Properties

Label 350.6.a.z
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 915x^{3} - 2649x^{2} + 122688x - 432576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + ( - \beta_1 + 3) q^{3} + 16 q^{4} + ( - 4 \beta_1 + 12) q^{6} + 49 q^{7} + 64 q^{8} + ( - \beta_{4} + \beta_{3} + 131) q^{9} + ( - 2 \beta_{4} + \beta_{3} + \cdots + 149) q^{11} + ( - 16 \beta_1 + 48) q^{12}+ \cdots + (152 \beta_{4} + 362 \beta_{3} + \cdots + 114604) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 20 q^{2} + 14 q^{3} + 80 q^{4} + 56 q^{6} + 245 q^{7} + 320 q^{8} + 655 q^{9} + 748 q^{11} + 224 q^{12} + 456 q^{13} + 980 q^{14} + 1280 q^{16} + 780 q^{17} + 2620 q^{18} - 256 q^{19} + 686 q^{21}+ \cdots + 575944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 915x^{3} - 2649x^{2} + 122688x - 432576 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 7\nu^{3} + 693\nu^{2} + 1161\nu - 29394 ) / 30 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 23\nu^{3} - 1083\nu^{2} - 18561\nu + 111504 ) / 120 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 23\nu^{3} - 1203\nu^{2} - 17841\nu + 155304 ) / 120 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{3} + 6\beta _1 + 365 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -13\beta_{4} + 17\beta_{3} + \beta_{2} + 658\beta _1 + 2008 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -784\beta_{4} + 812\beta_{3} - 23\beta_{2} + 9925\beta _1 + 237607 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
30.2375
6.91835
4.91234
−19.6958
−21.3723
4.00000 −27.2375 16.0000 0 −108.950 49.0000 64.0000 498.879 0
1.2 4.00000 −3.91835 16.0000 0 −15.6734 49.0000 64.0000 −227.647 0
1.3 4.00000 −1.91234 16.0000 0 −7.64937 49.0000 64.0000 −239.343 0
1.4 4.00000 22.6958 16.0000 0 90.7832 49.0000 64.0000 272.099 0
1.5 4.00000 24.3723 16.0000 0 97.4894 49.0000 64.0000 351.011 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.z 5
5.b even 2 1 350.6.a.y 5
5.c odd 4 2 70.6.c.d 10
15.e even 4 2 630.6.g.h 10
20.e even 4 2 560.6.g.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.c.d 10 5.c odd 4 2
350.6.a.y 5 5.b even 2 1
350.6.a.z 5 1.a even 1 1 trivial
560.6.g.d 10 20.e even 4 2
630.6.g.h 10 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{5} - 14T_{3}^{4} - 837T_{3}^{3} + 10668T_{3}^{2} + 82386T_{3} + 112896 \) Copy content Toggle raw display
\( T_{13}^{5} - 456T_{13}^{4} - 1454059T_{13}^{3} + 376896800T_{13}^{2} + 514353680586T_{13} - 12714955073672 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 14 T^{4} + \cdots + 112896 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( (T - 49)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 4772453962752 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 12714955073672 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 849591109344752 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 23088345840000 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 76\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 22\!\cdots\!72 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 26\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 58\!\cdots\!52 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 18\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 11\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 38\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 26\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 42\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
show more
show less