Properties

Label 350.6.a.v.1.3
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-12,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1378776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 336x + 840 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-19.0051\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +19.0051 q^{3} +16.0000 q^{4} -76.0204 q^{6} +49.0000 q^{7} -64.0000 q^{8} +118.194 q^{9} +539.301 q^{11} +304.081 q^{12} +554.892 q^{13} -196.000 q^{14} +256.000 q^{16} -934.878 q^{17} -472.774 q^{18} -600.732 q^{19} +931.250 q^{21} -2157.20 q^{22} +1769.65 q^{23} -1216.33 q^{24} -2219.57 q^{26} -2371.96 q^{27} +784.000 q^{28} +5705.16 q^{29} +1997.99 q^{31} -1024.00 q^{32} +10249.5 q^{33} +3739.51 q^{34} +1891.10 q^{36} +550.553 q^{37} +2402.93 q^{38} +10545.8 q^{39} -11851.5 q^{41} -3725.00 q^{42} +12570.6 q^{43} +8628.81 q^{44} -7078.61 q^{46} +15897.8 q^{47} +4865.30 q^{48} +2401.00 q^{49} -17767.4 q^{51} +8878.26 q^{52} +20424.3 q^{53} +9487.83 q^{54} -3136.00 q^{56} -11417.0 q^{57} -22820.7 q^{58} -50777.5 q^{59} -12326.3 q^{61} -7991.94 q^{62} +5791.49 q^{63} +4096.00 q^{64} -40997.8 q^{66} +1381.31 q^{67} -14958.0 q^{68} +33632.4 q^{69} +35058.3 q^{71} -7564.39 q^{72} -4412.62 q^{73} -2202.21 q^{74} -9611.71 q^{76} +26425.7 q^{77} -42183.1 q^{78} +54020.7 q^{79} -73800.3 q^{81} +47406.1 q^{82} +61812.0 q^{83} +14900.0 q^{84} -50282.5 q^{86} +108427. q^{87} -34515.2 q^{88} -95834.4 q^{89} +27189.7 q^{91} +28314.4 q^{92} +37971.9 q^{93} -63591.2 q^{94} -19461.2 q^{96} +97755.0 q^{97} -9604.00 q^{98} +63741.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - q^{3} + 48 q^{4} + 4 q^{6} + 147 q^{7} - 192 q^{8} - 56 q^{9} - 11 q^{11} - 16 q^{12} + 482 q^{13} - 588 q^{14} + 768 q^{16} + 1185 q^{17} + 224 q^{18} - 1811 q^{19} - 49 q^{21} + 44 q^{22}+ \cdots + 109448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 19.0051 1.21918 0.609589 0.792718i \(-0.291335\pi\)
0.609589 + 0.792718i \(0.291335\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −76.0204 −0.862089
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) 118.194 0.486393
\(10\) 0 0
\(11\) 539.301 1.34384 0.671922 0.740622i \(-0.265469\pi\)
0.671922 + 0.740622i \(0.265469\pi\)
\(12\) 304.081 0.609589
\(13\) 554.892 0.910646 0.455323 0.890326i \(-0.349524\pi\)
0.455323 + 0.890326i \(0.349524\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −934.878 −0.784571 −0.392286 0.919843i \(-0.628316\pi\)
−0.392286 + 0.919843i \(0.628316\pi\)
\(18\) −472.774 −0.343932
\(19\) −600.732 −0.381766 −0.190883 0.981613i \(-0.561135\pi\)
−0.190883 + 0.981613i \(0.561135\pi\)
\(20\) 0 0
\(21\) 931.250 0.460806
\(22\) −2157.20 −0.950242
\(23\) 1769.65 0.697538 0.348769 0.937209i \(-0.386600\pi\)
0.348769 + 0.937209i \(0.386600\pi\)
\(24\) −1216.33 −0.431044
\(25\) 0 0
\(26\) −2219.57 −0.643924
\(27\) −2371.96 −0.626178
\(28\) 784.000 0.188982
\(29\) 5705.16 1.25972 0.629859 0.776710i \(-0.283113\pi\)
0.629859 + 0.776710i \(0.283113\pi\)
\(30\) 0 0
\(31\) 1997.99 0.373412 0.186706 0.982416i \(-0.440219\pi\)
0.186706 + 0.982416i \(0.440219\pi\)
\(32\) −1024.00 −0.176777
\(33\) 10249.5 1.63839
\(34\) 3739.51 0.554776
\(35\) 0 0
\(36\) 1891.10 0.243197
\(37\) 550.553 0.0661142 0.0330571 0.999453i \(-0.489476\pi\)
0.0330571 + 0.999453i \(0.489476\pi\)
\(38\) 2402.93 0.269949
\(39\) 10545.8 1.11024
\(40\) 0 0
\(41\) −11851.5 −1.10107 −0.550534 0.834813i \(-0.685576\pi\)
−0.550534 + 0.834813i \(0.685576\pi\)
\(42\) −3725.00 −0.325839
\(43\) 12570.6 1.03678 0.518389 0.855145i \(-0.326532\pi\)
0.518389 + 0.855145i \(0.326532\pi\)
\(44\) 8628.81 0.671922
\(45\) 0 0
\(46\) −7078.61 −0.493234
\(47\) 15897.8 1.04977 0.524883 0.851174i \(-0.324109\pi\)
0.524883 + 0.851174i \(0.324109\pi\)
\(48\) 4865.30 0.304794
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −17767.4 −0.956532
\(52\) 8878.26 0.455323
\(53\) 20424.3 0.998749 0.499375 0.866386i \(-0.333563\pi\)
0.499375 + 0.866386i \(0.333563\pi\)
\(54\) 9487.83 0.442774
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) −11417.0 −0.465440
\(58\) −22820.7 −0.890755
\(59\) −50777.5 −1.89907 −0.949536 0.313657i \(-0.898446\pi\)
−0.949536 + 0.313657i \(0.898446\pi\)
\(60\) 0 0
\(61\) −12326.3 −0.424140 −0.212070 0.977254i \(-0.568021\pi\)
−0.212070 + 0.977254i \(0.568021\pi\)
\(62\) −7991.94 −0.264042
\(63\) 5791.49 0.183839
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −40997.8 −1.15851
\(67\) 1381.31 0.0375927 0.0187964 0.999823i \(-0.494017\pi\)
0.0187964 + 0.999823i \(0.494017\pi\)
