Properties

Label 350.6.c.a.99.2
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.a.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +17.0000i q^{3} -16.0000 q^{4} -68.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -46.0000 q^{9} -715.000 q^{11} -272.000i q^{12} -331.000i q^{13} +196.000 q^{14} +256.000 q^{16} -1699.00i q^{17} -184.000i q^{18} +1718.00 q^{19} +833.000 q^{21} -2860.00i q^{22} +3950.00i q^{23} +1088.00 q^{24} +1324.00 q^{26} +3349.00i q^{27} +784.000i q^{28} -4579.00 q^{29} +6756.00 q^{31} +1024.00i q^{32} -12155.0i q^{33} +6796.00 q^{34} +736.000 q^{36} -16518.0i q^{37} +6872.00i q^{38} +5627.00 q^{39} +18876.0 q^{41} +3332.00i q^{42} -2258.00i q^{43} +11440.0 q^{44} -15800.0 q^{46} -537.000i q^{47} +4352.00i q^{48} -2401.00 q^{49} +28883.0 q^{51} +5296.00i q^{52} +10984.0i q^{53} -13396.0 q^{54} -3136.00 q^{56} +29206.0i q^{57} -18316.0i q^{58} +25956.0 q^{59} +39188.0 q^{61} +27024.0i q^{62} +2254.00i q^{63} -4096.00 q^{64} +48620.0 q^{66} +4416.00i q^{67} +27184.0i q^{68} -67150.0 q^{69} -31880.0 q^{71} +2944.00i q^{72} +5018.00i q^{73} +66072.0 q^{74} -27488.0 q^{76} +35035.0i q^{77} +22508.0i q^{78} +27977.0 q^{79} -68111.0 q^{81} +75504.0i q^{82} -37644.0i q^{83} -13328.0 q^{84} +9032.00 q^{86} -77843.0i q^{87} +45760.0i q^{88} +17216.0 q^{89} -16219.0 q^{91} -63200.0i q^{92} +114852. i q^{93} +2148.00 q^{94} -17408.0 q^{96} -63175.0i q^{97} -9604.00i q^{98} +32890.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 136 q^{6} - 92 q^{9} - 1430 q^{11} + 392 q^{14} + 512 q^{16} + 3436 q^{19} + 1666 q^{21} + 2176 q^{24} + 2648 q^{26} - 9158 q^{29} + 13512 q^{31} + 13592 q^{34} + 1472 q^{36} + 11254 q^{39}+ \cdots + 65780 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 17.0000i 1.09055i 0.838257 + 0.545275i \(0.183575\pi\)
−0.838257 + 0.545275i \(0.816425\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −68.0000 −0.771136
\(7\) − 49.0000i − 0.377964i
\(8\) − 64.0000i − 0.353553i
\(9\) −46.0000 −0.189300
\(10\) 0 0
\(11\) −715.000 −1.78166 −0.890829 0.454339i \(-0.849876\pi\)
−0.890829 + 0.454339i \(0.849876\pi\)
\(12\) − 272.000i − 0.545275i
\(13\) − 331.000i − 0.543212i −0.962408 0.271606i \(-0.912445\pi\)
0.962408 0.271606i \(-0.0875548\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 1699.00i − 1.42584i −0.701245 0.712920i \(-0.747372\pi\)
0.701245 0.712920i \(-0.252628\pi\)
\(18\) − 184.000i − 0.133856i
\(19\) 1718.00 1.09179 0.545895 0.837854i \(-0.316190\pi\)
0.545895 + 0.837854i \(0.316190\pi\)
\(20\) 0 0
\(21\) 833.000 0.412189
\(22\) − 2860.00i − 1.25982i
\(23\) 3950.00i 1.55696i 0.627669 + 0.778480i \(0.284009\pi\)
−0.627669 + 0.778480i \(0.715991\pi\)
\(24\) 1088.00 0.385568
\(25\) 0 0
\(26\) 1324.00 0.384109
\(27\) 3349.00i 0.884109i
\(28\) 784.000i 0.188982i
\(29\) −4579.00 −1.01106 −0.505529 0.862810i \(-0.668702\pi\)
−0.505529 + 0.862810i \(0.668702\pi\)
\(30\) 0 0
\(31\) 6756.00 1.26266 0.631329 0.775516i \(-0.282510\pi\)
0.631329 + 0.775516i \(0.282510\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 12155.0i − 1.94299i
\(34\) 6796.00 1.00822
\(35\) 0 0
\(36\) 736.000 0.0946502
\(37\) − 16518.0i − 1.98360i −0.127816 0.991798i \(-0.540797\pi\)
0.127816 0.991798i \(-0.459203\pi\)
\(38\) 6872.00i 0.772012i
\(39\) 5627.00 0.592400
\(40\) 0 0
\(41\) 18876.0 1.75368 0.876840 0.480782i \(-0.159647\pi\)
0.876840 + 0.480782i \(0.159647\pi\)
\(42\) 3332.00i 0.291462i
\(43\) − 2258.00i − 0.186231i −0.995655 0.0931157i \(-0.970317\pi\)
0.995655 0.0931157i \(-0.0296826\pi\)
\(44\) 11440.0 0.890829
\(45\) 0 0
\(46\) −15800.0 −1.10094
\(47\) − 537.000i − 0.0354593i −0.999843 0.0177296i \(-0.994356\pi\)
0.999843 0.0177296i \(-0.00564381\pi\)
\(48\) 4352.00i 0.272638i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 28883.0 1.55495
\(52\) 5296.00i 0.271606i
\(53\) 10984.0i 0.537119i 0.963263 + 0.268560i \(0.0865477\pi\)
−0.963263 + 0.268560i \(0.913452\pi\)
\(54\) −13396.0 −0.625159
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 29206.0i 1.19065i
\(58\) − 18316.0i − 0.714925i
\(59\) 25956.0 0.970751 0.485375 0.874306i \(-0.338683\pi\)
0.485375 + 0.874306i \(0.338683\pi\)
\(60\) 0 0
\(61\) 39188.0 1.34843 0.674215 0.738535i \(-0.264482\pi\)
0.674215 + 0.738535i \(0.264482\pi\)
\(62\) 27024.0i 0.892833i
\(63\) 2254.00i 0.0715488i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 48620.0 1.37390
\(67\) 4416.00i 0.120183i 0.998193 + 0.0600914i \(0.0191392\pi\)
−0.998193 + 0.0600914i \(0.980861\pi\)
\(68\) 27184.0i 0.712920i
\(69\) −67150.0 −1.69794
\(70\) 0 0
\(71\) −31880.0 −0.750538 −0.375269 0.926916i \(-0.622450\pi\)
−0.375269 + 0.926916i \(0.622450\pi\)
\(72\) 2944.00i 0.0669278i
\(73\) 5018.00i 0.110211i 0.998481 + 0.0551053i \(0.0175495\pi\)
−0.998481 + 0.0551053i \(0.982451\pi\)
\(74\) 66072.0 1.40261
\(75\) 0 0
\(76\) −27488.0 −0.545895
\(77\) 35035.0i 0.673403i
\(78\) 22508.0i 0.418890i
\(79\) 27977.0 0.504352 0.252176 0.967681i \(-0.418854\pi\)
0.252176 + 0.967681i \(0.418854\pi\)
\(80\) 0 0
