733 + 0.973017i \(0.574112\pi\)
\(272\) − 131328.i − 0.107630i
\(273\) − 585893.i − 0.475786i
\(274\) −950976. −0.765232
\(275\) 0 0
\(276\) 227040. 0.179403
\(277\) 1.77256e6i 1.38804i 0.719957 + 0.694018i \(0.244161\pi\)
−0.719957 + 0.694018i \(0.755839\pi\)
\(278\) − 641912.i − 0.498154i
\(279\) −315248. −0.242461
\(280\) 0 0
\(281\) −1.09893e6 −0.830243 −0.415122 0.909766i \(-0.636261\pi\)
−0.415122 + 0.909766i \(0.636261\pi\)
\(282\) 748836.i 0.560743i
\(283\) 320569.i 0.237933i 0.992898 + 0.118967i \(0.0379582\pi\)
−0.992898 + 0.118967i \(0.962042\pi\)
\(284\) 831744. 0.611919
\(285\) 0 0
\(286\) 1.16092e6 0.839239
\(287\) − 583296.i − 0.418008i
\(288\) 124928.i 0.0887521i
\(289\) 1.15669e6 0.814651
\(290\) 0 0
\(291\) 1.63510e6 1.13191
\(292\) 763040.i 0.523709i
\(293\) 1.62337e6i 1.10471i 0.833609 + 0.552355i \(0.186271\pi\)
−0.833609 + 0.552355i \(0.813729\pi\)
\(294\) 105644. 0.0712814
\(295\) 0 0
\(296\) 887168. 0.588541
\(297\) − 1.07200e6i − 0.705189i
\(298\) 398712.i 0.260087i
\(299\) −1.40223e6 −0.907071
\(300\) 0 0
\(301\) −29302.0 −0.0186415
\(302\) − 824068.i − 0.519931i
\(303\) − 454410.i − 0.284342i
\(304\) 205312. 0.127418
\(305\) 0 0
\(306\) 250344. 0.152839
\(307\) 995087.i 0.602581i 0.953532 + 0.301290i \(0.0974173\pi\)
−0.953532 + 0.301290i \(0.902583\pi\)
\(308\) 209328.i 0.125733i
\(309\) 1.19664e6 0.712961
\(310\) 0 0
\(311\) 1.34398e6 0.787939 0.393969 0.919124i \(-0.371102\pi\)
0.393969 + 0.919124i \(0.371102\pi\)
\(312\) 765248.i 0.445057i
\(313\) − 1.91971e6i − 1.10758i −0.832658 0.553788i \(-0.813182\pi\)
0.832658 0.553788i \(-0.186818\pi\)
\(314\) −2.32460e6 −1.33053
\(315\) 0 0
\(316\) −1.63394e6 −0.920486
\(317\) − 1.91366e6i − 1.06959i −0.844983 0.534794i \(-0.820389\pi\)
0.844983 0.534794i \(-0.179611\pi\)
\(318\) 1.22549e6i 0.679581i
\(319\) 474993. 0.261343
\(320\) 0 0
\(321\) 1.16708e6 0.632175
\(322\) − 252840.i − 0.135896i
\(323\) − 411426.i − 0.219425i
\(324\) 232304. 0.122940
\(325\) 0 0
\(326\) 1.38644e6 0.722532
\(327\) 1.36522e6i 0.706047i
\(328\) 761856.i 0.391010i
\(329\) 833931. 0.424757
\(330\) 0 0
\(331\) −2.25694e6 −1.13227 −0.566135 0.824313i \(-0.691562\pi\)
−0.566135 + 0.824313i \(0.691562\pi\)
\(332\) − 1.33882e6i − 0.666616i
\(333\) 1.69116e6i 0.835748i
\(334\) 1.79555e6 0.880706
\(335\) 0 0
\(336\) −137984. −0.0666777
\(337\) − 1.45016e6i − 0.695571i −0.937574 0.347786i \(-0.886934\pi\)
0.937574 0.347786i \(-0.113066\pi\)
\(338\) − 3.24110e6i − 1.54313i
\(339\) 2.12117e6 1.00248
\(340\) 0 0
\(341\) 689928. 0.321305
\(342\) 391376.i 0.180938i
\(343\) − 117649.i − 0.0539949i
\(344\) 38272.0 0.0174375
\(345\) 0 0
\(346\) −1.05004e6 −0.471535
\(347\) 856386.i 0.381809i 0.981609 + 0.190904i \(0.0611420\pi\)
−0.981609 + 0.190904i \(0.938858\pi\)
\(348\) 313104.i 0.138593i
\(349\) 347602. 0.152763 0.0763816 0.997079i \(-0.475663\pi\)
0.0763816 + 0.997079i \(0.475663\pi\)
\(350\) 0 0
\(351\) −4.36430e6 −1.89081
\(352\) − 273408.i − 0.117613i
\(353\) 2.21860e6i 0.947640i 0.880622 + 0.473820i \(0.157125\pi\)
−0.880622 + 0.473820i \(0.842875\pi\)
\(354\) 1.36013e6 0.576862
\(355\) 0 0
\(356\) −518400. −0.216790
\(357\) 276507.i 0.114825i
\(358\) 444048.i 0.183114i
\(359\) −2.94338e6 −1.20534 −0.602672 0.797989i \(-0.705897\pi\)
−0.602672 + 0.797989i \(0.705897\pi\)
\(360\) 0 0
\(361\) −1.83290e6 −0.740235
\(362\) 451088.i 0.180921i
\(363\) − 987382.i − 0.393295i
\(364\) 852208. 0.337126
\(365\) 0 0
\(366\) 78320.0 0.0305612