\(68\) −14958.0 −0.392286
\(69\) 33632.4 0.850423
\(70\) 0 0
\(71\) 35058.3 0.825363 0.412682 0.910875i \(-0.364592\pi\)
0.412682 + 0.910875i \(0.364592\pi\)
\(72\) −7564.39 −0.171966
\(73\) −4412.62 −0.0969145 −0.0484573 0.998825i \(-0.515430\pi\)
−0.0484573 + 0.998825i \(0.515430\pi\)
\(74\) −2202.21 −0.0467498
\(75\) 0 0
\(76\) −9611.71 −0.190883
\(77\) 26425.7 0.507926
\(78\) −42183.1 −0.785058
\(79\) 54020.7 0.973851 0.486925 0.873444i \(-0.338118\pi\)
0.486925 + 0.873444i \(0.338118\pi\)
\(80\) 0 0
\(81\) −73800.3 −1.24981
\(82\) 47406.1 0.778573
\(83\) 61812.0 0.984868 0.492434 0.870350i \(-0.336107\pi\)
0.492434 + 0.870350i \(0.336107\pi\)
\(84\) 14900.0 0.230403
\(85\) 0 0
\(86\) −50282.5 −0.733112
\(87\) 108427. 1.53582
\(88\) −34515.2 −0.475121
\(89\) −95834.4 −1.28247 −0.641234 0.767345i \(-0.721577\pi\)
−0.641234 + 0.767345i \(0.721577\pi\)
\(90\) 0 0
\(91\) 27189.7 0.344192
\(92\) 28314.4 0.348769
\(93\) 37971.9 0.455255
\(94\) −63591.2 −0.742297
\(95\) 0 0
\(96\) −19461.2 −0.215522
\(97\) 97755.0 1.05490 0.527448 0.849587i \(-0.323149\pi\)
0.527448 + 0.849587i \(0.323149\pi\)
\(98\) −9604.00 −0.101015
\(99\) 63741.9 0.653637
\(100\) 0 0
\(101\) −115748. −1.12904 −0.564521 0.825419i \(-0.690939\pi\)
−0.564521 + 0.825419i \(0.690939\pi\)
\(102\) 71069.8 0.676370
\(103\) −2459.11 −0.0228394 −0.0114197 0.999935i \(-0.503635\pi\)
−0.0114197 + 0.999935i \(0.503635\pi\)
\(104\) −35513.1 −0.321962
\(105\) 0 0
\(106\) −81697.0 −0.706222
\(107\) 97878.1 0.826468 0.413234 0.910625i \(-0.364399\pi\)
0.413234 + 0.910625i \(0.364399\pi\)
\(108\) −37951.3 −0.313089
\(109\) 118879. 0.958380 0.479190 0.877711i \(-0.340931\pi\)
0.479190 + 0.877711i \(0.340931\pi\)
\(110\) 0 0
\(111\) 10463.3 0.0806050
\(112\) 12544.0 0.0944911
\(113\) 202420. 1.49128 0.745639 0.666351i \(-0.232145\pi\)
0.745639 + 0.666351i \(0.232145\pi\)
\(114\) 45667.9 0.329116
\(115\) 0 0
\(116\) 91282.6 0.629859
\(117\) 65584.6 0.442932
\(118\) 203110. 1.34285
\(119\) −45809.0 −0.296540
\(120\) 0 0
\(121\) 129794. 0.805919
\(122\) 49305.4 0.299912
\(123\) −225239. −1.34240
\(124\) 31967.8 0.186706
\(125\) 0 0
\(126\) −23165.9 −0.129994
\(127\) 218363. 1.20135 0.600675 0.799494i \(-0.294899\pi\)
0.600675 + 0.799494i \(0.294899\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 238906. 1.26402
\(130\) 0 0
\(131\) −60683.7 −0.308954 −0.154477 0.987996i \(-0.549369\pi\)
−0.154477 + 0.987996i \(0.549369\pi\)
\(132\) 163991. 0.819193
\(133\) −29435.9 −0.144294
\(134\) −5525.24 −0.0265821
\(135\) 0 0
\(136\) 59832.2 0.277388
\(137\) −23864.9 −0.108632 −0.0543160 0.998524i \(-0.517298\pi\)
−0.0543160 + 0.998524i \(0.517298\pi\)
\(138\) −134530. −0.601340
\(139\) 346057. 1.51918 0.759592 0.650400i \(-0.225399\pi\)
0.759592 + 0.650400i \(0.225399\pi\)
\(140\) 0 0
\(141\) 302139. 1.27985
\(142\) −140233. −0.583620
\(143\) 299253. 1.22377
\(144\) 30257.6 0.121598
\(145\) 0 0
\(146\) 17650.5 0.0685289
\(147\) 45631.2 0.174168
\(148\) 8808.85 0.0330571
\(149\) 383065. 1.41353 0.706767 0.707446i \(-0.250153\pi\)
0.706767 + 0.707446i \(0.250153\pi\)
\(150\) 0 0
\(151\) −365737. −1.30535 −0.652674 0.757639i \(-0.726353\pi\)
−0.652674 + 0.757639i \(0.726353\pi\)
\(152\) 38446.9 0.134975
\(153\) −110497. −0.381610
\(154\) −105703. −0.359158
\(155\) 0 0
\(156\) 168732. 0.555120
\(157\) −186725. −0.604579 −0.302290 0.953216i \(-0.597751\pi\)
−0.302290 + 0.953216i \(0.597751\pi\)
\(158\) −216083. −0.688616
\(159\) 388165. 1.21765
\(160\) 0 0
\(161\) 86712.9 0.263645
\(162\) 295201. 0.883753
\(163\) 643067. 1.89578 0.947888 0.318603i \(-0.103214\pi\)
0.947888 + 0.318603i \(0.103214\pi\)
\(164\) −189624. −0.550534
\(165\) 0 0
\(166\) −247248. −0.696407
\(167\) −4671.53 −0.0129619 −0.00648094 0.999979i \(-0.502063\pi\)
−0.00648094 + 0.999979i \(0.502063\pi\)
\(168\) −59600.0 −0.162919
\(169\) −63388.4 −0.170723
\(170\) 0 0
\(171\) −71002.7 −0.185688
\(172\) 201130. 0.518389
\(173\) −369779. −0.939348 −0.469674 0.882840i \(-0.655629\pi\)
−0.469674 + 0.882840i \(0.655629\pi\)
\(174\) −433709. −1.08599
\(175\) 0 0
\(176\) 138061. 0.335961
\(177\) −965032. −2.31531
\(178\) 383338. 0.906842
\(179\) 693419. 1.61757 0.808785 0.588105i \(-0.200126\pi\)
0.808785 + 0.588105i \(0.200126\pi\)
\(180\) 0 0
\(181\) 504391. 1.14438 0.572191 0.820120i \(-0.306094\pi\)
0.572191 + 0.820120i \(0.306094\pi\)
\(182\) −108759. −0.243380
\(183\) −234263. −0.517102
\(184\) −113258. −0.246617
\(185\) 0 0
\(186\) −151888. −0.321914
\(187\) −504180. −1.05434