\(81\) −68111.0 −1.15347
\(82\) 75504.0i 1.24004i
\(83\) − 37644.0i − 0.599792i −0.953972 0.299896i \(-0.903048\pi\)
0.953972 0.299896i \(-0.0969520\pi\)
\(84\) −13328.0 −0.206095
\(85\) 0 0
\(86\) 9032.00 0.131685
\(87\) − 77843.0i − 1.10261i
\(88\) 45760.0i 0.629911i
\(89\) 17216.0 0.230387 0.115193 0.993343i \(-0.463251\pi\)
0.115193 + 0.993343i \(0.463251\pi\)
\(90\) 0 0
\(91\) −16219.0 −0.205315
\(92\) − 63200.0i − 0.778480i
\(93\) 114852.i 1.37699i
\(94\) 2148.00 0.0250735
\(95\) 0 0
\(96\) −17408.0 −0.192784
\(97\) − 63175.0i − 0.681736i −0.940111 0.340868i \(-0.889279\pi\)
0.940111 0.340868i \(-0.110721\pi\)
\(98\) − 9604.00i − 0.101015i
\(99\) 32890.0 0.337269
\(100\) 0 0
\(101\) −29250.0 −0.285314 −0.142657 0.989772i \(-0.545565\pi\)
−0.142657 + 0.989772i \(0.545565\pi\)
\(102\) 115532.i 1.09952i
\(103\) 149189.i 1.38562i 0.721121 + 0.692809i \(0.243627\pi\)
−0.721121 + 0.692809i \(0.756373\pi\)
\(104\) −21184.0 −0.192055
\(105\) 0 0
\(106\) −43936.0 −0.379801
\(107\) 83742.0i 0.707105i 0.935415 + 0.353552i \(0.115026\pi\)
−0.935415 + 0.353552i \(0.884974\pi\)
\(108\) − 53584.0i − 0.442054i
\(109\) −105377. −0.849532 −0.424766 0.905303i \(-0.639644\pi\)
−0.424766 + 0.905303i \(0.639644\pi\)
\(110\) 0 0
\(111\) 280806. 2.16321
\(112\) − 12544.0i − 0.0944911i
\(113\) 122754.i 0.904356i 0.891928 + 0.452178i \(0.149353\pi\)
−0.891928 + 0.452178i \(0.850647\pi\)
\(114\) −116824. −0.841918
\(115\) 0 0
\(116\) 73264.0 0.505529
\(117\) 15226.0i 0.102830i
\(118\) 103824.i 0.686424i
\(119\) −83251.0 −0.538917
\(120\) 0 0
\(121\) 350174. 2.17431
\(122\) 156752.i 0.953484i
\(123\) 320892.i 1.91248i
\(124\) −108096. −0.631329
\(125\) 0 0
\(126\) −9016.00 −0.0505927
\(127\) − 219196.i − 1.20593i −0.797766 0.602967i \(-0.793985\pi\)
0.797766 0.602967i \(-0.206015\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 38386.0 0.203095
\(130\) 0 0
\(131\) −96682.0 −0.492229 −0.246115 0.969241i \(-0.579154\pi\)
−0.246115 + 0.969241i \(0.579154\pi\)
\(132\) 194480.i 0.971494i
\(133\) − 84182.0i − 0.412658i
\(134\) −17664.0 −0.0849820
\(135\) 0 0
\(136\) −108736. −0.504111
\(137\) 187288.i 0.852528i 0.904599 + 0.426264i \(0.140170\pi\)
−0.904599 + 0.426264i \(0.859830\pi\)
\(138\) − 268600.i − 1.20063i
\(139\) −176894. −0.776562 −0.388281 0.921541i \(-0.626931\pi\)
−0.388281 + 0.921541i \(0.626931\pi\)
\(140\) 0 0
\(141\) 9129.00 0.0386701
\(142\) − 127520.i − 0.530710i
\(143\) 236665.i 0.967819i
\(144\) −11776.0 −0.0473251
\(145\) 0 0
\(146\) −20072.0 −0.0779307
\(147\) − 40817.0i − 0.155793i
\(148\) 264288.i 0.991798i
\(149\) 199078. 0.734611 0.367306 0.930100i \(-0.380280\pi\)
0.367306 + 0.930100i \(0.380280\pi\)
\(150\) 0 0
\(151\) 471583. 1.68312 0.841561 0.540162i \(-0.181637\pi\)
0.841561 + 0.540162i \(0.181637\pi\)
\(152\) − 109952.i − 0.386006i
\(153\) 78154.0i 0.269912i
\(154\) −140140. −0.476168
\(155\) 0 0
\(156\) −90032.0 −0.296200
\(157\) − 72054.0i − 0.233297i −0.993173 0.116648i \(-0.962785\pi\)
0.993173 0.116648i \(-0.0372151\pi\)
\(158\) 111908.i 0.356630i
\(159\) −186728. −0.585756
\(160\) 0 0
\(161\) 193550. 0.588476
\(162\) − 272444.i − 0.815623i
\(163\) − 385334.i − 1.13597i −0.823038 0.567987i \(-0.807722\pi\)
0.823038 0.567987i \(-0.192278\pi\)
\(164\) −302016. −0.876840
\(165\) 0 0
\(166\) 150576. 0.424117
\(167\) − 542957.i − 1.50652i −0.657724 0.753259i \(-0.728481\pi\)
0.657724 0.753259i \(-0.271519\pi\)
\(168\) − 53312.0i − 0.145731i
\(169\) 261732. 0.704920
\(170\) 0 0
\(171\) −79028.0 −0.206676
\(172\) 36128.0i 0.0931157i
\(173\) − 370953.i − 0.942331i −0.882045 0.471166i \(-0.843833\pi\)
0.882045 0.471166i \(-0.156167\pi\)
\(174\) 311372. 0.779662
\(175\) 0 0
\(176\) −183040. −0.445414
\(177\) 441252.i 1.05865i
\(178\) 68864.0i 0.162908i
\(179\) 754172. 1.75929 0.879646 0.475629i \(-0.157780\pi\)
0.879646 + 0.475629i \(0.157780\pi\)
\(180\) 0 0
\(181\) 303840. 0.689364 0.344682 0.938720i \(-0.387987\pi\)
0.344682 + 0.938720i \(0.387987\pi\)
\(182\) − 64876.0i − 0.145180i
\(183\) 666196.i 1.47053i
\(184\) 252800. 0.550469
\(185\) 0 0
\(186\) −459408. −0.973680
\(187\) 1.21478e6i 2.54036i
\(188\) 8592.00i 0.0177296i
\(189\) 164101. 0.334162
\(190\) 0 0
\(191\) −186271. −0.369455 −0.184728 0.982790i \(-0.559140\pi\)
−0.184728 + 0.982790i \(0.559140\pi\)
\(192\) − 69632.0i − 0.136319i
\(193\) − 92504.0i − 0.178759i −0.995998 0.0893794i \(-0.971512\pi\)
0.995998 0.0893794i \(-0.0284884\pi\)
\(194\) 252700. 0.482060
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) − 736368.i − 1.35185i −0.736969 0.675926i \(-0.763744\pi\)
0.736969 0.675926i \(-0.236256\pi\)
\(198\) 131560.i 0.238485i
\(199\) 481620. 0.862128 0.431064 0.902321i \(-0.358138\pi\)
0.431064 + 0.902321i \(0.358138\pi\)
\(200\) 0 0
\(201\) −75072.0 −0.131065
\(202\) − 117000.i − 0.201747i
\(203\) 224371.i 0.382144i
\(204\) −462128. −0.777476
\(205\) 0 0
\(206\) −596756. −0.979780
\(207\) − 181700.i − 0.294733i
\(208\) − 84736.0i − 0.135803i
\(209\) −1.22837e6 −1.94520
\(210\) 0 0