\(367\) 2.33000e6i 0.903005i 0.892270 + 0.451503i \(0.149112\pi\)
−0.892270 + 0.451503i \(0.850888\pi\)
\(368\) 330240.i 0.127119i
\(369\) −1.45229e6 −0.555248
\(370\) 0 0
\(371\) 1.36475e6 0.514775
\(372\) 454784.i 0.170391i
\(373\) − 1.69246e6i − 0.629865i −0.949114 0.314932i \(-0.898018\pi\)
0.949114 0.314932i \(-0.101982\pi\)
\(374\) −547884. −0.202539
\(375\) 0 0
\(376\) −1.08922e6 −0.397324
\(377\) − 1.93377e6i − 0.700732i
\(378\) − 786940.i − 0.283278i
\(379\) 1.50075e6 0.536673 0.268337 0.963325i \(-0.413526\pi\)
0.268337 + 0.963325i \(0.413526\pi\)
\(380\) 0 0
\(381\) −1.09173e6 −0.385303
\(382\) − 2.92796e6i − 1.02661i
\(383\) − 3.48522e6i − 1.21404i −0.794686 0.607020i \(-0.792365\pi\)
0.794686 0.607020i \(-0.207635\pi\)
\(384\) 180224. 0.0623713
\(385\) 0 0
\(386\) −744160. −0.254213
\(387\) 72956.0i 0.0247619i
\(388\) 2.37832e6i 0.802031i
\(389\) 3.60598e6 1.20823 0.604114 0.796898i \(-0.293527\pi\)
0.604114 + 0.796898i \(0.293527\pi\)
\(390\) 0 0
\(391\) 661770. 0.218910
\(392\) 153664.i 0.0505076i
\(393\) − 3.04491e6i − 0.994473i
\(394\) −485424. −0.157536
\(395\) 0 0
\(396\) 521184. 0.167014
\(397\) 4.74380e6i 1.51060i 0.655377 + 0.755302i \(0.272510\pi\)
−0.655377 + 0.755302i \(0.727490\pi\)
\(398\) − 2.59434e6i − 0.820953i
\(399\) −432278. −0.135935
\(400\) 0 0
\(401\) 5.26539e6 1.63520 0.817598 0.575789i \(-0.195305\pi\)
0.817598 + 0.575789i \(0.195305\pi\)
\(402\) − 1.10229e6i − 0.340197i
\(403\) − 2.80881e6i − 0.861508i
\(404\) 660960. 0.201475
\(405\) 0 0
\(406\) 348684. 0.104983
\(407\) − 3.70115e6i − 1.10752i
\(408\) − 361152.i − 0.107409i
\(409\) −1.37015e6 −0.405004 −0.202502 0.979282i \(-0.564907\pi\)
−0.202502 + 0.979282i \(0.564907\pi\)
\(410\) 0 0
\(411\) −2.61518e6 −0.763656
\(412\) 1.74056e6i 0.505180i
\(413\) − 1.51469e6i − 0.436966i
\(414\) −629520. −0.180513
\(415\) 0 0
\(416\) −1.11309e6 −0.315352
\(417\) − 1.76526e6i − 0.497128i
\(418\) − 856536.i − 0.239776i
\(419\) −6.16429e6 −1.71533 −0.857666 0.514207i \(-0.828086\pi\)
−0.857666 + 0.514207i \(0.828086\pi\)
\(420\) 0 0
\(421\) 2.45358e6 0.674677 0.337338 0.941383i \(-0.390473\pi\)
0.337338 + 0.941383i \(0.390473\pi\)
\(422\) − 599092.i − 0.163762i
\(423\) − 2.07632e6i − 0.564213i
\(424\) −1.78253e6 −0.481528
\(425\) 0 0
\(426\) 2.28730e6 0.610658
\(427\) − 87220.0i − 0.0231498i
\(428\) 1.69757e6i 0.447938i
\(429\) 3.19252e6 0.837510
\(430\) 0 0
\(431\) 7.66771e6 1.98826 0.994128 0.108207i \(-0.0345111\pi\)
0.994128 + 0.108207i \(0.0345111\pi\)
\(432\) 1.02784e6i 0.264982i
\(433\) 5.00285e6i 1.28232i 0.767406 + 0.641161i \(0.221547\pi\)
−0.767406 + 0.641161i \(0.778453\pi\)
\(434\) 506464. 0.129070
\(435\) 0 0
\(436\) −1.98578e6 −0.500281
\(437\) 1.03458e6i 0.259156i
\(438\) 2.09836e6i 0.522630i
\(439\) −1.86363e6 −0.461527 −0.230764 0.973010i \(-0.574122\pi\)
−0.230764 + 0.973010i \(0.574122\pi\)
\(440\) 0 0
\(441\) −292922. −0.0717225
\(442\) 2.23052e6i 0.543064i
\(443\) − 2.60747e6i − 0.631263i −0.948882 0.315632i \(-0.897784\pi\)
0.948882 0.315632i \(-0.102216\pi\)
\(444\) 2.43971e6 0.587329
\(445\) 0 0
\(446\) −4.40384e6 −1.04832
\(447\) 1.09646e6i 0.259551i
\(448\) − 200704.i − 0.0472456i
\(449\) 4.78007e6 1.11897 0.559484 0.828841i \(-0.310999\pi\)
0.559484 + 0.828841i \(0.310999\pi\)
\(450\) 0 0
\(451\) 3.17837e6 0.735805
\(452\) 3.08534e6i 0.710326i
\(453\) − 2.26619e6i − 0.518860i
\(454\) 2.78051e6 0.633118
\(455\) 0 0
\(456\) 564608. 0.127155