\(188\) 254365. 0.524883
\(189\) −116226. −0.236673
\(190\) 0 0
\(191\) −274513. −0.544477 −0.272238 0.962230i \(-0.587764\pi\)
−0.272238 + 0.962230i \(0.587764\pi\)
\(192\) 77844.9 0.152397
\(193\) −796458. −1.53911 −0.769555 0.638581i \(-0.779522\pi\)
−0.769555 + 0.638581i \(0.779522\pi\)
\(194\) −391020. −0.745924
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −409199. −0.751223 −0.375611 0.926777i \(-0.622567\pi\)
−0.375611 + 0.926777i \(0.622567\pi\)
\(198\) −254967. −0.462191
\(199\) −59417.9 −0.106362 −0.0531808 0.998585i \(-0.516936\pi\)
−0.0531808 + 0.998585i \(0.516936\pi\)
\(200\) 0 0
\(201\) 26251.9 0.0458322
\(202\) 462992. 0.798354
\(203\) 279553. 0.476128
\(204\) −284279. −0.478266
\(205\) 0 0
\(206\) 9836.43 0.0161499
\(207\) 209161. 0.339278
\(208\) 142052. 0.227662
\(209\) −323975. −0.513034
\(210\) 0 0
\(211\) −485855. −0.751277 −0.375639 0.926766i \(-0.622577\pi\)
−0.375639 + 0.926766i \(0.622577\pi\)
\(212\) 326788. 0.499375
\(213\) 666286. 1.00626
\(214\) −391513. −0.584401
\(215\) 0 0
\(216\) 151805. 0.221387
\(217\) 97901.3 0.141136
\(218\) −475515. −0.677677
\(219\) −83862.2 −0.118156
\(220\) 0 0
\(221\) −518756. −0.714467
\(222\) −41853.3 −0.0569963
\(223\) 786879. 1.05961 0.529805 0.848119i \(-0.322265\pi\)
0.529805 + 0.848119i \(0.322265\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) −809682. −1.05449
\(227\) −179410. −0.231090 −0.115545 0.993302i \(-0.536862\pi\)
−0.115545 + 0.993302i \(0.536862\pi\)
\(228\) −182672. −0.232720
\(229\) −546161. −0.688227 −0.344114 0.938928i \(-0.611821\pi\)
−0.344114 + 0.938928i \(0.611821\pi\)
\(230\) 0 0
\(231\) 502223. 0.619251
\(232\) −365130. −0.445377
\(233\) −1.25069e6 −1.50925 −0.754624 0.656158i \(-0.772181\pi\)
−0.754624 + 0.656158i \(0.772181\pi\)
\(234\) −262338. −0.313200
\(235\) 0 0
\(236\) −812441. −0.949536
\(237\) 1.02667e6 1.18730
\(238\) 183236. 0.209686
\(239\) −1.56639e6 −1.77380 −0.886902 0.461957i \(-0.847147\pi\)
−0.886902 + 0.461957i \(0.847147\pi\)
\(240\) 0 0
\(241\) 631036. 0.699860 0.349930 0.936776i \(-0.386205\pi\)
0.349930 + 0.936776i \(0.386205\pi\)
\(242\) −519176. −0.569871
\(243\) −826196. −0.897568
\(244\) −197221. −0.212070
\(245\) 0 0
\(246\) 900957. 0.949219
\(247\) −333341. −0.347653
\(248\) −127871. −0.132021
\(249\) 1.17474e6 1.20073
\(250\) 0 0
\(251\) −207796. −0.208186 −0.104093 0.994568i \(-0.533194\pi\)
−0.104093 + 0.994568i \(0.533194\pi\)
\(252\) 92663.8 0.0919197
\(253\) 954374. 0.937383
\(254\) −873451. −0.849482
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.46104e6 −1.37984 −0.689922 0.723883i \(-0.742355\pi\)
−0.689922 + 0.723883i \(0.742355\pi\)
\(258\) −955623. −0.893794
\(259\) 26977.1 0.0249888
\(260\) 0 0
\(261\) 674314. 0.612718
\(262\) 242735. 0.218463
\(263\) −122741. −0.109421 −0.0547103 0.998502i \(-0.517424\pi\)
−0.0547103 + 0.998502i \(0.517424\pi\)
\(264\) −655965. −0.579257
\(265\) 0 0
\(266\) 117743. 0.102031
\(267\) −1.82134e6 −1.56356
\(268\) 22100.9 0.0187964
\(269\) −2.26741e6 −1.91051 −0.955255 0.295784i \(-0.904419\pi\)
−0.955255 + 0.295784i \(0.904419\pi\)
\(270\) 0 0
\(271\) 146171. 0.120904 0.0604518 0.998171i \(-0.480746\pi\)
0.0604518 + 0.998171i \(0.480746\pi\)
\(272\) −239329. −0.196143
\(273\) 516742. 0.419631
\(274\) 95459.4 0.0768144
\(275\) 0 0
\(276\) 538118. 0.425212
\(277\) −2.28731e6 −1.79112 −0.895562 0.444937i \(-0.853226\pi\)
−0.895562 + 0.444937i \(0.853226\pi\)
\(278\) −1.38423e6 −1.07423
\(279\) 236149. 0.181625
\(280\) 0 0
\(281\) 1.65859e6 1.25306 0.626530 0.779397i \(-0.284475\pi\)
0.626530 + 0.779397i \(0.284475\pi\)
\(282\) −1.20856e6 −0.904992
\(283\) 2.56037e6 1.90036 0.950180 0.311701i \(-0.100899\pi\)
0.950180 + 0.311701i \(0.100899\pi\)
\(284\) 560933. 0.412682
\(285\) 0 0
\(286\) −1.19701e6 −0.865334
\(287\) −580724. −0.416165
\(288\) −121030. −0.0859830
\(289\) −545861. −0.384448
\(290\) 0 0
\(291\) 1.85784e6 1.28611
\(292\) −70601.8 −0.0484573
\(293\) 1.87766e6 1.27775 0.638877 0.769309i \(-0.279399\pi\)
0.638877 + 0.769309i \(0.279399\pi\)
\(294\) −182525. −0.123156
\(295\) 0 0
\(296\) −35235.4 −0.0233749
\(297\) −1.27920e6 −0.841486
\(298\) −1.53226e6 −0.999520
\(299\) 981965. 0.635211
\(300\) 0 0
\(301\) 615960. 0.391865
\(302\) 1.46295e6 0.923021
\(303\) −2.19980e6 −1.37650
\(304\) −153787. −0.0954414
\(305\) 0 0
\(306\) 441986. 0.269839
\(307\) 1.88424e6 1.14101 0.570505 0.821294i \(-0.306748\pi\)
0.570505 + 0.821294i \(0.306748\pi\)
\(308\) 422812. 0.253963
\(309\) −46735.6 −0.0278453
\(310\) 0 0