\(211\) 189531. 0.293072 0.146536 0.989205i \(-0.453188\pi\)
0.146536 + 0.989205i \(0.453188\pi\)
\(212\) − 175744.i − 0.268560i
\(213\) − 541960.i − 0.818499i
\(214\) −334968. −0.499999
\(215\) 0 0
\(216\) 214336. 0.312580
\(217\) − 331044.i − 0.477240i
\(218\) − 421508.i − 0.600710i
\(219\) −85306.0 −0.120190
\(220\) 0 0
\(221\) −562369. −0.774534
\(222\) 1.12322e6i 1.52962i
\(223\) 22597.0i 0.0304291i 0.999884 + 0.0152145i \(0.00484312\pi\)
−0.999884 + 0.0152145i \(0.995157\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −491016. −0.639476
\(227\) − 998117.i − 1.28563i −0.766020 0.642816i \(-0.777766\pi\)
0.766020 0.642816i \(-0.222234\pi\)
\(228\) − 467296.i − 0.595326i
\(229\) 854644. 1.07695 0.538476 0.842641i \(-0.319000\pi\)
0.538476 + 0.842641i \(0.319000\pi\)
\(230\) 0 0
\(231\) −595595. −0.734380
\(232\) 293056.i 0.357463i
\(233\) − 1.25818e6i − 1.51829i −0.650922 0.759144i \(-0.725618\pi\)
0.650922 0.759144i \(-0.274382\pi\)
\(234\) −60904.0 −0.0727120
\(235\) 0 0
\(236\) −415296. −0.485375
\(237\) 475609.i 0.550021i
\(238\) − 333004.i − 0.381072i
\(239\) 706581. 0.800142 0.400071 0.916484i \(-0.368985\pi\)
0.400071 + 0.916484i \(0.368985\pi\)
\(240\) 0 0
\(241\) 616330. 0.683551 0.341775 0.939782i \(-0.388972\pi\)
0.341775 + 0.939782i \(0.388972\pi\)
\(242\) 1.40070e6i 1.53747i
\(243\) − 344080.i − 0.373804i
\(244\) −627008. −0.674215
\(245\) 0 0
\(246\) −1.28357e6 −1.35233
\(247\) − 568658.i − 0.593074i
\(248\) − 432384.i − 0.446417i
\(249\) 639948. 0.654103
\(250\) 0 0
\(251\) 190842. 0.191201 0.0956004 0.995420i \(-0.469523\pi\)
0.0956004 + 0.995420i \(0.469523\pi\)
\(252\) − 36064.0i − 0.0357744i
\(253\) − 2.82425e6i − 2.77397i
\(254\) 876784. 0.852724
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 1.13094e6i − 1.06809i −0.845456 0.534045i \(-0.820671\pi\)
0.845456 0.534045i \(-0.179329\pi\)
\(258\) 153544.i 0.143610i
\(259\) −809382. −0.749729
\(260\) 0 0
\(261\) 210634. 0.191394
\(262\) − 386728.i − 0.348059i
\(263\) 1.67377e6i 1.49213i 0.665874 + 0.746065i \(0.268059\pi\)
−0.665874 + 0.746065i \(0.731941\pi\)
\(264\) −777920. −0.686950
\(265\) 0 0
\(266\) 336728. 0.291793
\(267\) 292672.i 0.251248i
\(268\) − 70656.0i − 0.0600914i
\(269\) 630942. 0.531629 0.265815 0.964024i \(-0.414359\pi\)
0.265815 + 0.964024i \(0.414359\pi\)
\(270\) 0 0
\(271\) −372476. −0.308088 −0.154044 0.988064i \(-0.549230\pi\)
−0.154044 + 0.988064i \(0.549230\pi\)
\(272\) − 434944.i − 0.356460i
\(273\) − 275723.i − 0.223906i
\(274\) −749152. −0.602828
\(275\) 0 0
\(276\) 1.07440e6 0.848972
\(277\) 867010.i 0.678930i 0.940619 + 0.339465i \(0.110246\pi\)
−0.940619 + 0.339465i \(0.889754\pi\)
\(278\) − 707576.i − 0.549112i
\(279\) −310776. −0.239021
\(280\) 0 0
\(281\) −1.94498e6 −1.46943 −0.734716 0.678375i \(-0.762685\pi\)
−0.734716 + 0.678375i \(0.762685\pi\)
\(282\) 36516.0i 0.0273439i
\(283\) − 1.18501e6i − 0.879543i −0.898110 0.439771i \(-0.855059\pi\)
0.898110 0.439771i \(-0.144941\pi\)
\(284\) 510080. 0.375269
\(285\) 0 0
\(286\) −946660. −0.684351
\(287\) − 924924.i − 0.662829i
\(288\) − 47104.0i − 0.0334639i
\(289\) −1.46674e6 −1.03302
\(290\) 0 0
\(291\) 1.07398e6 0.743467
\(292\) − 80288.0i − 0.0551053i
\(293\) − 33669.0i − 0.0229119i −0.999934 0.0114560i \(-0.996353\pi\)
0.999934 0.0114560i \(-0.00364662\pi\)
\(294\) 163268. 0.110162
\(295\) 0 0
\(296\) −1.05715e6 −0.701307
\(297\) − 2.39454e6i − 1.57518i
\(298\) 796312.i 0.519449i
\(299\) 1.30745e6 0.845760
\(300\) 0 0
\(301\) −110642. −0.0703888
\(302\) 1.88633e6i 1.19015i
\(303\) − 497250.i − 0.311149i
\(304\) 439808. 0.272948
\(305\) 0 0
\(306\) −312616. −0.190857
\(307\) − 27043.0i − 0.0163760i −0.999966 0.00818802i \(-0.997394\pi\)
0.999966 0.00818802i \(-0.00260636\pi\)
\(308\) − 560560.i − 0.336702i
\(309\) −2.53621e6 −1.51109
\(310\) 0 0
\(311\) 2.14919e6 1.26001 0.630004 0.776592i \(-0.283053\pi\)
0.630004 + 0.776592i \(0.283053\pi\)
\(312\) − 360128.i − 0.209445i
\(313\) 2.67052e6i 1.54076i 0.637583 + 0.770381i \(0.279934\pi\)
−0.637583 + 0.770381i \(0.720066\pi\)
\(314\) 288216. 0.164966
\(315\) 0 0
\(316\) −447632. −0.252176
\(317\) − 250514.i − 0.140018i −0.997546 0.0700090i \(-0.977697\pi\)
0.997546 0.0700090i \(-0.0223028\pi\)
\(318\) − 746912.i − 0.414192i
\(319\) 3.27398e6 1.80136
\(320\) 0 0
\(321\) −1.42361e6 −0.771134
\(322\) 774200.i 0.416115i
\(323\) − 2.91888e6i − 1.55672i
\(324\) 1.08978e6 0.576733
\(325\) 0 0
\(326\) 1.54134e6 0.803255
\(327\) − 1.79141e6i − 0.926457i
\(328\) − 1.20806e6i − 0.620019i
\(329\) −26313.0 −0.0134023
\(330\) 0 0
\(331\) 1.05899e6 0.531277 0.265639 0.964073i \(-0.414417\pi\)
0.265639 + 0.964073i \(0.414417\pi\)
\(332\) 602304.i 0.299896i
\(333\) 759828.i 0.375495i
\(334\) 2.17183e6 1.06527
\(335\) 0 0
\(336\) 213248. 0.103047
\(337\) − 2.85025e6i − 1.36712i −0.729893 0.683562i \(-0.760430\pi\)
0.729893 0.683562i \(-0.239570\pi\)
\(338\) 1.04693e6i 0.498454i
\(339\) −2.08682e6 −0.986246
\(340\) 0 0
\(341\) −4.83054e6 −2.24962