\(457\) − 7.96757e6i − 1.78458i −0.451465 0.892289i \(-0.649098\pi\)
0.451465 0.892289i \(-0.350902\pi\)
\(458\) − 1.85494e6i − 0.413206i
\(459\) 2.05969e6 0.456322
\(460\) 0 0
\(461\) 1.77665e6 0.389358 0.194679 0.980867i \(-0.437633\pi\)
0.194679 + 0.980867i \(0.437633\pi\)
\(462\) 575652.i 0.125474i
\(463\) 998548.i 0.216479i 0.994125 + 0.108240i \(0.0345214\pi\)
−0.994125 + 0.108240i \(0.965479\pi\)
\(464\) −455424. −0.0982021
\(465\) 0 0
\(466\) −6.30614e6 −1.34524
\(467\) − 5.08478e6i − 1.07890i −0.842019 0.539449i \(-0.818633\pi\)
0.842019 0.539449i \(-0.181367\pi\)
\(468\) − 2.12182e6i − 0.447811i
\(469\) −1.22755e6 −0.257695
\(470\) 0 0
\(471\) −6.39265e6 −1.32779
\(472\) 1.97837e6i 0.408745i
\(473\) − 159666.i − 0.0328140i
\(474\) −4.49332e6 −0.918590
\(475\) 0 0
\(476\) −402192. −0.0813610
\(477\) − 3.39794e6i − 0.683786i
\(478\) 2.04815e6i 0.410007i
\(479\) −3.71936e6 −0.740678 −0.370339 0.928897i \(-0.620758\pi\)
−0.370339 + 0.928897i \(0.620758\pi\)
\(480\) 0 0
\(481\) −1.50680e7 −2.96956
\(482\) 3.95732e6i 0.775860i
\(483\) − 695310.i − 0.135616i
\(484\) 1.43619e6 0.278676
\(485\) 0 0
\(486\) −3.26374e6 −0.626795
\(487\) − 9.12035e6i − 1.74256i −0.490782 0.871282i \(-0.663289\pi\)
0.490782 0.871282i \(-0.336711\pi\)
\(488\) 113920.i 0.0216546i
\(489\) 3.81271e6 0.721044
\(490\) 0 0
\(491\) −7.83774e6 −1.46719 −0.733596 0.679586i \(-0.762160\pi\)
−0.733596 + 0.679586i \(0.762160\pi\)
\(492\) 2.09510e6i 0.390205i
\(493\) 912627.i 0.169113i
\(494\) −3.48710e6 −0.642905
\(495\) 0 0
\(496\) −661504. −0.120734
\(497\) − 2.54722e6i − 0.462567i
\(498\) − 3.68174e6i − 0.665243i
\(499\) 96103.0 0.0172777 0.00863884 0.999963i \(-0.497250\pi\)
0.00863884 + 0.999963i \(0.497250\pi\)
\(500\) 0 0
\(501\) 4.93776e6 0.878892
\(502\) − 244920.i − 0.0433775i
\(503\) 2.37577e6i 0.418682i 0.977843 + 0.209341i \(0.0671319\pi\)
−0.977843 + 0.209341i \(0.932868\pi\)
\(504\) 382592. 0.0670903
\(505\) 0 0
\(506\) 1.37772e6 0.239213
\(507\) − 8.91304e6i − 1.53995i
\(508\) − 1.58797e6i − 0.273012i
\(509\) −5.91484e6 −1.01193 −0.505963 0.862555i \(-0.668863\pi\)
−0.505963 + 0.862555i \(0.668863\pi\)
\(510\) 0 0
\(511\) 2.33681e6 0.395887
\(512\) 262144.i 0.0441942i
\(513\) 3.22003e6i 0.540215i
\(514\) −5.35548e6 −0.894109
\(515\) 0 0
\(516\) 105248. 0.0174016
\(517\) 4.54407e6i 0.747685i
\(518\) − 2.71695e6i − 0.444895i
\(519\) −2.88760e6 −0.470564
\(520\) 0 0
\(521\) 1.46099e6 0.235806 0.117903 0.993025i \(-0.462383\pi\)
0.117903 + 0.993025i \(0.462383\pi\)
\(522\) − 868152.i − 0.139450i
\(523\) 2.90691e6i 0.464705i 0.972632 + 0.232352i \(0.0746422\pi\)
−0.972632 + 0.232352i \(0.925358\pi\)
\(524\) 4.42896e6 0.704650
\(525\) 0 0
\(526\) −6.62474e6 −1.04401
\(527\) 1.32559e6i 0.207914i
\(528\) − 751872.i − 0.117371i
\(529\) 4.77224e6 0.741453
\(530\) 0 0
\(531\) −3.77126e6 −0.580431
\(532\) − 628768.i − 0.0963189i
\(533\) − 1.29396e7i − 1.97290i
\(534\) −1.42560e6 −0.216344
\(535\) 0 0
\(536\) 1.60333e6 0.241052
\(537\) 1.22113e6i 0.182737i
\(538\) 3.00242e6i 0.447215i
\(539\) 641067. 0.0950455
\(540\) 0 0
\(541\) 5.28092e6 0.775741 0.387870 0.921714i \(-0.373211\pi\)
0.387870 + 0.921714i \(0.373211\pi\)
\(542\) − 2.23163e6i − 0.326305i
\(543\) 1.24049e6i 0.180549i
\(544\) 525312. 0.0761062
\(545\) 0 0
\(546\) 2.34357e6 0.336432
\(547\) 1.31999e7i 1.88626i 0.332419 + 0.943132i \(0.392135\pi\)
−0.332419 + 0.943132i \(0.607865\pi\)
\(548\) − 3.80390e6i − 0.541101i
\(549\) −217160. −0.0307503