\(311\) −1.55025e6 −0.908870 −0.454435 0.890780i \(-0.650159\pi\)
−0.454435 + 0.890780i \(0.650159\pi\)
\(312\) −674929. −0.392529
\(313\) −1.58967e6 −0.917162 −0.458581 0.888653i \(-0.651642\pi\)
−0.458581 + 0.888653i \(0.651642\pi\)
\(314\) 746900. 0.427502
\(315\) 0 0
\(316\) 864331. 0.486925
\(317\) −887333. −0.495951 −0.247975 0.968766i \(-0.579765\pi\)
−0.247975 + 0.968766i \(0.579765\pi\)
\(318\) −1.55266e6 −0.861010
\(319\) 3.07680e6 1.69286
\(320\) 0 0
\(321\) 1.86018e6 1.00761
\(322\) −346852. −0.186425
\(323\) 561611. 0.299522
\(324\) −1.18081e6 −0.624907
\(325\) 0 0
\(326\) −2.57227e6 −1.34052
\(327\) 2.25930e6 1.16843
\(328\) 758497. 0.389287
\(329\) 778993. 0.396774
\(330\) 0 0
\(331\) 1.09762e6 0.550660 0.275330 0.961350i \(-0.411213\pi\)
0.275330 + 0.961350i \(0.411213\pi\)
\(332\) 988993. 0.492434
\(333\) 65071.8 0.0321575
\(334\) 18686.1 0.00916544
\(335\) 0 0
\(336\) 238400. 0.115201
\(337\) −473182. −0.226962 −0.113481 0.993540i \(-0.536200\pi\)
−0.113481 + 0.993540i \(0.536200\pi\)
\(338\) 253554. 0.120720
\(339\) 3.84702e6 1.81813
\(340\) 0 0
\(341\) 1.07751e6 0.501808
\(342\) 284011. 0.131301
\(343\) 117649. 0.0539949
\(344\) −804520. −0.366556
\(345\) 0 0
\(346\) 1.47912e6 0.664220
\(347\) −1.18876e6 −0.529996 −0.264998 0.964249i \(-0.585371\pi\)
−0.264998 + 0.964249i \(0.585371\pi\)
\(348\) 1.73483e6 0.767909
\(349\) −383069. −0.168350 −0.0841750 0.996451i \(-0.526825\pi\)
−0.0841750 + 0.996451i \(0.526825\pi\)
\(350\) 0 0
\(351\) −1.31618e6 −0.570226
\(352\) −552244. −0.237560
\(353\) −390836. −0.166939 −0.0834696 0.996510i \(-0.526600\pi\)
−0.0834696 + 0.996510i \(0.526600\pi\)
\(354\) 3.86013e6 1.63717
\(355\) 0 0
\(356\) −1.53335e6 −0.641234
\(357\) −870604. −0.361535
\(358\) −2.77367e6 −1.14379
\(359\) −653168. −0.267479 −0.133739 0.991017i \(-0.542698\pi\)
−0.133739 + 0.991017i \(0.542698\pi\)
\(360\) 0 0
\(361\) −2.11522e6 −0.854255
\(362\) −2.01756e6 −0.809200
\(363\) 2.46675e6 0.982558
\(364\) 435035. 0.172096
\(365\) 0 0
\(366\) 937053. 0.365646
\(367\) 1.92975e6 0.747886 0.373943 0.927452i \(-0.378006\pi\)
0.373943 + 0.927452i \(0.378006\pi\)
\(368\) 453031. 0.174385
\(369\) −1.40077e6 −0.535552
\(370\) 0 0
\(371\) 1.00079e6 0.377492
\(372\) 607551. 0.227628
\(373\) 732408. 0.272572 0.136286 0.990670i \(-0.456483\pi\)
0.136286 + 0.990670i \(0.456483\pi\)
\(374\) 2.01672e6 0.745533
\(375\) 0 0
\(376\) −1.01746e6 −0.371148
\(377\) 3.16575e6 1.14716
\(378\) 464904. 0.167353
\(379\) −2.28899e6 −0.818552 −0.409276 0.912411i \(-0.634219\pi\)
−0.409276 + 0.912411i \(0.634219\pi\)
\(380\) 0 0
\(381\) 4.15000e6 1.46466
\(382\) 1.09805e6 0.385003
\(383\) −3.46152e6 −1.20578 −0.602892 0.797823i \(-0.705985\pi\)
−0.602892 + 0.797823i \(0.705985\pi\)
\(384\) −311379. −0.107761
\(385\) 0 0
\(386\) 3.18583e6 1.08831
\(387\) 1.48577e6 0.504282
\(388\) 1.56408e6 0.527448
\(389\) −564683. −0.189204 −0.0946022 0.995515i \(-0.530158\pi\)
−0.0946022 + 0.995515i \(0.530158\pi\)
\(390\) 0 0
\(391\) −1.65441e6 −0.547269
\(392\) −153664. −0.0505076
\(393\) −1.15330e6 −0.376670
\(394\) 1.63679e6 0.531195
\(395\) 0 0
\(396\) 1.01987e6 0.326819
\(397\) 848395. 0.270161 0.135080 0.990835i \(-0.456871\pi\)
0.135080 + 0.990835i \(0.456871\pi\)
\(398\) 237672. 0.0752090
\(399\) −559432. −0.175920
\(400\) 0 0
\(401\) 3.18365e6 0.988700 0.494350 0.869263i \(-0.335406\pi\)
0.494350 + 0.869263i \(0.335406\pi\)
\(402\) −105008. −0.0324083
\(403\) 1.10867e6 0.340046
\(404\) −1.85197e6 −0.564521
\(405\) 0 0
\(406\) −1.11821e6 −0.336674
\(407\) 296914. 0.0888473
\(408\) 1.13712e6 0.338185
\(409\) 976579. 0.288668 0.144334 0.989529i \(-0.453896\pi\)
0.144334 + 0.989529i \(0.453896\pi\)
\(410\) 0 0
\(411\) −453554. −0.132442
\(412\) −39345.7 −0.0114197
\(413\) −2.48810e6 −0.717782
\(414\) −836646. −0.239906
\(415\) 0 0
\(416\) −568209. −0.160981
\(417\) 6.57684e6 1.85215
\(418\) 1.29590e6 0.362770
\(419\) −5.08846e6 −1.41596 −0.707980 0.706233i \(-0.750393\pi\)
−0.707980 + 0.706233i \(0.750393\pi\)
\(420\) 0 0
\(421\) −6.03533e6 −1.65957 −0.829786 0.558082i \(-0.811537\pi\)
−0.829786 + 0.558082i \(0.811537\pi\)
\(422\) 1.94342e6 0.531233
\(423\) 1.87902e6 0.510599
\(424\) −1.30715e6 −0.353111
\(425\) 0 0
\(426\) −2.66515e6 −0.711536
\(427\) −603991. −0.160310
\(428\) 1.56605e6 0.413234
\(429\) 5.68734e6 1.49199
\(430\) 0 0
\(431\) −7.39852e6 −1.91846 −0.959228 0.282634i \(-0.908792\pi\)
−0.959228 + 0.282634i \(0.908792\pi\)
\(432\) −607221. −0.156544
\(433\) −1.38205e6 −0.354245 −0.177123 0.984189i \(-0.556679\pi\)