\(342\) − 316112.i − 0.146142i
\(343\) 117649.i 0.0539949i
\(344\) −144512. −0.0658427
\(345\) 0 0
\(346\) 1.48381e6 0.666329
\(347\) 1.89141e6i 0.843259i 0.906768 + 0.421630i \(0.138542\pi\)
−0.906768 + 0.421630i \(0.861458\pi\)
\(348\) 1.24549e6i 0.551304i
\(349\) 1.04232e6 0.458075 0.229038 0.973418i \(-0.426442\pi\)
0.229038 + 0.973418i \(0.426442\pi\)
\(350\) 0 0
\(351\) 1.10852e6 0.480259
\(352\) − 732160.i − 0.314956i
\(353\) 2.30309e6i 0.983725i 0.870673 + 0.491862i \(0.163684\pi\)
−0.870673 + 0.491862i \(0.836316\pi\)
\(354\) −1.76501e6 −0.748581
\(355\) 0 0
\(356\) −275456. −0.115193
\(357\) − 1.41527e6i − 0.587716i
\(358\) 3.01669e6i 1.24401i
\(359\) 1.67594e6 0.686315 0.343157 0.939278i \(-0.388504\pi\)
0.343157 + 0.939278i \(0.388504\pi\)
\(360\) 0 0
\(361\) 475425. 0.192006
\(362\) 1.21536e6i 0.487454i
\(363\) 5.95296e6i 2.37119i
\(364\) 259504. 0.102657
\(365\) 0 0
\(366\) −2.66478e6 −1.03982
\(367\) 94663.0i 0.0366872i 0.999832 + 0.0183436i \(0.00583928\pi\)
−0.999832 + 0.0183436i \(0.994161\pi\)
\(368\) 1.01120e6i 0.389240i
\(369\) −868296. −0.331972
\(370\) 0 0
\(371\) 538216. 0.203012
\(372\) − 1.83763e6i − 0.688496i
\(373\) 953536.i 0.354867i 0.984133 + 0.177433i \(0.0567794\pi\)
−0.984133 + 0.177433i \(0.943221\pi\)
\(374\) −4.85914e6 −1.79631
\(375\) 0 0
\(376\) −34368.0 −0.0125367
\(377\) 1.51565e6i 0.549219i
\(378\) 656404.i 0.236288i
\(379\) −3.88824e6 −1.39045 −0.695225 0.718792i \(-0.744695\pi\)
−0.695225 + 0.718792i \(0.744695\pi\)
\(380\) 0 0
\(381\) 3.72633e6 1.31513
\(382\) − 745084.i − 0.261244i
\(383\) − 2.93636e6i − 1.02285i −0.859328 0.511425i \(-0.829118\pi\)
0.859328 0.511425i \(-0.170882\pi\)
\(384\) 278528. 0.0963920
\(385\) 0 0
\(386\) 370016. 0.126402
\(387\) 103868.i 0.0352537i
\(388\) 1.01080e6i 0.340868i
\(389\) −1.70377e6 −0.570871 −0.285435 0.958398i \(-0.592138\pi\)
−0.285435 + 0.958398i \(0.592138\pi\)
\(390\) 0 0
\(391\) 6.71105e6 2.21998
\(392\) 153664.i 0.0505076i
\(393\) − 1.64359e6i − 0.536801i
\(394\) 2.94547e6 0.955904
\(395\) 0 0
\(396\) −526240. −0.168634
\(397\) 1.19110e6i 0.379292i 0.981853 + 0.189646i \(0.0607340\pi\)
−0.981853 + 0.189646i \(0.939266\pi\)
\(398\) 1.92648e6i 0.609617i
\(399\) 1.43109e6 0.450024
\(400\) 0 0
\(401\) −3.38330e6 −1.05070 −0.525351 0.850885i \(-0.676066\pi\)
−0.525351 + 0.850885i \(0.676066\pi\)
\(402\) − 300288.i − 0.0926772i
\(403\) − 2.23624e6i − 0.685891i
\(404\) 468000. 0.142657
\(405\) 0 0
\(406\) −897484. −0.270216
\(407\) 1.18104e7i 3.53409i
\(408\) − 1.84851e6i − 0.549758i
\(409\) 1.33185e6 0.393682 0.196841 0.980435i \(-0.436932\pi\)
0.196841 + 0.980435i \(0.436932\pi\)
\(410\) 0 0
\(411\) −3.18390e6 −0.929725
\(412\) − 2.38702e6i − 0.692809i
\(413\) − 1.27184e6i − 0.366909i
\(414\) 726800. 0.208408
\(415\) 0 0
\(416\) 338944. 0.0960273
\(417\) − 3.00720e6i − 0.846880i
\(418\) − 4.91348e6i − 1.37546i
\(419\) −5.82786e6 −1.62171 −0.810856 0.585246i \(-0.800998\pi\)
−0.810856 + 0.585246i \(0.800998\pi\)
\(420\) 0 0
\(421\) 2.47430e6 0.680374 0.340187 0.940358i \(-0.389510\pi\)
0.340187 + 0.940358i \(0.389510\pi\)
\(422\) 758124.i 0.207233i
\(423\) 24702.0i 0.00671245i
\(424\) 702976. 0.189900
\(425\) 0 0
\(426\) 2.16784e6 0.578766
\(427\) − 1.92021e6i − 0.509659i
\(428\) − 1.33987e6i − 0.353552i
\(429\) −4.02331e6 −1.05546
\(430\) 0 0
\(431\) 4.61851e6 1.19759 0.598796 0.800902i \(-0.295646\pi\)
0.598796 + 0.800902i \(0.295646\pi\)
\(432\) 857344.i 0.221027i
\(433\) − 58606.0i − 0.0150218i −0.999972 0.00751091i \(-0.997609\pi\)
0.999972 0.00751091i \(-0.00239082\pi\)
\(434\) 1.32418e6 0.337459
\(435\) 0 0
\(436\) 1.68603e6 0.424766
\(437\) 6.78610e6i 1.69987i
\(438\) − 341224.i − 0.0849874i
\(439\) −7.04298e6 −1.74419 −0.872097 0.489332i \(-0.837241\pi\)
−0.872097 + 0.489332i \(0.837241\pi\)
\(440\) 0 0
\(441\) 110446. 0.0270429
\(442\) − 2.24948e6i − 0.547678i
\(443\) − 1.46894e6i − 0.355627i −0.984064 0.177813i \(-0.943098\pi\)
0.984064 0.177813i \(-0.0569023\pi\)
\(444\) −4.49290e6 −1.08161
\(445\) 0 0
\(446\) −90388.0 −0.0215166
\(447\) 3.38433e6i 0.801131i
\(448\) 200704.i 0.0472456i
\(449\) 7.48414e6 1.75197 0.875983 0.482341i \(-0.160213\pi\)
0.875983 + 0.482341i \(0.160213\pi\)
\(450\) 0 0
\(451\) −1.34963e7 −3.12446
\(452\) − 1.96406e6i − 0.452178i
\(453\) 8.01691e6i 1.83553i
\(454\) 3.99247e6 0.909079
\(455\) 0 0
\(456\) 1.86918e6 0.420959
\(457\) 170320.i 0.0381483i 0.999818 + 0.0190741i \(0.00607186\pi\)
−0.999818 + 0.0190741i \(0.993928\pi\)
\(458\) 3.41858e6i 0.761520i
\(459\) 5.68995e6 1.26060
\(460\) 0 0
\(461\) −4.28685e6 −0.939476 −0.469738 0.882806i \(-0.655652\pi\)
−0.469738 + 0.882806i \(0.655652\pi\)
\(462\) − 2.38238e6i − 0.519285i
\(463\) − 3.38317e6i − 0.733452i −0.930329 0.366726i \(-0.880479\pi\)
0.930329 0.366726i \(-0.119521\pi\)
\(464\) −1.17222e6 −0.252764
\(465\) 0 0
\(466\) 5.03274e6 1.07359
\(467\) 5.18029e6i 1.09916i 0.835440 + 0.549581i \(0.185213\pi\)
−0.835440 + 0.549581i \(0.814787\pi\)
\(468\) − 243616.i − 0.0514152i
\(469\) 216384. 0.0454248