\(550\) 0 0
\(551\) −1.42676e6 −0.200203
\(552\) 908160.i 0.126857i
\(553\) 5.00393e6i 0.695822i
\(554\) −7.09023e6 −0.981490
\(555\) 0 0
\(556\) 2.56765e6 0.352248
\(557\) − 1.39920e7i − 1.91091i −0.295131 0.955457i \(-0.595363\pi\)
0.295131 0.955457i \(-0.404637\pi\)
\(558\) − 1.26099e6i − 0.171446i
\(559\) −650026. −0.0879835
\(560\) 0 0
\(561\) −1.50668e6 −0.202122
\(562\) − 4.39573e6i − 0.587071i
\(563\) 5.12689e6i 0.681684i 0.940121 + 0.340842i \(0.110712\pi\)
−0.940121 + 0.340842i \(0.889288\pi\)
\(564\) −2.99534e6 −0.396505
\(565\) 0 0
\(566\) −1.28228e6 −0.168244
\(567\) − 711431.i − 0.0929341i
\(568\) 3.32698e6i 0.432692i
\(569\) 8.29102e6 1.07356 0.536781 0.843721i \(-0.319640\pi\)
0.536781 + 0.843721i \(0.319640\pi\)
\(570\) 0 0
\(571\) 6.21372e6 0.797556 0.398778 0.917048i \(-0.369434\pi\)
0.398778 + 0.917048i \(0.369434\pi\)
\(572\) 4.64366e6i 0.593432i
\(573\) − 8.05190e6i − 1.02450i
\(574\) 2.33318e6 0.295576
\(575\) 0 0
\(576\) −499712. −0.0627572
\(577\) 1.14818e7i 1.43572i 0.696186 + 0.717861i \(0.254879\pi\)
−0.696186 + 0.717861i \(0.745121\pi\)
\(578\) 4.62675e6i 0.576045i
\(579\) −2.04644e6 −0.253690
\(580\) 0 0
\(581\) −4.10012e6 −0.503914
\(582\) 6.54038e6i 0.800379i
\(583\) 7.43648e6i 0.906142i
\(584\) −3.05216e6 −0.370318
\(585\) 0 0
\(586\) −6.49348e6 −0.781148
\(587\) 641856.i 0.0768851i 0.999261 + 0.0384426i \(0.0122397\pi\)
−0.999261 + 0.0384426i \(0.987760\pi\)
\(588\) 422576.i 0.0504036i
\(589\) −2.07237e6 −0.246138
\(590\) 0 0
\(591\) −1.33492e6 −0.157212
\(592\) 3.54867e6i 0.416161i
\(593\) 2.80572e6i 0.327648i 0.986490 + 0.163824i \(0.0523830\pi\)
−0.986490 + 0.163824i \(0.947617\pi\)
\(594\) 4.28802e6 0.498644
\(595\) 0 0
\(596\) −1.59485e6 −0.183909
\(597\) − 7.13442e6i − 0.819263i
\(598\) − 5.60892e6i − 0.641396i
\(599\) −7.74415e6 −0.881874 −0.440937 0.897538i \(-0.645354\pi\)
−0.440937 + 0.897538i \(0.645354\pi\)
\(600\) 0 0
\(601\) 2.88868e6 0.326222 0.163111 0.986608i \(-0.447847\pi\)
0.163111 + 0.986608i \(0.447847\pi\)
\(602\) − 117208.i − 0.0131815i
\(603\) 3.05634e6i 0.342302i
\(604\) 3.29627e6 0.367647
\(605\) 0 0
\(606\) 1.81764e6 0.201060
\(607\) 1.22095e7i 1.34501i 0.740093 + 0.672504i \(0.234781\pi\)
−0.740093 + 0.672504i \(0.765219\pi\)
\(608\) 821248.i 0.0900980i
\(609\) 958881. 0.104766
\(610\) 0 0
\(611\) 1.84997e7 2.00475
\(612\) 1.00138e6i 0.108073i
\(613\) − 1.51667e7i − 1.63019i −0.579326 0.815096i \(-0.696684\pi\)
0.579326 0.815096i \(-0.303316\pi\)
\(614\) −3.98035e6 −0.426089
\(615\) 0 0
\(616\) −837312. −0.0889069
\(617\) 1.53927e7i 1.62780i 0.581006 + 0.813899i \(0.302659\pi\)
−0.581006 + 0.813899i \(0.697341\pi\)
\(618\) 4.78654e6i 0.504139i
\(619\) 1.40843e7 1.47744 0.738720 0.674013i \(-0.235431\pi\)
0.738720 + 0.674013i \(0.235431\pi\)
\(620\) 0 0
\(621\) −5.17935e6 −0.538947
\(622\) 5.37593e6i 0.557157i
\(623\) 1.58760e6i 0.163878i
\(624\) −3.06099e6 −0.314703
\(625\) 0 0
\(626\) 7.67882e6 0.783175
\(627\) − 2.35547e6i − 0.239282i
\(628\) − 9.29840e6i − 0.940826i
\(629\) 7.11121e6 0.716666
\(630\) 0 0
\(631\) 1.56178e7 1.56152 0.780760 0.624831i \(-0.214832\pi\)
0.780760 + 0.624831i \(0.214832\pi\)
\(632\) − 6.53574e6i − 0.650882i
\(633\) − 1.64750e6i − 0.163424i
\(634\) 7.65463e6 0.756312
\(635\) 0 0
\(636\) −4.90195e6 −0.480536
\(637\) − 2.60989e6i − 0.254843i
\(638\) 1.89997e6i 0.184797i
\(639\) −6.34205e6 −0.614437
\(640\) 0 0
\(641\) 4.04157e6 0.388513 0.194256 0.980951i \(-0.437771\pi\)