−0.177123 + 0.984189i \(0.556679\pi\)
\(434\) −391605. −0.0997985
\(435\) 0 0
\(436\) 1.90206e6 0.479190
\(437\) −1.06309e6 −0.266296
\(438\) 335449. 0.0835489
\(439\) −6.14636e6 −1.52215 −0.761074 0.648665i \(-0.775328\pi\)
−0.761074 + 0.648665i \(0.775328\pi\)
\(440\) 0 0
\(441\) 283783. 0.0694848
\(442\) 2.07502e6 0.505204
\(443\) −1.20430e6 −0.291557 −0.145779 0.989317i \(-0.546569\pi\)
−0.145779 + 0.989317i \(0.546569\pi\)
\(444\) 167413. 0.0403025
\(445\) 0 0
\(446\) −3.14752e6 −0.749257
\(447\) 7.28018e6 1.72335
\(448\) 200704. 0.0472456
\(449\) −5.29158e6 −1.23871 −0.619355 0.785111i \(-0.712606\pi\)
−0.619355 + 0.785111i \(0.712606\pi\)
\(450\) 0 0
\(451\) −6.39153e6 −1.47967
\(452\) 3.23873e6 0.745639
\(453\) −6.95086e6 −1.59145
\(454\) 717640. 0.163406
\(455\) 0 0
\(456\) 730686. 0.164558
\(457\) −7.03776e6 −1.57632 −0.788159 0.615471i \(-0.788966\pi\)
−0.788159 + 0.615471i \(0.788966\pi\)
\(458\) 2.18464e6 0.486650
\(459\) 2.21749e6 0.491281
\(460\) 0 0
\(461\) −5.11722e6 −1.12145 −0.560727 0.828001i \(-0.689478\pi\)
−0.560727 + 0.828001i \(0.689478\pi\)
\(462\) −2.00889e6 −0.437877
\(463\) 4.34892e6 0.942820 0.471410 0.881914i \(-0.343745\pi\)
0.471410 + 0.881914i \(0.343745\pi\)
\(464\) 1.46052e6 0.314929
\(465\) 0 0
\(466\) 5.00277e6 1.06720
\(467\) 8.09508e6 1.71763 0.858814 0.512287i \(-0.171202\pi\)
0.858814 + 0.512287i \(0.171202\pi\)
\(468\) 1.04935e6 0.221466
\(469\) 67684.2 0.0142087
\(470\) 0 0
\(471\) −3.54873e6 −0.737089
\(472\) 3.24976e6 0.671424
\(473\) 6.77934e6 1.39327
\(474\) −4.10667e6 −0.839545
\(475\) 0 0
\(476\) −732944. −0.148270
\(477\) 2.41402e6 0.485785
\(478\) 6.26557e6 1.25427
\(479\) 6.79155e6 1.35248 0.676239 0.736683i \(-0.263609\pi\)
0.676239 + 0.736683i \(0.263609\pi\)
\(480\) 0 0
\(481\) 305497. 0.0602067
\(482\) −2.52414e6 −0.494876
\(483\) 1.64799e6 0.321430
\(484\) 2.07671e6 0.402960
\(485\) 0 0
\(486\) 3.30478e6 0.634677
\(487\) −6.11477e6 −1.16831 −0.584154 0.811643i \(-0.698574\pi\)
−0.584154 + 0.811643i \(0.698574\pi\)
\(488\) 788886. 0.149956
\(489\) 1.22215e7 2.31129
\(490\) 0 0
\(491\) −6.62064e6 −1.23936 −0.619679 0.784856i \(-0.712737\pi\)
−0.619679 + 0.784856i \(0.712737\pi\)
\(492\) −3.60383e6 −0.671199
\(493\) −5.33363e6 −0.988338
\(494\) 1.33336e6 0.245828
\(495\) 0 0
\(496\) 511484. 0.0933530
\(497\) 1.71786e6 0.311958
\(498\) −4.69898e6 −0.849043
\(499\) 1.54480e6 0.277728 0.138864 0.990311i \(-0.455655\pi\)
0.138864 + 0.990311i \(0.455655\pi\)
\(500\) 0 0
\(501\) −88782.9 −0.0158028
\(502\) 831183. 0.147210
\(503\) −9.74305e6 −1.71702 −0.858510 0.512798i \(-0.828609\pi\)
−0.858510 + 0.512798i \(0.828609\pi\)
\(504\) −370655. −0.0649970
\(505\) 0 0
\(506\) −3.81750e6 −0.662830
\(507\) −1.20470e6 −0.208142
\(508\) 3.49380e6 0.600675
\(509\) −4.73837e6 −0.810652 −0.405326 0.914172i \(-0.632842\pi\)
−0.405326 + 0.914172i \(0.632842\pi\)
\(510\) 0 0
\(511\) −216218. −0.0366303
\(512\) −262144. −0.0441942
\(513\) 1.42491e6 0.239053
\(514\) 5.84417e6 0.975698
\(515\) 0 0
\(516\) 3.82249e6 0.632008
\(517\) 8.57370e6 1.41072
\(518\) −107908. −0.0176698
\(519\) −7.02768e6 −1.14523
\(520\) 0 0
\(521\) −1.99960e6 −0.322737 −0.161368 0.986894i \(-0.551591\pi\)
−0.161368 + 0.986894i \(0.551591\pi\)
\(522\) −2.69725e6 −0.433257
\(523\) 7.79537e6 1.24618 0.623092 0.782148i \(-0.285876\pi\)
0.623092 + 0.782148i \(0.285876\pi\)
\(524\) −970939. −0.154477
\(525\) 0 0
\(526\) 490962. 0.0773720
\(527\) −1.86787e6 −0.292968
\(528\) 2.62386e6 0.409596
\(529\) −3.30468e6 −0.513440
\(530\) 0 0
\(531\) −6.00158e6 −0.923696
\(532\) −470974. −0.0721469
\(533\) −6.57631e6 −1.00268
\(534\) 7.28537e6 1.10560
\(535\) 0 0
\(536\) −88403.8 −0.0132910
\(537\) 1.31785e7 1.97210
\(538\) 9.06964e6 1.35093
\(539\) 1.29486e6 0.191978
\(540\) 0 0
\(541\) 1.22085e7 1.79336 0.896681 0.442677i \(-0.145971\pi\)
0.896681 + 0.442677i \(0.145971\pi\)
\(542\) −584686. −0.0854917
\(543\) 9.58600e6 1.39520
\(544\) 957315. 0.138694
\(545\) 0 0
\(546\) −2.06697e6 −0.296724
\(547\) −8.62816e6 −1.23296 −0.616481 0.787370i \(-0.711442\pi\)
−0.616481 + 0.787370i \(0.711442\pi\)
\(548\) −381838. −0.0543160
\(549\) −1.45689e6 −0.206299
\(550\) 0 0
\(551\) −3.42727e6 −0.480917
\(552\) −2.15247e6 −0.300670
\(553\) 2.64701e6 0.368081
\(554\) 9.14924e6 1.26652
\(555\) 0 0
\(556\) 5.53691e6 0.759592
\(557\) 3.10873e6 0.424565 0.212283 0.977208i \(-0.431910\pi\)
0.212283 + 0.977208i \(0.431910\pi\)
\(558\) −944596. −0.128428
\(559\) 6.97533e6 0.944138
\(560\) 0 0
\(561\) −9.58199e6 −1.28543