\(470\) 0 0
\(471\) 1.22492e6 0.254422
\(472\) − 1.66118e6i − 0.343212i
\(473\) 1.61447e6i 0.331801i
\(474\) −1.90244e6 −0.388924
\(475\) 0 0
\(476\) 1.33202e6 0.269459
\(477\) − 505264.i − 0.101677i
\(478\) 2.82632e6i 0.565786i
\(479\) 8.76779e6 1.74603 0.873014 0.487695i \(-0.162162\pi\)
0.873014 + 0.487695i \(0.162162\pi\)
\(480\) 0 0
\(481\) −5.46746e6 −1.07751
\(482\) 2.46532e6i 0.483343i
\(483\) 3.29035e6i 0.641762i
\(484\) −5.60278e6 −1.08715
\(485\) 0 0
\(486\) 1.37632e6 0.264319
\(487\) 270154.i 0.0516166i 0.999667 + 0.0258083i \(0.00821594\pi\)
−0.999667 + 0.0258083i \(0.991784\pi\)
\(488\) − 2.50803e6i − 0.476742i
\(489\) 6.55068e6 1.23884
\(490\) 0 0
\(491\) 4.85550e6 0.908930 0.454465 0.890765i \(-0.349830\pi\)
0.454465 + 0.890765i \(0.349830\pi\)
\(492\) − 5.13427e6i − 0.956238i
\(493\) 7.77972e6i 1.44161i
\(494\) 2.27463e6 0.419367
\(495\) 0 0
\(496\) 1.72954e6 0.315664
\(497\) 1.56212e6i 0.283677i
\(498\) 2.55979e6i 0.462521i
\(499\) 2.98576e6 0.536789 0.268394 0.963309i \(-0.413507\pi\)
0.268394 + 0.963309i \(0.413507\pi\)
\(500\) 0 0
\(501\) 9.23027e6 1.64293
\(502\) 763368.i 0.135199i
\(503\) 8.28783e6i 1.46057i 0.683145 + 0.730283i \(0.260612\pi\)
−0.683145 + 0.730283i \(0.739388\pi\)
\(504\) 144256. 0.0252963
\(505\) 0 0
\(506\) 1.12970e7 1.96149
\(507\) 4.44944e6i 0.768751i
\(508\) 3.50714e6i 0.602967i
\(509\) −6.24307e6 −1.06808 −0.534040 0.845459i \(-0.679327\pi\)
−0.534040 + 0.845459i \(0.679327\pi\)
\(510\) 0 0
\(511\) 245882. 0.0416557
\(512\) 262144.i 0.0441942i
\(513\) 5.75358e6i 0.965261i
\(514\) 4.52377e6 0.755253
\(515\) 0 0
\(516\) −614176. −0.101547
\(517\) 383955.i 0.0631763i
\(518\) − 3.23753e6i − 0.530138i
\(519\) 6.30620e6 1.02766
\(520\) 0 0
\(521\) 7.49509e6 1.20971 0.604856 0.796335i \(-0.293230\pi\)
0.604856 + 0.796335i \(0.293230\pi\)
\(522\) 842536.i 0.135336i
\(523\) − 3.80957e6i − 0.609007i −0.952511 0.304503i \(-0.901510\pi\)
0.952511 0.304503i \(-0.0984905\pi\)
\(524\) 1.54691e6 0.246115
\(525\) 0 0
\(526\) −6.69508e6 −1.05509
\(527\) − 1.14784e7i − 1.80035i
\(528\) − 3.11168e6i − 0.485747i
\(529\) −9.16616e6 −1.42413
\(530\) 0 0
\(531\) −1.19398e6 −0.183764
\(532\) 1.34691e6i 0.206329i
\(533\) − 6.24796e6i − 0.952621i
\(534\) −1.17069e6 −0.177659
\(535\) 0 0
\(536\) 282624. 0.0424910
\(537\) 1.28209e7i 1.91860i
\(538\) 2.52377e6i 0.375919i
\(539\) 1.71672e6 0.254523
\(540\) 0 0
\(541\) 7.67156e6 1.12691 0.563457 0.826145i \(-0.309471\pi\)
0.563457 + 0.826145i \(0.309471\pi\)
\(542\) − 1.48990e6i − 0.217851i
\(543\) 5.16528e6i 0.751786i
\(544\) 1.73978e6 0.252055
\(545\) 0 0
\(546\) 1.10289e6 0.158326
\(547\) − 9.53845e6i − 1.36304i −0.731798 0.681522i \(-0.761319\pi\)
0.731798 0.681522i \(-0.238681\pi\)
\(548\) − 2.99661e6i − 0.426264i
\(549\) −1.80265e6 −0.255258
\(550\) 0 0
\(551\) −7.86672e6 −1.10386
\(552\) 4.29760e6i 0.600314i
\(553\) − 1.37087e6i − 0.190627i
\(554\) −3.46804e6 −0.480076
\(555\) 0 0
\(556\) 2.83030e6 0.388281
\(557\) − 7.45022e6i − 1.01749i −0.860916 0.508746i \(-0.830109\pi\)
0.860916 0.508746i \(-0.169891\pi\)
\(558\) − 1.24310e6i − 0.169014i
\(559\) −747398. −0.101163
\(560\) 0 0
\(561\) −2.06513e7 −2.77039
\(562\) − 7.77992e6i − 1.03905i
\(563\) − 3.36698e6i − 0.447682i −0.974626 0.223841i \(-0.928140\pi\)
0.974626 0.223841i \(-0.0718596\pi\)
\(564\) −146064. −0.0193351
\(565\) 0 0
\(566\) 4.74005e6 0.621931
\(567\) 3.33744e6i 0.435969i
\(568\) 2.04032e6i 0.265355i
\(569\) 4.05501e6 0.525063 0.262532 0.964923i \(-0.415443\pi\)
0.262532 + 0.964923i \(0.415443\pi\)
\(570\) 0 0
\(571\) 7.31585e6 0.939020 0.469510 0.882927i \(-0.344431\pi\)
0.469510 + 0.882927i \(0.344431\pi\)
\(572\) − 3.78664e6i − 0.483909i
\(573\) − 3.16661e6i − 0.402910i
\(574\) 3.69970e6 0.468691
\(575\) 0 0
\(576\) 188416. 0.0236626
\(577\) − 9.76895e6i − 1.22154i −0.791807 0.610771i \(-0.790860\pi\)
0.791807 0.610771i \(-0.209140\pi\)
\(578\) − 5.86698e6i − 0.730457i
\(579\) 1.57257e6 0.194945
\(580\) 0 0
\(581\) −1.84456e6 −0.226700
\(582\) 4.29590e6i 0.525711i
\(583\) − 7.85356e6i − 0.956963i
\(584\) 321152. 0.0389653
\(585\) 0 0
\(586\) 134676. 0.0162012
\(587\) 3.75689e6i 0.450021i 0.974356 + 0.225011i \(0.0722417\pi\)
−0.974356 + 0.225011i \(0.927758\pi\)
\(588\) 653072.i 0.0778965i
\(589\) 1.16068e7 1.37856
\(590\) 0 0
\(591\) 1.25183e7 1.47426
\(592\) − 4.22861e6i − 0.495899i
\(593\) − 2.89048e6i − 0.337546i −0.985655 0.168773i \(-0.946020\pi\)
0.985655 0.168773i \(-0.0539805\pi\)
\(594\) 9.57814e6 1.11382
\(595\) 0 0
\(596\) −3.18525e6 −0.367306
\(597\) 8.18754e6i 0.940194i
\(598\) 5.22980e6i 0.598043i
\(599\) −1.32233e7 −1.50582 −0.752910 0.658124i \(-0.771350\pi\)
−0.752910 + 0.658124i \(0.771350\pi\)
\(600\) 0 0
\(601\) 3.47399e6 0.392321 0.196161 0.980572i \(-0.437153\pi\)
0.196161 + 0.980572i \(0.437153\pi\)
\(602\) − 442568.i − 0.0497724i
\(603\) − 203136.i − 0.0227506i
\(604\) −7.54533e6 −0.841561
\(605\) 0 0
\(606\) 1.98900e6 0.220015
\(607\) 6.45088e6i 0.710636i 0.934746 + 0.355318i \(0.115627\pi\)