0.194256 + 0.980951i \(0.437771\pi\)
\(642\) 4.66831e6i 0.447015i
\(643\) 1.71035e7i 1.63139i 0.578485 + 0.815693i \(0.303644\pi\)
−0.578485 + 0.815693i \(0.696356\pi\)
\(644\) 1.01136e6 0.0960929
\(645\) 0 0
\(646\) 1.64570e6 0.155157
\(647\) − 8.83546e6i − 0.829790i −0.909869 0.414895i \(-0.863818\pi\)
0.909869 0.414895i \(-0.136182\pi\)
\(648\) 929216.i 0.0869319i
\(649\) 8.25350e6 0.769178
\(650\) 0 0
\(651\) 1.39278e6 0.128804
\(652\) 5.54576e6i 0.510907i
\(653\) − 9.36125e6i − 0.859115i −0.903040 0.429557i \(-0.858670\pi\)
0.903040 0.429557i \(-0.141330\pi\)
\(654\) −5.46088e6 −0.499251
\(655\) 0 0
\(656\) −3.04742e6 −0.276486
\(657\) − 5.81818e6i − 0.525864i
\(658\) 3.33572e6i 0.300348i
\(659\) 366111. 0.0328397 0.0164199 0.999865i \(-0.494773\pi\)
0.0164199 + 0.999865i \(0.494773\pi\)
\(660\) 0 0
\(661\) 2.05164e7 1.82640 0.913202 0.407508i \(-0.133602\pi\)
0.913202 + 0.407508i \(0.133602\pi\)
\(662\) − 9.02776e6i − 0.800636i
\(663\) 6.13394e6i 0.541946i
\(664\) 5.35526e6 0.471369
\(665\) 0 0
\(666\) −6.76466e6 −0.590963
\(667\) − 2.29491e6i − 0.199734i
\(668\) 7.18219e6i 0.622753i
\(669\) −1.21105e7 −1.04616
\(670\) 0 0
\(671\) 475260. 0.0407498
\(672\) − 551936.i − 0.0471482i
\(673\) − 7.48189e6i − 0.636757i −0.947964 0.318378i \(-0.896862\pi\)
0.947964 0.318378i \(-0.103138\pi\)
\(674\) 5.80065e6 0.491843
\(675\) 0 0
\(676\) 1.29644e7 1.09115
\(677\) 1.21459e7i 1.01849i 0.860621 + 0.509247i \(0.170076\pi\)
−0.860621 + 0.509247i \(0.829924\pi\)
\(678\) 8.48470e6i 0.708863i
\(679\) 7.28360e6 0.606278
\(680\) 0 0
\(681\) 7.64640e6 0.631814
\(682\) 2.75971e6i 0.227197i
\(683\) 1.15232e7i 0.945197i 0.881278 + 0.472599i \(0.156684\pi\)
−0.881278 + 0.472599i \(0.843316\pi\)
\(684\) −1.56550e6 −0.127942
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) − 5.10110e6i − 0.412355i
\(688\) 153088.i 0.0123302i
\(689\) 3.02751e7 2.42962
\(690\) 0 0
\(691\) −1.71185e7 −1.36386 −0.681931 0.731417i \(-0.738859\pi\)
−0.681931 + 0.731417i \(0.738859\pi\)
\(692\) − 4.20014e6i − 0.333426i
\(693\) − 1.59613e6i − 0.126251i
\(694\) −3.42554e6 −0.269980
\(695\) 0 0
\(696\) −1.25242e6 −0.0979999
\(697\) 6.10675e6i 0.476133i
\(698\) 1.39041e6i 0.108020i
\(699\) −1.73419e7 −1.34247
\(700\) 0 0
\(701\) 9.72758e6 0.747669 0.373835 0.927495i \(-0.378043\pi\)
0.373835 + 0.927495i \(0.378043\pi\)
\(702\) − 1.74572e7i − 1.33700i
\(703\) 1.11173e7i 0.848422i
\(704\) 1.09363e6 0.0831648
\(705\) 0 0
\(706\) −8.87442e6 −0.670082
\(707\) − 2.02419e6i − 0.152301i
\(708\) 5.44051e6i 0.407903i
\(709\) 673813. 0.0503412 0.0251706 0.999683i \(-0.491987\pi\)
0.0251706 + 0.999683i \(0.491987\pi\)
\(710\) 0 0
\(711\) 1.24588e7 0.924274
\(712\) − 2.07360e6i − 0.153294i
\(713\) − 3.33336e6i − 0.245560i
\(714\) −1.10603e6 −0.0811934
\(715\) 0 0
\(716\) −1.77619e6 −0.129481
\(717\) 5.63241e6i 0.409163i
\(718\) − 1.17735e7i − 0.852307i
\(719\) −2.77719e6 −0.200347 −0.100174 0.994970i \(-0.531940\pi\)
−0.100174 + 0.994970i \(0.531940\pi\)
\(720\) 0 0
\(721\) 5.33046e6 0.381880
\(722\) − 7.33158e6i − 0.523425i
\(723\) 1.08826e7i 0.774262i
\(724\) −1.80435e6 −0.127931
\(725\) 0 0
\(726\) 3.94953e6 0.278102
\(727\) 1.16385e7i 0.816700i 0.912825 + 0.408350i \(0.133896\pi\)
−0.912825 + 0.408350i \(0.866104\pi\)
\(728\) 3.40883e6i 0.238384i
\(729\) −1.25034e7 −0.871384
\(730\) 0 0
\(731\) 306774. 0.0212337
\(732\) 313280.i 0.0216100i
\(733\) 1.32013e7i 0.907522i 0.891123 + 0.453761i \(0.149918\pi\)