\(562\) −6.63434e6 −0.886048
\(563\) −4.99568e6 −0.664237 −0.332119 0.943238i \(-0.607763\pi\)
−0.332119 + 0.943238i \(0.607763\pi\)
\(564\) 4.83423e6 0.639926
\(565\) 0 0
\(566\) −1.02415e7 −1.34376
\(567\) −3.61622e6 −0.472386
\(568\) −2.24373e6 −0.291810
\(569\) 7.11690e6 0.921531 0.460765 0.887522i \(-0.347575\pi\)
0.460765 + 0.887522i \(0.347575\pi\)
\(570\) 0 0
\(571\) 1.40799e7 1.80721 0.903606 0.428365i \(-0.140910\pi\)
0.903606 + 0.428365i \(0.140910\pi\)
\(572\) 4.78805e6 0.611884
\(573\) −5.21714e6 −0.663814
\(574\) 2.32290e6 0.294273
\(575\) 0 0
\(576\) 484121. 0.0607992
\(577\) 2.63468e6 0.329449 0.164724 0.986340i \(-0.447327\pi\)
0.164724 + 0.986340i \(0.447327\pi\)
\(578\) 2.18344e6 0.271846
\(579\) −1.51368e7 −1.87645
\(580\) 0 0
\(581\) 3.02879e6 0.372245
\(582\) −7.43137e6 −0.909414
\(583\) 1.10148e7 1.34216
\(584\) 282407. 0.0342645
\(585\) 0 0
\(586\) −7.51063e6 −0.903509
\(587\) −1.35001e7 −1.61711 −0.808556 0.588419i \(-0.799751\pi\)
−0.808556 + 0.588419i \(0.799751\pi\)
\(588\) 730100. 0.0870841
\(589\) −1.20025e6 −0.142556
\(590\) 0 0
\(591\) −7.77686e6 −0.915874
\(592\) 140942. 0.0165286
\(593\) −1.38643e7 −1.61906 −0.809529 0.587079i \(-0.800278\pi\)
−0.809529 + 0.587079i \(0.800278\pi\)
\(594\) 5.11679e6 0.595020
\(595\) 0 0
\(596\) 6.12904e6 0.706767
\(597\) −1.12924e6 −0.129674
\(598\) −3.92786e6 −0.449162
\(599\) −7.75652e6 −0.883283 −0.441642 0.897191i \(-0.645604\pi\)
−0.441642 + 0.897191i \(0.645604\pi\)
\(600\) 0 0
\(601\) 1.44747e7 1.63465 0.817323 0.576179i \(-0.195457\pi\)
0.817323 + 0.576179i \(0.195457\pi\)
\(602\) −2.46384e6 −0.277090
\(603\) 163262. 0.0182849
\(604\) −5.85179e6 −0.652674
\(605\) 0 0
\(606\) 8.79921e6 0.973335
\(607\) −6.96646e6 −0.767433 −0.383717 0.923451i \(-0.625356\pi\)
−0.383717 + 0.923451i \(0.625356\pi\)
\(608\) 615150. 0.0674873
\(609\) 5.31293e6 0.580485
\(610\) 0 0
\(611\) 8.82156e6 0.955966
\(612\) −1.76794e6 −0.190805
\(613\) 1.74134e7 1.87168 0.935841 0.352423i \(-0.114642\pi\)
0.935841 + 0.352423i \(0.114642\pi\)
\(614\) −7.53694e6 −0.806816
\(615\) 0 0
\(616\) −1.69125e6 −0.179579
\(617\) 4.70352e6 0.497405 0.248702 0.968580i \(-0.419996\pi\)
0.248702 + 0.968580i \(0.419996\pi\)
\(618\) 186942. 0.0196896
\(619\) −6.54432e6 −0.686496 −0.343248 0.939245i \(-0.611527\pi\)
−0.343248 + 0.939245i \(0.611527\pi\)
\(620\) 0 0
\(621\) −4.19754e6 −0.436783
\(622\) 6.20102e6 0.642668
\(623\) −4.69589e6 −0.484727
\(624\) 2.69972e6 0.277560
\(625\) 0 0
\(626\) 6.35868e6 0.648531
\(627\) −6.15718e6 −0.625479
\(628\) −2.98760e6 −0.302290
\(629\) −514700. −0.0518713
\(630\) 0 0
\(631\) 9.47436e6 0.947276 0.473638 0.880720i \(-0.342940\pi\)
0.473638 + 0.880720i \(0.342940\pi\)
\(632\) −3.45732e6 −0.344308
\(633\) −9.23372e6 −0.915940
\(634\) 3.54933e6 0.350690
\(635\) 0 0
\(636\) 6.21064e6 0.608826
\(637\) 1.33229e6 0.130092
\(638\) −1.23072e7 −1.19704
\(639\) 4.14367e6 0.401451
\(640\) 0 0
\(641\) 1.21995e7 1.17273 0.586364 0.810048i \(-0.300559\pi\)
0.586364 + 0.810048i \(0.300559\pi\)
\(642\) −7.44073e6 −0.712489
\(643\) −1.38685e7 −1.32282 −0.661410 0.750024i \(-0.730042\pi\)
−0.661410 + 0.750024i \(0.730042\pi\)
\(644\) 1.38741e6 0.131822
\(645\) 0 0
\(646\) −2.24644e6 −0.211794
\(647\) −938008. −0.0880939 −0.0440469 0.999029i \(-0.514025\pi\)
−0.0440469 + 0.999029i \(0.514025\pi\)
\(648\) 4.72322e6 0.441876
\(649\) −2.73844e7 −2.55206
\(650\) 0 0
\(651\) 1.86062e6 0.172070
\(652\) 1.02891e7 0.947888
\(653\) −175619. −0.0161172 −0.00805858 0.999968i \(-0.502565\pi\)
−0.00805858 + 0.999968i \(0.502565\pi\)
\(654\) −9.03720e6 −0.826208
\(655\) 0 0
\(656\) −3.03399e6 −0.275267
\(657\) −521543. −0.0471386
\(658\) −3.11597e6 −0.280562
\(659\) −2.00907e7 −1.80211 −0.901054 0.433706i \(-0.857206\pi\)
−0.901054 + 0.433706i \(0.857206\pi\)
\(660\) 0 0
\(661\) 4.14983e6 0.369425 0.184712 0.982793i \(-0.440865\pi\)
0.184712 + 0.982793i \(0.440865\pi\)
\(662\) −4.39049e6 −0.389375
\(663\) −9.85900e6 −0.871062
\(664\) −3.95597e6 −0.348203
\(665\) 0 0
\(666\) −260287. −0.0227388
\(667\) 1.00961e7 0.878701
\(668\) −74744.5 −0.00648094
\(669\) 1.49547e7 1.29185
\(670\) 0 0
\(671\) −6.64760e6 −0.569979
\(672\) −953600. −0.0814597
\(673\) 8.38505e6 0.713621 0.356811 0.934177i \(-0.383864\pi\)
0.356811 + 0.934177i \(0.383864\pi\)
\(674\) 1.89273e6 0.160486
\(675\) 0 0
\(676\) −1.01421e6 −0.0853617
\(677\) 2.28720e7 1.91793 0.958966 0.283520i \(-0.0915023\pi\)
0.958966 + 0.283520i \(0.0915023\pi\)
\(678\) −1.53881e7 −1.28561
\(679\) 4.79000e6 0.398713
\(680\) 0 0