−0.934746 + 0.355318i \(0.884373\pi\)
\(608\) 1.75923e6i 0.193003i
\(609\) −3.81431e6 −0.416747
\(610\) 0 0
\(611\) −177747. −0.0192619
\(612\) − 1.25046e6i − 0.134956i
\(613\) − 8.43820e6i − 0.906982i −0.891261 0.453491i \(-0.850178\pi\)
0.891261 0.453491i \(-0.149822\pi\)
\(614\) 108172. 0.0115796
\(615\) 0 0
\(616\) 2.24224e6 0.238084
\(617\) 9.45501e6i 0.999882i 0.866059 + 0.499941i \(0.166645\pi\)
−0.866059 + 0.499941i \(0.833355\pi\)
\(618\) − 1.01449e7i − 1.06850i
\(619\) −1.43145e6 −0.150158 −0.0750790 0.997178i \(-0.523921\pi\)
−0.0750790 + 0.997178i \(0.523921\pi\)
\(620\) 0 0
\(621\) −1.32286e7 −1.37652
\(622\) 8.59674e6i 0.890960i
\(623\) − 843584.i − 0.0870780i
\(624\) 1.44051e6 0.148100
\(625\) 0 0
\(626\) −1.06821e7 −1.08948
\(627\) − 2.08823e7i − 2.12134i
\(628\) 1.15286e6i 0.116648i
\(629\) −2.80641e7 −2.82829
\(630\) 0 0
\(631\) −1.01813e7 −1.01795 −0.508977 0.860780i \(-0.669976\pi\)
−0.508977 + 0.860780i \(0.669976\pi\)
\(632\) − 1.79053e6i − 0.178315i
\(633\) 3.22203e6i 0.319610i
\(634\) 1.00206e6 0.0990077
\(635\) 0 0
\(636\) 2.98765e6 0.292878
\(637\) 794731.i 0.0776018i
\(638\) 1.30959e7i 1.27375i
\(639\) 1.46648e6 0.142077
\(640\) 0 0
\(641\) −1.76908e7 −1.70060 −0.850300 0.526298i \(-0.823580\pi\)
−0.850300 + 0.526298i \(0.823580\pi\)
\(642\) − 5.69446e6i − 0.545274i
\(643\) − 1.82748e7i − 1.74311i −0.490296 0.871556i \(-0.663111\pi\)
0.490296 0.871556i \(-0.336889\pi\)
\(644\) −3.09680e6 −0.294238
\(645\) 0 0
\(646\) 1.16755e7 1.10077
\(647\) 1.52897e6i 0.143594i 0.997419 + 0.0717972i \(0.0228734\pi\)
−0.997419 + 0.0717972i \(0.977127\pi\)
\(648\) 4.35910e6i 0.407812i
\(649\) −1.85585e7 −1.72955
\(650\) 0 0
\(651\) 5.62775e6 0.520454
\(652\) 6.16534e6i 0.567987i
\(653\) 9.10088e6i 0.835219i 0.908627 + 0.417610i \(0.137132\pi\)
−0.908627 + 0.417610i \(0.862868\pi\)
\(654\) 7.16564e6 0.655104
\(655\) 0 0
\(656\) 4.83226e6 0.438420
\(657\) − 230828.i − 0.0208629i
\(658\) − 105252.i − 0.00947689i
\(659\) 430119. 0.0385811 0.0192906 0.999814i \(-0.493859\pi\)
0.0192906 + 0.999814i \(0.493859\pi\)
\(660\) 0 0
\(661\) 7.65248e6 0.681238 0.340619 0.940202i \(-0.389363\pi\)
0.340619 + 0.940202i \(0.389363\pi\)
\(662\) 4.23595e6i 0.375670i
\(663\) − 9.56027e6i − 0.844669i
\(664\) −2.40922e6 −0.212058
\(665\) 0 0
\(666\) −3.03931e6 −0.265515
\(667\) − 1.80870e7i − 1.57418i
\(668\) 8.68731e6i 0.753259i
\(669\) −384149. −0.0331844
\(670\) 0 0
\(671\) −2.80194e7 −2.40244
\(672\) 852992.i 0.0728655i
\(673\) 2.18404e7i 1.85876i 0.369128 + 0.929378i \(0.379656\pi\)
−0.369128 + 0.929378i \(0.620344\pi\)
\(674\) 1.14010e7 0.966702
\(675\) 0 0
\(676\) −4.18771e6 −0.352460
\(677\) 1.39504e7i 1.16981i 0.811102 + 0.584905i \(0.198868\pi\)
−0.811102 + 0.584905i \(0.801132\pi\)
\(678\) − 8.34727e6i − 0.697381i
\(679\) −3.09558e6 −0.257672
\(680\) 0 0
\(681\) 1.69680e7 1.40205
\(682\) − 1.93222e7i − 1.59072i
\(683\) − 2.29121e7i − 1.87937i −0.342040 0.939686i \(-0.611118\pi\)
0.342040 0.939686i \(-0.388882\pi\)
\(684\) 1.26445e6 0.103338
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) 1.45289e7i 1.17447i
\(688\) − 578048.i − 0.0465578i
\(689\) 3.63570e6 0.291770
\(690\) 0 0
\(691\) −1.69127e7 −1.34747 −0.673734 0.738974i \(-0.735310\pi\)
−0.673734 + 0.738974i \(0.735310\pi\)
\(692\) 5.93525e6i 0.471166i
\(693\) − 1.61161e6i − 0.127476i
\(694\) −7.56562e6 −0.596274
\(695\) 0 0
\(696\) −4.98195e6 −0.389831
\(697\) − 3.20703e7i − 2.50047i
\(698\) 4.16927e6i 0.323908i
\(699\) 2.13891e7 1.65577
\(700\) 0 0
\(701\) −1.90087e7 −1.46102 −0.730510 0.682902i \(-0.760718\pi\)
−0.730510 + 0.682902i \(0.760718\pi\)
\(702\) 4.43408e6i 0.339594i
\(703\) − 2.83779e7i − 2.16567i
\(704\) 2.92864e6 0.222707
\(705\) 0 0
\(706\) −9.21235e6 −0.695598
\(707\) 1.43325e6i 0.107838i
\(708\) − 7.06003e6i − 0.529326i
\(709\) −1.66079e7 −1.24079 −0.620396 0.784289i \(-0.713028\pi\)
−0.620396 + 0.784289i \(0.713028\pi\)
\(710\) 0 0
\(711\) −1.28694e6 −0.0954740
\(712\) − 1.10182e6i − 0.0814540i
\(713\) 2.66862e7i 1.96591i
\(714\) 5.66107e6 0.415578
\(715\) 0 0
\(716\) −1.20668e7 −0.879646
\(717\) 1.20119e7i 0.872596i
\(718\) 6.70378e6i 0.485298i
\(719\) −5.93610e6 −0.428232 −0.214116 0.976808i \(-0.568687\pi\)
−0.214116 + 0.976808i \(0.568687\pi\)
\(720\) 0 0
\(721\) 7.31026e6 0.523715
\(722\) 1.90170e6i 0.135768i
\(723\) 1.04776e7i 0.745447i
\(724\) −4.86144e6 −0.344682
\(725\) 0 0
\(726\) −2.38118e7 −1.67668
\(727\) 1.73276e7i 1.21591i 0.793970 + 0.607957i \(0.208011\pi\)
−0.793970 + 0.607957i \(0.791989\pi\)
\(728\) 1.03802e6i 0.0725898i
\(729\) −1.07016e7 −0.745814
\(730\) 0 0
\(731\) −3.83634e6 −0.265536
\(732\) − 1.06591e7i − 0.735266i
\(733\) − 1.39829e7i − 0.961255i −0.876925 0.480627i \(-0.840409\pi\)
0.876925 0.480627i \(-0.159591\pi\)
\(734\) −378652. −0.0259418
\(735\) 0 0
\(736\) −4.04480e6 −0.275234
\(737\) − 3.15744e6i − 0.214125i
\(738\) − 3.47318e6i − 0.234740i
\(739\) 1.14263e7 0.769649 0.384824 0.922990i \(-0.374262\pi\)
0.384824 + 0.922990i \(0.374262\pi\)
\(740\) 0 0