−0.891123 + 0.453761i \(0.850082\pi\)
\(734\) −9.31999e6 −0.638521
\(735\) 0 0
\(736\) −1.32096e6 −0.0898866
\(737\) − 6.68888e6i − 0.453612i
\(738\) − 5.80915e6i − 0.392619i
\(739\) −3.25476e6 −0.219234 −0.109617 0.993974i \(-0.534962\pi\)
−0.109617 + 0.993974i \(0.534962\pi\)
\(740\) 0 0
\(741\) −9.58951e6 −0.641580
\(742\) 5.45899e6i 0.364001i
\(743\) 7.61596e6i 0.506119i 0.967451 + 0.253059i \(0.0814368\pi\)
−0.967451 + 0.253059i \(0.918563\pi\)
\(744\) −1.81914e6 −0.120485
\(745\) 0 0
\(746\) 6.76986e6 0.445382
\(747\) 1.02085e7i 0.669359i
\(748\) − 2.19154e6i − 0.143217i
\(749\) 5.19880e6 0.338609
\(750\) 0 0
\(751\) 655199. 0.0423910 0.0211955 0.999775i \(-0.493253\pi\)
0.0211955 + 0.999775i \(0.493253\pi\)
\(752\) − 4.35686e6i − 0.280950i
\(753\) − 673530.i − 0.0432882i
\(754\) 7.73509e6 0.495493
\(755\) 0 0
\(756\) 3.14776e6 0.200307
\(757\) 1.85111e7i 1.17406i 0.809564 + 0.587032i \(0.199704\pi\)
−0.809564 + 0.587032i \(0.800296\pi\)
\(758\) 6.00299e6i 0.379485i
\(759\) 3.78873e6 0.238720
\(760\) 0 0
\(761\) −1.85291e7 −1.15983 −0.579914 0.814678i \(-0.696914\pi\)
−0.579914 + 0.814678i \(0.696914\pi\)
\(762\) − 4.36691e6i − 0.272450i
\(763\) 6.08144e6i 0.378177i
\(764\) 1.17119e7 0.725926
\(765\) 0 0
\(766\) 1.39409e7 0.858456
\(767\) − 3.36013e7i − 2.06238i
\(768\) 720896.i 0.0441031i
\(769\) 1.48414e7 0.905024 0.452512 0.891758i \(-0.350528\pi\)
0.452512 + 0.891758i \(0.350528\pi\)
\(770\) 0 0
\(771\) −1.47276e7 −0.892268
\(772\) − 2.97664e6i − 0.179756i
\(773\) − 3.93042e6i − 0.236586i −0.992979 0.118293i \(-0.962258\pi\)
0.992979 0.118293i \(-0.0377423\pi\)
\(774\) −291824. −0.0175093
\(775\) 0 0
\(776\) −9.51328e6 −0.567121
\(777\) − 7.47162e6i − 0.443979i
\(778\) 1.44239e7i 0.854347i
\(779\) −9.54701e6 −0.563668
\(780\) 0 0
\(781\) 1.38797e7 0.814242
\(782\) 2.64708e6i 0.154793i
\(783\) − 7.14269e6i − 0.416349i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 1.21796e7 0.703199
\(787\) 1.17824e7i 0.678105i 0.940767 + 0.339053i \(0.110107\pi\)
−0.940767 + 0.339053i \(0.889893\pi\)
\(788\) − 1.94170e6i − 0.111395i
\(789\) −1.82180e7 −1.04186
\(790\) 0 0
\(791\) 9.44887e6 0.536956
\(792\) 2.08474e6i 0.118097i
\(793\) − 1.93486e6i − 0.109261i
\(794\) −1.89752e7 −1.06816
\(795\) 0 0
\(796\) 1.03773e7 0.580502
\(797\) − 5.40952e6i − 0.301657i −0.988560 0.150828i \(-0.951806\pi\)
0.988560 0.150828i \(-0.0481941\pi\)
\(798\) − 1.72911e6i − 0.0961205i
\(799\) −8.73075e6 −0.483821
\(800\) 0 0
\(801\) 3.95280e6 0.217683
\(802\) 2.10616e7i 1.15626i
\(803\) 1.27332e7i 0.696867i
\(804\) 4.40915e6 0.240555
\(805\) 0 0
\(806\) 1.12352e7 0.609178
\(807\) 8.25667e6i 0.446294i
\(808\) 2.64384e6i 0.142465i
\(809\) 7.12264e6 0.382622 0.191311 0.981529i \(-0.438726\pi\)
0.191311 + 0.981529i \(0.438726\pi\)
\(810\) 0 0
\(811\) −3.03045e7 −1.61791 −0.808956 0.587869i \(-0.799967\pi\)
−0.808956 + 0.587869i \(0.799967\pi\)
\(812\) 1.39474e6i 0.0742338i
\(813\) − 6.13699e6i − 0.325633i
\(814\) 1.48046e7 0.783134
\(815\) 0 0
\(816\) 1.44461e6 0.0759494
\(817\) 479596.i 0.0251374i
\(818\) − 5.48060e6i − 0.286381i
\(819\) −6.49809e6 −0.338513
\(820\) 0 0
\(821\) 2.82181e7 1.46106 0.730532 0.682878i \(-0.239272\pi\)
0.730532 + 0.682878i \(0.239272\pi\)
\(822\) − 1.04607e7i − 0.539986i
\(823\) 2.64534e7i 1.36139i 0.732567 + 0.680694i \(0.238322\pi\)
−0.732567 + 0.680694i \(0.761678\pi\)
\(824\) −6.96224e6 −0.357216
\(825\) 0 0
\(826\) 6.05875e6 0.308982