\(681\) −3.40970e6 −0.281740
\(682\) −4.31006e6 −0.354832
\(683\) 8.06253e6 0.661332 0.330666 0.943748i \(-0.392727\pi\)
0.330666 + 0.943748i \(0.392727\pi\)
\(684\) −1.13604e6 −0.0928441
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) −1.03798e7 −0.839071
\(688\) 3.21808e6 0.259194
\(689\) 1.13332e7 0.909507
\(690\) 0 0
\(691\) 1.46262e7 1.16530 0.582648 0.812724i \(-0.302016\pi\)
0.582648 + 0.812724i \(0.302016\pi\)
\(692\) −5.91646e6 −0.469674
\(693\) 3.12335e6 0.247052
\(694\) 4.75506e6 0.374764
\(695\) 0 0
\(696\) −6.93934e6 −0.542994
\(697\) 1.10797e7 0.863867
\(698\) 1.53228e6 0.119041
\(699\) −2.37695e7 −1.84004
\(700\) 0 0
\(701\) 1.65516e6 0.127217 0.0636086 0.997975i \(-0.479739\pi\)
0.0636086 + 0.997975i \(0.479739\pi\)
\(702\) 5.26472e6 0.403211
\(703\) −330735. −0.0252401
\(704\) 2.20898e6 0.167981
\(705\) 0 0
\(706\) 1.56335e6 0.118044
\(707\) −5.67165e6 −0.426738
\(708\) −1.54405e7 −1.15765
\(709\) −1.05669e7 −0.789466 −0.394733 0.918796i \(-0.629163\pi\)
−0.394733 + 0.918796i \(0.629163\pi\)
\(710\) 0 0
\(711\) 6.38490e6 0.473674
\(712\) 6.13340e6 0.453421
\(713\) 3.53574e6 0.260469
\(714\) 3.48242e6 0.255644
\(715\) 0 0
\(716\) 1.10947e7 0.808785
\(717\) −2.97694e7 −2.16258
\(718\) 2.61267e6 0.189136
\(719\) −5.87623e6 −0.423913 −0.211957 0.977279i \(-0.567984\pi\)
−0.211957 + 0.977279i \(0.567984\pi\)
\(720\) 0 0
\(721\) −120496. −0.00863248
\(722\) 8.46088e6 0.604049
\(723\) 1.19929e7 0.853254
\(724\) 8.07026e6 0.572191
\(725\) 0 0
\(726\) −9.86699e6 −0.694774
\(727\) −1.45007e6 −0.101754 −0.0508772 0.998705i \(-0.516202\pi\)
−0.0508772 + 0.998705i \(0.516202\pi\)
\(728\) −1.74014e6 −0.121690
\(729\) 2.23154e6 0.155520
\(730\) 0 0
\(731\) −1.17520e7 −0.813426
\(732\) −3.74821e6 −0.258551
\(733\) −1.89152e7 −1.30032 −0.650161 0.759797i \(-0.725299\pi\)
−0.650161 + 0.759797i \(0.725299\pi\)
\(734\) −7.71899e6 −0.528835
\(735\) 0 0
\(736\) −1.81212e6 −0.123309
\(737\) 744941. 0.0505188
\(738\) 5.60309e6 0.378693
\(739\) −3.35437e6 −0.225943 −0.112972 0.993598i \(-0.536037\pi\)
−0.112972 + 0.993598i \(0.536037\pi\)
\(740\) 0 0
\(741\) −6.33518e6 −0.423851
\(742\) −4.00315e6 −0.266927
\(743\) −2.14209e7 −1.42353 −0.711765 0.702418i \(-0.752104\pi\)
−0.711765 + 0.702418i \(0.752104\pi\)
\(744\) −2.43020e6 −0.160957
\(745\) 0 0
\(746\) −2.92963e6 −0.192738
\(747\) 7.30579e6 0.479033
\(748\) −8.06688e6 −0.527171
\(749\) 4.79603e6 0.312376
\(750\) 0 0
\(751\) 1.24120e6 0.0803046 0.0401523 0.999194i \(-0.487216\pi\)
0.0401523 + 0.999194i \(0.487216\pi\)
\(752\) 4.06984e6 0.262442
\(753\) −3.94918e6 −0.253816
\(754\) −1.26630e7 −0.811162
\(755\) 0 0
\(756\) −1.85961e6 −0.118336
\(757\) 1.58083e7 1.00264 0.501321 0.865261i \(-0.332847\pi\)
0.501321 + 0.865261i \(0.332847\pi\)
\(758\) 9.15597e6 0.578804
\(759\) 1.81380e7 1.14284
\(760\) 0 0
\(761\) 1.47012e7 0.920220 0.460110 0.887862i \(-0.347810\pi\)
0.460110 + 0.887862i \(0.347810\pi\)
\(762\) −1.66000e7 −1.03567
\(763\) 5.82505e6 0.362233
\(764\) −4.39221e6 −0.272238
\(765\) 0 0
\(766\) 1.38461e7 0.852618
\(767\) −2.81760e7 −1.72938
\(768\) 1.24552e6 0.0761986
\(769\) −2.04958e7 −1.24983 −0.624913 0.780694i \(-0.714866\pi\)
−0.624913 + 0.780694i \(0.714866\pi\)
\(770\) 0 0
\(771\) −2.77673e7 −1.68228
\(772\) −1.27433e7 −0.769555
\(773\) −336883. −0.0202783 −0.0101391 0.999949i \(-0.503227\pi\)
−0.0101391 + 0.999949i \(0.503227\pi\)
\(774\) −5.94307e6 −0.356581
\(775\) 0 0
\(776\) −6.25632e6 −0.372962
\(777\) 512702. 0.0304658
\(778\) 2.25873e6 0.133788
\(779\) 7.11959e6 0.420350
\(780\) 0 0
\(781\) 1.89070e7 1.10916
\(782\) 6.61763e6 0.386977
\(783\) −1.35324e7 −0.788807
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 4.61320e6 0.266346
\(787\) −3.16902e7 −1.82385 −0.911923 0.410361i \(-0.865403\pi\)
−0.911923 + 0.410361i \(0.865403\pi\)
\(788\) −6.54718e6 −0.375611
\(789\) −2.33270e6 −0.133403
\(790\) 0 0
\(791\) 9.91860e6 0.563650
\(792\) −4.07948e6 −0.231096
\(793\) −6.83978e6 −0.386242
\(794\) −3.39358e6 −0.191032
\(795\) 0 0
\(796\) −950687. −0.0531808
\(797\) −6.16871e6 −0.343992 −0.171996 0.985098i \(-0.555022\pi\)
−0.171996 + 0.985098i \(0.555022\pi\)
\(798\) 2.23773e6 0.124394
\(799\) −1.48625e7 −0.823617
\(800\) 0 0
\(801\) −1.13270e7 −0.623784
\(802\) −1.27346e7 −0.699117
\(803\) −2.37973e6 −0.130238
\(804\) 420031. 0.0229161
\(805\) 0 0
\(806\) −4.43466e6 −0.240449
\(807\) −4.30923e7 −2.32925
\(808\) 7.40788e6 0.399177
\(809\) 9.94168e6 0.534058 0.267029 0.963688i \(-0.413958\pi\)
0.267029 + 0.963688i \(0.413958\pi\)