\(741\) 9.66719e6 0.646777
\(742\) 2.15286e6i 0.143551i
\(743\) − 1.23126e7i − 0.818236i −0.912481 0.409118i \(-0.865836\pi\)
0.912481 0.409118i \(-0.134164\pi\)
\(744\) 7.35053e6 0.486840
\(745\) 0 0
\(746\) −3.81414e6 −0.250929
\(747\) 1.73162e6i 0.113541i
\(748\) − 1.94366e7i − 1.27018i
\(749\) 4.10336e6 0.267261
\(750\) 0 0
\(751\) −1.43093e7 −0.925806 −0.462903 0.886409i \(-0.653192\pi\)
−0.462903 + 0.886409i \(0.653192\pi\)
\(752\) − 137472.i − 0.00886481i
\(753\) 3.24431e6i 0.208514i
\(754\) −6.06260e6 −0.388356
\(755\) 0 0
\(756\) −2.62562e6 −0.167081
\(757\) − 5.34505e6i − 0.339010i −0.985529 0.169505i \(-0.945783\pi\)
0.985529 0.169505i \(-0.0542168\pi\)
\(758\) − 1.55530e7i − 0.983197i
\(759\) 4.80122e7 3.02515
\(760\) 0 0
\(761\) 6.22568e6 0.389695 0.194848 0.980834i \(-0.437579\pi\)
0.194848 + 0.980834i \(0.437579\pi\)
\(762\) 1.49053e7i 0.929938i
\(763\) 5.16347e6i 0.321093i
\(764\) 2.98034e6 0.184728
\(765\) 0 0
\(766\) 1.17454e7 0.723264
\(767\) − 8.59144e6i − 0.527324i
\(768\) 1.11411e6i 0.0681594i
\(769\) −1.57888e7 −0.962793 −0.481397 0.876503i \(-0.659870\pi\)
−0.481397 + 0.876503i \(0.659870\pi\)
\(770\) 0 0
\(771\) 1.92260e7 1.16481
\(772\) 1.48006e6i 0.0893794i
\(773\) 2.50453e7i 1.50757i 0.657121 + 0.753785i \(0.271774\pi\)
−0.657121 + 0.753785i \(0.728226\pi\)
\(774\) −415472. −0.0249281
\(775\) 0 0
\(776\) −4.04320e6 −0.241030
\(777\) − 1.37595e7i − 0.817617i
\(778\) − 6.81509e6i − 0.403667i
\(779\) 3.24290e7 1.91465
\(780\) 0 0
\(781\) 2.27942e7 1.33720
\(782\) 2.68442e7i 1.56976i
\(783\) − 1.53351e7i − 0.893884i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 6.57438e6 0.379576
\(787\) − 1.28020e6i − 0.0736784i −0.999321 0.0368392i \(-0.988271\pi\)
0.999321 0.0368392i \(-0.0117289\pi\)
\(788\) 1.17819e7i 0.675926i
\(789\) −2.84541e7 −1.62724
\(790\) 0 0
\(791\) 6.01495e6 0.341815
\(792\) − 2.10496e6i − 0.119242i
\(793\) − 1.29712e7i − 0.732484i
\(794\) −4.76442e6 −0.268200
\(795\) 0 0
\(796\) −7.70592e6 −0.431064
\(797\) − 1.13798e7i − 0.634584i −0.948328 0.317292i \(-0.897226\pi\)
0.948328 0.317292i \(-0.102774\pi\)
\(798\) 5.72438e6i 0.318215i
\(799\) −912363. −0.0505593
\(800\) 0 0
\(801\) −791936. −0.0436123
\(802\) − 1.35332e7i − 0.742959i
\(803\) − 3.58787e6i − 0.196358i
\(804\) 1.20115e6 0.0655327
\(805\) 0 0
\(806\) 8.94494e6 0.484998
\(807\) 1.07260e7i 0.579768i
\(808\) 1.87200e6i 0.100874i
\(809\) 1.70542e7 0.916138 0.458069 0.888917i \(-0.348541\pi\)
0.458069 + 0.888917i \(0.348541\pi\)
\(810\) 0 0
\(811\) −2.21494e7 −1.18252 −0.591262 0.806480i \(-0.701370\pi\)
−0.591262 + 0.806480i \(0.701370\pi\)
\(812\) − 3.58994e6i − 0.191072i
\(813\) − 6.33209e6i − 0.335986i
\(814\) −4.72415e7 −2.49898
\(815\) 0 0
\(816\) 7.39405e6 0.388738
\(817\) − 3.87924e6i − 0.203326i
\(818\) 5.32738e6i 0.278375i
\(819\) 746074. 0.0388662
\(820\) 0 0
\(821\) −1.01068e7 −0.523307 −0.261654 0.965162i \(-0.584268\pi\)
−0.261654 + 0.965162i \(0.584268\pi\)
\(822\) − 1.27356e7i − 0.657415i
\(823\) 1.83993e7i 0.946895i 0.880822 + 0.473447i \(0.156991\pi\)
−0.880822 + 0.473447i \(0.843009\pi\)
\(824\) 9.54810e6 0.489890
\(825\) 0 0
\(826\) 5.08738e6 0.259444
\(827\) − 2.48056e7i − 1.26121i −0.776105 0.630604i \(-0.782807\pi\)
0.776105 0.630604i \(-0.217193\pi\)
\(828\) 2.90720e6i 0.147367i
\(829\) 1.19708e6 0.0604976 0.0302488 0.999542i \(-0.490370\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(830\) 0 0
\(831\) −1.47392e7 −0.740407
\(832\) 1.35578e6i 0.0679015i
\(833\) 4.07930e6i 0.203692i
\(834\) 1.20288e7 0.598835
\(835\) 0 0
\(836\) 1.96539e7 0.972598
\(837\) 2.26258e7i 1.11633i
\(838\) − 2.33114e7i − 1.14672i
\(839\) 3.17171e7 1.55557 0.777783 0.628533i \(-0.216344\pi\)
0.777783 + 0.628533i \(0.216344\pi\)
\(840\) 0 0
\(841\) 456092. 0.0222363
\(842\) 9.89722e6i 0.481097i
\(843\) − 3.30647e7i − 1.60249i
\(844\) −3.03250e6 −0.146536
\(845\) 0 0
\(846\) −98808.0 −0.00474642
\(847\) − 1.71585e7i − 0.821810i
\(848\) 2.81190e6i 0.134280i
\(849\) 2.01452e7 0.959186
\(850\) 0 0
\(851\) 6.52461e7 3.08838
\(852\) 8.67136e6i 0.409250i
\(853\) − 3.18237e7i − 1.49754i −0.662831 0.748769i \(-0.730645\pi\)
0.662831 0.748769i \(-0.269355\pi\)
\(854\) 7.68085e6 0.360383
\(855\) 0 0
\(856\) 5.35949e6 0.249999
\(857\) 2.27853e7i 1.05975i 0.848076 + 0.529874i \(0.177761\pi\)
−0.848076 + 0.529874i \(0.822239\pi\)
\(858\) − 1.60932e7i − 0.746319i
\(859\) 1.85966e7 0.859907 0.429953 0.902851i \(-0.358530\pi\)
0.429953 + 0.902851i \(0.358530\pi\)
\(860\) 0 0
\(861\) 1.57237e7 0.722848
\(862\) 1.84740e7i 0.846825i
\(863\) 2.77046e7i 1.26627i 0.774043 + 0.633133i \(0.218231\pi\)
−0.774043 + 0.633133i \(0.781769\pi\)
\(864\) −3.42938e6 −0.156290
\(865\) 0 0
\(866\) 234424. 0.0106220
\(867\) − 2.49346e7i − 1.12656i
\(868\) 5.29670e6i 0.238620i
\(869\) −2.00036e7 −0.898582
\(870\) 0 0
\(871\) 1.46170e6 0.0652847
\(872\) 6.74413e6i 0.300355i
\(873\) 2.90605e6i 0.129053i
\(874\) −2.71444e7 −1.20199
\(875\) 0 0
\(876\) 1.36490e6 0.0600951