\(827\) 4.44481e6i 0.225990i 0.993596 + 0.112995i \(0.0360444\pi\)
−0.993596 + 0.112995i \(0.963956\pi\)
\(828\) − 2.51808e6i − 0.127642i
\(829\) 2.80386e6 0.141700 0.0708501 0.997487i \(-0.477429\pi\)
0.0708501 + 0.997487i \(0.477429\pi\)
\(830\) 0 0
\(831\) −1.94981e7 −0.979469
\(832\) − 4.45235e6i − 0.222988i
\(833\) 1.23171e6i 0.0615031i
\(834\) 7.06103e6 0.351522
\(835\) 0 0
\(836\) 3.42614e6 0.169547
\(837\) − 1.03748e7i − 0.511876i
\(838\) − 2.46572e7i − 1.21292i
\(839\) −2.59804e7 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(840\) 0 0
\(841\) −1.73463e7 −0.845701
\(842\) 9.81434e6i 0.477069i
\(843\) − 1.20883e7i − 0.585862i
\(844\) 2.39637e6 0.115797
\(845\) 0 0
\(846\) 8.30527e6 0.398959
\(847\) − 4.39834e6i − 0.210659i
\(848\) − 7.13011e6i − 0.340492i
\(849\) −3.52626e6 −0.167898
\(850\) 0 0
\(851\) −1.78820e7 −0.846431
\(852\) 9.14918e6i 0.431801i
\(853\) − 1.18392e7i − 0.557121i −0.960419 0.278560i \(-0.910143\pi\)
0.960419 0.278560i \(-0.0898573\pi\)
\(854\) 348880. 0.0163693
\(855\) 0 0
\(856\) −6.79027e6 −0.316740
\(857\) − 2.99283e6i − 0.139197i −0.997575 0.0695985i \(-0.977828\pi\)
0.997575 0.0695985i \(-0.0221718\pi\)
\(858\) 1.27701e7i 0.592209i
\(859\) −2.80980e7 −1.29925 −0.649626 0.760254i \(-0.725074\pi\)
−0.649626 + 0.760254i \(0.725074\pi\)
\(860\) 0 0
\(861\) 6.41626e6 0.294967
\(862\) 3.06708e7i 1.40591i
\(863\) − 1.15833e7i − 0.529424i −0.964328 0.264712i \(-0.914723\pi\)
0.964328 0.264712i \(-0.0852769\pi\)
\(864\) −4.11136e6 −0.187370
\(865\) 0 0
\(866\) −2.00114e7 −0.906739
\(867\) 1.27236e7i 0.574859i
\(868\) 2.02586e6i 0.0912661i
\(869\) −2.72663e7 −1.22483
\(870\) 0 0
\(871\) −2.72315e7 −1.21626
\(872\) − 7.94310e6i − 0.353752i
\(873\) − 1.81347e7i − 0.805331i
\(874\) −4.13832e6 −0.183251
\(875\) 0 0
\(876\) −8.39344e6 −0.369556
\(877\) 4.12538e7i 1.81119i 0.424141 + 0.905596i \(0.360576\pi\)
−0.424141 + 0.905596i \(0.639424\pi\)
\(878\) − 7.45450e6i − 0.326349i
\(879\) −1.78571e7 −0.779539
\(880\) 0 0
\(881\) −1.32541e7 −0.575321 −0.287661 0.957732i \(-0.592877\pi\)
−0.287661 + 0.957732i \(0.592877\pi\)
\(882\) − 1.17169e6i − 0.0507155i
\(883\) 3.19208e7i 1.37776i 0.724877 + 0.688878i \(0.241897\pi\)
−0.724877 + 0.688878i \(0.758103\pi\)
\(884\) −8.92210e6 −0.384004
\(885\) 0 0
\(886\) 1.04299e7 0.446371
\(887\) 1.74303e7i 0.743866i 0.928260 + 0.371933i \(0.121305\pi\)
−0.928260 + 0.371933i \(0.878695\pi\)
\(888\) 9.75885e6i 0.415304i
\(889\) −4.86315e6 −0.206378
\(890\) 0 0
\(891\) 3.87657e6 0.163589
\(892\) − 1.76153e7i − 0.741274i
\(893\) − 1.36492e7i − 0.572769i
\(894\) −4.38583e6 −0.183530
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) − 1.54245e7i − 0.640075i
\(898\) 1.91203e7i 0.791230i
\(899\) 4.59694e6 0.189701
\(900\) 0 0
\(901\) −1.42881e7 −0.586357
\(902\) 1.27135e7i 0.520293i
\(903\) − 322322.i − 0.0131544i
\(904\) −1.23414e7 −0.502276
\(905\) 0 0
\(906\) 9.06475e6 0.366889
\(907\) − 3.15066e7i − 1.27170i −0.771815 0.635848i \(-0.780651\pi\)
0.771815 0.635848i \(-0.219349\pi\)
\(908\) 1.11220e7i 0.447682i
\(909\) −5.03982e6 −0.202304
\(910\) 0 0
\(911\) −4.91214e7 −1.96099 −0.980494 0.196548i \(-0.937027\pi\)
−0.980494 + 0.196548i \(0.937027\pi\)
\(912\) 2.25843e6i 0.0899125i
\(913\) − 2.23415e7i − 0.887024i
\(914\) 3.18703e7 1.26189
\(915\) 0 0
\(916\) 7.41978e6 0.292181
\(917\) − 1.35637e7i − 0.532665i
\(918\) 8.23878e6i 0.322668i
\(919\) 4.51238e7 1.76245 0.881226 0.472696i \(-0.156719\pi\)
