Properties

Label 350.6.a.w
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1378776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 336x + 840 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + \beta_1 q^{3} + 16 q^{4} + 4 \beta_1 q^{6} - 49 q^{7} + 64 q^{8} + (\beta_{2} - 3 \beta_1 - 18) q^{9} + (\beta_{2} - 24 \beta_1 + 4) q^{11} + 16 \beta_1 q^{12} + ( - 5 \beta_{2} - 159) q^{13}+ \cdots + ( - 148 \beta_{2} - 2013 \beta_1 + 37203) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + q^{3} + 48 q^{4} + 4 q^{6} - 147 q^{7} + 192 q^{8} - 56 q^{9} - 11 q^{11} + 16 q^{12} - 482 q^{13} - 588 q^{14} + 768 q^{16} - 1185 q^{17} - 224 q^{18} - 1811 q^{19} - 49 q^{21} - 44 q^{22}+ \cdots + 109448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 336x + 840 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3\nu - 225 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3\beta _1 + 225 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−19.0051
2.52911
17.4760
4.00000 −19.0051 16.0000 0 −76.0204 −49.0000 64.0000 118.194 0
1.2 4.00000 2.52911 16.0000 0 10.1164 −49.0000 64.0000 −236.604 0
1.3 4.00000 17.4760 16.0000 0 69.9039 −49.0000 64.0000 62.4100 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.w yes 3
5.b even 2 1 350.6.a.v 3
5.c odd 4 2 350.6.c.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.v 3 5.b even 2 1
350.6.a.w yes 3 1.a even 1 1 trivial
350.6.c.m 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{3} - T_{3}^{2} - 336T_{3} + 840 \) Copy content Toggle raw display
\( T_{13}^{3} + 482T_{13}^{2} - 778092T_{13} - 409313016 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - T^{2} + \cdots + 840 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T + 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 11 T^{2} + \cdots - 40799375 \) Copy content Toggle raw display
$13$ \( T^{3} + 482 T^{2} + \cdots - 409313016 \) Copy content Toggle raw display
$17$ \( T^{3} + 1185 T^{2} + \cdots + 124770352 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 2760714180 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 20458305000 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 154187630694 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 6751381392 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 2252461080 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 873981504312 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 3330798232544 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 548315678232 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 2327818797872 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 51424466453808 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 17091016362224 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 138366600597 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 88582122380350 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 4194036142072 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 8297801992798 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 47223196825812 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 560143115269220 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 829971851107000 \) Copy content Toggle raw display
show more
show less