\(877\) − 2.41150e7i − 1.05874i −0.848391 0.529370i \(-0.822428\pi\)
0.848391 0.529370i \(-0.177572\pi\)
\(878\) − 2.81719e7i − 1.23333i
\(879\) 572373. 0.0249866
\(880\) 0 0
\(881\) −1.26207e7 −0.547827 −0.273914 0.961754i \(-0.588318\pi\)
−0.273914 + 0.961754i \(0.588318\pi\)
\(882\) 441784.i 0.0191222i
\(883\) 6.01876e6i 0.259780i 0.991528 + 0.129890i \(0.0414624\pi\)
−0.991528 + 0.129890i \(0.958538\pi\)
\(884\) 8.99790e6 0.387267
\(885\) 0 0
\(886\) 5.87575e6 0.251466
\(887\) 2.36901e7i 1.01102i 0.862821 + 0.505509i \(0.168695\pi\)
−0.862821 + 0.505509i \(0.831305\pi\)
\(888\) − 1.79716e7i − 0.764811i
\(889\) −1.07406e7 −0.455800
\(890\) 0 0
\(891\) 4.86994e7 2.05508
\(892\) − 361552.i − 0.0152145i
\(893\) − 922566.i − 0.0387141i
\(894\) −1.35373e7 −0.566485
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 2.22266e7i 0.922344i
\(898\) 2.99365e7i 1.23883i
\(899\) −3.09357e7 −1.27662
\(900\) 0 0
\(901\) 1.86618e7 0.765847
\(902\) − 5.39854e7i − 2.20933i
\(903\) − 1.88091e6i − 0.0767626i
\(904\) 7.85626e6 0.319738
\(905\) 0 0
\(906\) −3.20676e7 −1.29792
\(907\) − 1.10583e7i − 0.446346i −0.974779 0.223173i \(-0.928359\pi\)
0.974779 0.223173i \(-0.0716414\pi\)
\(908\) 1.59699e7i 0.642816i
\(909\) 1.34550e6 0.0540100
\(910\) 0 0
\(911\) 3.07573e6 0.122787 0.0613934 0.998114i \(-0.480446\pi\)
0.0613934 + 0.998114i \(0.480446\pi\)
\(912\) 7.47674e6i 0.297663i
\(913\) 2.69155e7i 1.06862i
\(914\) −681280. −0.0269749
\(915\) 0 0
\(916\) −1.36743e7 −0.538476
\(917\) 4.73742e6i 0.186045i
\(918\) 2.27598e7i 0.891378i
\(919\) 1.89018e7 0.738270 0.369135 0.929376i \(-0.379654\pi\)
0.369135 + 0.929376i \(0.379654\pi\)
\(920\) 0 0
\(921\) 459731. 0.0178589
\(922\) − 1.71474e7i − 0.664310i
\(923\) 1.05523e7i 0.407701i
\(924\) 9.52952e6 0.367190
\(925\) 0 0
\(926\) 1.35327e7 0.518629
\(927\) − 6.86269e6i − 0.262298i
\(928\) − 4.68890e6i − 0.178731i
\(929\) 1.81458e7 0.689821 0.344911 0.938636i \(-0.387909\pi\)
0.344911 + 0.938636i \(0.387909\pi\)
\(930\) 0 0
\(931\) −4.12492e6 −0.155970
\(932\) 2.01309e7i 0.759144i
\(933\) 3.65362e7i 1.37410i
\(934\) −2.07212e7 −0.777225
\(935\) 0 0
\(936\) 974464. 0.0363560
\(937\) − 2.17350e7i − 0.808744i −0.914595 0.404372i \(-0.867490\pi\)
0.914595 0.404372i \(-0.132510\pi\)
\(938\) 865536.i 0.0321202i
\(939\) −4.53989e7 −1.68028
\(940\) 0 0
\(941\) 1.86808e7 0.687735 0.343868 0.939018i \(-0.388263\pi\)
0.343868 + 0.939018i \(0.388263\pi\)
\(942\) 4.89967e6i 0.179904i
\(943\) 7.45602e7i 2.73041i
\(944\) 6.64474e6 0.242688
\(945\) 0 0
\(946\) −6.45788e6 −0.234618
\(947\) − 2.24778e6i − 0.0814476i −0.999170 0.0407238i \(-0.987034\pi\)
0.999170 0.0407238i \(-0.0129664\pi\)
\(948\) − 7.60974e6i − 0.275010i
\(949\) 1.66096e6 0.0598678
\(950\) 0 0
\(951\) 4.25874e6 0.152697
\(952\) 5.32806e6i 0.190536i
\(953\) 3.73293e7i 1.33143i 0.746207 + 0.665714i \(0.231873\pi\)
−0.746207 + 0.665714i \(0.768127\pi\)
\(954\) 2.02106e6 0.0718964
\(955\) 0 0
\(956\) −1.13053e7 −0.400071
\(957\) 5.56577e7i 1.96447i
\(958\) 3.50711e7i 1.23463i
\(959\) 9.17711e6 0.322225
\(960\) 0 0
\(961\) 1.70144e7 0.594303
\(962\) − 2.18698e7i − 0.761917i
\(963\) − 3.85213e6i − 0.133855i
\(964\) −9.86128e6 −0.341775
\(965\) 0 0
\(966\) −1.31614e7 −0.453795
\(967\) 2.61870e7i 0.900573i 0.892884 + 0.450287i \(0.148678\pi\)
−0.892884 + 0.450287i \(0.851322\pi\)
\(968\) − 2.24111e7i − 0.768733i
\(969\) 4.96210e7 1.69768
\(970\) 0 0
\(971\) −3.91957e7 −1.33410 −0.667052 0.745011i \(-0.732444\pi\)
−0.667052 + 0.745011i \(0.732444\pi\)
\(972\) 5.50528e6i 0.186902i
\(973\) 8.66781e6i 0.293513i
\(974\) −1.08062e6 −0.0364984
\(975\) 0 0
\(976\) 1.00321e7 0.337108
\(977\) 3.03935e6i 0.101870i 0.998702 + 0.0509348i \(0.0162201\pi\)
−0.998702 + 0.0509348i \(0.983780\pi\)
\(978\) 2.62027e7i 0.875990i
\(979\) −1.23094e7 −0.410470
\(980\) 0 0
\(981\) 4.84734e6 0.160817
\(982\) 1.94220e7i 0.642711i
\(983\) 1.59937e7i 0.527915i 0.964534 + 0.263957i \(0.0850278\pi\)
−0.964534 + 0.263957i \(0.914972\pi\)
\(984\) 2.05371e7 0.676163
\(985\) 0 0
\(986\) −3.11189e7 −1.01937
\(987\) − 447321.i − 0.0146159i
\(988\) 9.09853e6i 0.296537i
\(989\) 8.91910e6 0.289955
\(990\) 0 0
\(991\) 3.63186e6 0.117475 0.0587375 0.998273i \(-0.481293\pi\)
0.0587375 + 0.998273i \(0.481293\pi\)
\(992\) 6.91814e6i 0.223208i
\(993\) 1.80028e7i 0.579384i
\(994\) −6.24848e6 −0.200590
\(995\) 0 0
\(996\) −1.02392e7 −0.327052
\(997\) − 4.33287e7i − 1.38051i −0.723568 0.690253i \(-0.757499\pi\)
0.723568 0.690253i \(-0.242501\pi\)
\(998\) 1.19430e7i 0.379567i
\(999\) 5.53188e7 1.75371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.a.99.2 2
5.2 odd 4 350.6.a.e.1.1 1
5.3 odd 4 70.6.a.e.1.1 1
5.4 even 2 inner 350.6.c.a.99.1 2
15.8 even 4 630.6.a.b.1.1 1
20.3 even 4 560.6.a.h.1.1 1
35.13 even 4 490.6.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.e.1.1 1 5.3 odd 4
350.6.a.e.1.1 1 5.2 odd 4
350.6.c.a.99.1 2 5.4 even 2 inner
350.6.c.a.99.2 2 1.1 even 1 trivial
490.6.a.m.1.1 1 35.13 even 4
560.6.a.h.1.1 1 20.3 even 4
630.6.a.b.1.1 1 15.8 even 4