0.881226 + 0.472696i \(0.156719\pi\)
\(920\) 0 0
\(921\) −1.09460e7 −0.425211
\(922\) 7.10659e6i 0.275318i
\(923\) − 5.65066e7i − 2.18321i
\(924\) −2.30261e6 −0.0887238
\(925\) 0 0
\(926\) −3.99419e6 −0.153074
\(927\) − 1.32718e7i − 0.507259i
\(928\) − 1.82170e6i − 0.0694394i
\(929\) 3.68196e7 1.39972 0.699858 0.714282i \(-0.253247\pi\)
0.699858 + 0.714282i \(0.253247\pi\)
\(930\) 0 0
\(931\) −1.92560e6 −0.0728102
\(932\) − 2.52246e7i − 0.951227i
\(933\) 1.47838e7i 0.556009i
\(934\) 2.03391e7 0.762896
\(935\) 0 0
\(936\) 8.48730e6 0.316650
\(937\) 1.71904e7i 0.639641i 0.947478 + 0.319820i \(0.103623\pi\)
−0.947478 + 0.319820i \(0.896377\pi\)
\(938\) − 4.91019e6i − 0.182218i
\(939\) 2.11168e7 0.781562
\(940\) 0 0
\(941\) −8.10352e6 −0.298332 −0.149166 0.988812i \(-0.547659\pi\)
−0.149166 + 0.988812i \(0.547659\pi\)
\(942\) − 2.55706e7i − 0.938888i
\(943\) − 1.53562e7i − 0.562346i
\(944\) −7.91347e6 −0.289026
\(945\) 0 0
\(946\) 638664. 0.0232030
\(947\) 1.83337e7i 0.664317i 0.943224 + 0.332158i \(0.107777\pi\)
−0.943224 + 0.332158i \(0.892223\pi\)
\(948\) − 1.79733e7i − 0.649541i
\(949\) 5.18390e7 1.86849
\(950\) 0 0
\(951\) 2.10502e7 0.754755
\(952\) − 1.60877e6i − 0.0575309i
\(953\) − 6.03035e6i − 0.215085i −0.994200 0.107542i \(-0.965702\pi\)
0.994200 0.107542i \(-0.0342982\pi\)
\(954\) 1.35918e7 0.483510
\(955\) 0 0
\(956\) −8.19259e6 −0.289919
\(957\) 5.22492e6i 0.184417i
\(958\) − 1.48774e7i − 0.523738i
\(959\) −1.16495e7 −0.409034
\(960\) 0 0
\(961\) −2.19521e7 −0.766774
\(962\) − 6.02720e7i − 2.09980i
\(963\) − 1.29440e7i − 0.449781i
\(964\) −1.58293e7 −0.548616
\(965\) 0 0
\(966\) 2.78124e6 0.0958949
\(967\) − 3.09228e7i − 1.06344i −0.846920 0.531720i \(-0.821546\pi\)
0.846920 0.531720i \(-0.178454\pi\)
\(968\) 5.74477e6i 0.197053i
\(969\) 4.52569e6 0.154837
\(970\) 0 0
\(971\) −2.47924e6 −0.0843859 −0.0421929 0.999109i \(-0.513434\pi\)
−0.0421929 + 0.999109i \(0.513434\pi\)
\(972\) − 1.30550e7i − 0.443211i
\(973\) − 7.86342e6i − 0.266274i
\(974\) 3.64814e7 1.23218
\(975\) 0 0
\(976\) −455680. −0.0153121
\(977\) − 2.09758e6i − 0.0703044i −0.999382 0.0351522i \(-0.988808\pi\)
0.999382 0.0351522i \(-0.0111916\pi\)
\(978\) 1.52508e7i 0.509855i
\(979\) −8.65080e6 −0.288469
\(980\) 0 0
\(981\) 1.51415e7 0.502340
\(982\) − 3.13509e7i − 1.03746i
\(983\) 4.45491e7i 1.47047i 0.677814 + 0.735233i \(0.262927\pi\)
−0.677814 + 0.735233i \(0.737073\pi\)
\(984\) −8.38042e6 −0.275917
\(985\) 0 0
\(986\) −3.65051e6 −0.119581
\(987\) 9.17324e6i 0.299730i
\(988\) − 1.39484e7i − 0.454602i
\(989\) −771420. −0.0250784
\(990\) 0 0
\(991\) −1.95104e7 −0.631075 −0.315538 0.948913i \(-0.602185\pi\)
−0.315538 + 0.948913i \(0.602185\pi\)
\(992\) − 2.64602e6i − 0.0853716i
\(993\) − 2.48263e7i − 0.798987i
\(994\) 1.01889e7 0.327084
\(995\) 0 0
\(996\) 1.47270e7 0.470398
\(997\) − 2.00678e7i − 0.639385i −0.947521 0.319692i \(-0.896420\pi\)
0.947521 0.319692i \(-0.103580\pi\)
\(998\) 384412.i 0.0122172i
\(999\) −5.56559e7 −1.76440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.b.99.2 2
5.2 odd 4 350.6.a.d.1.1 1
5.3 odd 4 70.6.a.f.1.1 1
5.4 even 2 inner 350.6.c.b.99.1 2
15.8 even 4 630.6.a.e.1.1 1
20.3 even 4 560.6.a.f.1.1 1
35.13 even 4 490.6.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.f.1.1 1 5.3 odd 4
350.6.a.d.1.1 1 5.2 odd 4
350.6.c.b.99.1 2 5.4 even 2 inner
350.6.c.b.99.2 2 1.1 even 1 trivial
490.6.a.l.1.1 1 35.13 even 4
560.6.a.f.1.1 1 20.3 even 4
630.6.a.e.1.1 1 15.8 even 4