\(810\) 0 0
\(811\) 1.67551e7 0.894528 0.447264 0.894402i \(-0.352398\pi\)
0.447264 + 0.894402i \(0.352398\pi\)
\(812\) 4.47285e6 0.238064
\(813\) 2.77800e6 0.147403
\(814\) −1.18765e6 −0.0628245
\(815\) 0 0
\(816\) −4.54846e6 −0.239133
\(817\) −7.55158e6 −0.395806
\(818\) −3.90632e6 −0.204119
\(819\) 3.21365e6 0.167413
\(820\) 0 0
\(821\) 2.78211e6 0.144051 0.0720256 0.997403i \(-0.477054\pi\)
0.0720256 + 0.997403i \(0.477054\pi\)
\(822\) 1.81422e6 0.0936503
\(823\) 3.40828e7 1.75402 0.877012 0.480468i \(-0.159533\pi\)
0.877012 + 0.480468i \(0.159533\pi\)
\(824\) 157383. 0.00807494
\(825\) 0 0
\(826\) 9.95240e6 0.507548
\(827\) 2.96679e7 1.50842 0.754210 0.656633i \(-0.228020\pi\)
0.754210 + 0.656633i \(0.228020\pi\)
\(828\) 3.34658e6 0.169639
\(829\) 3.66027e7 1.84981 0.924905 0.380198i \(-0.124144\pi\)
0.924905 + 0.380198i \(0.124144\pi\)
\(830\) 0 0
\(831\) −4.34705e7 −2.18370
\(832\) 2.27284e6 0.113831
\(833\) −2.24464e6 −0.112082
\(834\) −2.63074e7 −1.30967
\(835\) 0 0
\(836\) −5.18360e6 −0.256517
\(837\) −4.73914e6 −0.233822
\(838\) 2.03538e7 1.00123
\(839\) 1.00599e6 0.0493389 0.0246695 0.999696i \(-0.492147\pi\)
0.0246695 + 0.999696i \(0.492147\pi\)
\(840\) 0 0
\(841\) 1.20377e7 0.586887
\(842\) 2.41413e7 1.17349
\(843\) 3.15216e7 1.52770
\(844\) −7.77368e6 −0.375639
\(845\) 0 0
\(846\) −7.51608e6 −0.361048
\(847\) 6.35991e6 0.304609
\(848\) 5.22861e6 0.249687
\(849\) 4.86600e7 2.31688
\(850\) 0 0
\(851\) 974287. 0.0461172
\(852\) 1.06606e7 0.503132
\(853\) 7.59798e6 0.357541 0.178770 0.983891i \(-0.442788\pi\)
0.178770 + 0.983891i \(0.442788\pi\)
\(854\) 2.41596e6 0.113356
\(855\) 0 0
\(856\) −6.26420e6 −0.292201
\(857\) −2.32371e7 −1.08076 −0.540380 0.841421i \(-0.681720\pi\)
−0.540380 + 0.841421i \(0.681720\pi\)
\(858\) −2.27493e7 −1.05500
\(859\) −7.66200e6 −0.354290 −0.177145 0.984185i \(-0.556686\pi\)
−0.177145 + 0.984185i \(0.556686\pi\)
\(860\) 0 0
\(861\) −1.10367e7 −0.507379
\(862\) 2.95941e7 1.35655
\(863\) −5.87476e6 −0.268511 −0.134256 0.990947i \(-0.542864\pi\)
−0.134256 + 0.990947i \(0.542864\pi\)
\(864\) 2.42888e6 0.110694
\(865\) 0 0
\(866\) 5.52820e6 0.250489
\(867\) −1.03741e7 −0.468710
\(868\) 1.56642e6 0.0705682
\(869\) 2.91334e7 1.30870
\(870\) 0 0
\(871\) 766477. 0.0342337
\(872\) −7.60823e6 −0.338838
\(873\) 1.15540e7 0.513094
\(874\) 4.25235e6 0.188300
\(875\) 0 0
\(876\) −1.34179e6 −0.0590780
\(877\) 2.00898e7 0.882018 0.441009 0.897503i \(-0.354621\pi\)
0.441009 + 0.897503i \(0.354621\pi\)
\(878\) 2.45854e7 1.07632
\(879\) 3.56851e7 1.55781
\(880\) 0 0
\(881\) 2.03816e7 0.884704 0.442352 0.896842i \(-0.354144\pi\)
0.442352 + 0.896842i \(0.354144\pi\)
\(882\) −1.13513e6 −0.0491331
\(883\) 2.43114e7 1.04932 0.524660 0.851312i \(-0.324193\pi\)
0.524660 + 0.851312i \(0.324193\pi\)
\(884\) −8.30009e6 −0.357234
\(885\) 0 0
\(886\) 4.81718e6 0.206162
\(887\) −7.87521e6 −0.336088 −0.168044 0.985779i \(-0.553745\pi\)
−0.168044 + 0.985779i \(0.553745\pi\)
\(888\) −669652. −0.0284982
\(889\) 1.06998e7 0.454067
\(890\) 0 0
\(891\) −3.98006e7 −1.67956
\(892\) 1.25901e7 0.529805
\(893\) −9.55033e6 −0.400765
\(894\) −2.91207e7 −1.21859
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 1.86623e7 0.774435
\(898\) 2.11663e7 0.875901
\(899\) 1.13988e7 0.470393
\(900\) 0 0
\(901\) −1.90942e7 −0.783590
\(902\) 2.55661e7 1.04628
\(903\) 1.17064e7 0.477753
\(904\) −1.29549e7 −0.527246
\(905\) 0 0
\(906\) 2.78035e7 1.12533
\(907\) −1.73586e7 −0.700643 −0.350321 0.936630i \(-0.613928\pi\)
−0.350321 + 0.936630i \(0.613928\pi\)
\(908\) −2.87056e6 −0.115545
\(909\) −1.36807e7 −0.549159
\(910\) 0 0
\(911\) −114966. −0.00458960 −0.00229480 0.999997i \(-0.500730\pi\)
−0.00229480 + 0.999997i \(0.500730\pi\)
\(912\) −2.92274e6 −0.116360
\(913\) 3.33353e7 1.32351
\(914\) 2.81510e7 1.11463
\(915\) 0 0
\(916\) −8.73857e6 −0.344114
\(917\) −2.97350e6 −0.116774
\(918\) −8.86996e6 −0.347388
\(919\) 4.55188e7 1.77788 0.888940 0.458024i \(-0.151443\pi\)
0.888940 + 0.458024i \(0.151443\pi\)
\(920\) 0 0
\(921\) 3.58101e7 1.39109
\(922\) 2.04689e7 0.792988
\(923\) 1.94536e7 0.751614
\(924\) 8.03557e6 0.309626
\(925\) 0 0
\(926\) −1.73957e7 −0.666675
\(927\) −290651. −0.0111089
\(928\) −5.84209e6 −0.222689
\(929\) −3.83110e6 −0.145641 −0.0728207 0.997345i \(-0.523200\pi\)
−0.0728207 + 0.997345i \(0.523200\pi\)
\(930\) 0 0
\(931\) −1.44236e6 −0.0545379
\(932\) −2.00111e7 −0.754624
\(933\) −2.94627e7 −1.10807
\(934\) −3.23803e7 −1.21455
\(935\) 0 0
\(936\) −4.19742e6 −0.156600
\(937\) 2.80647e7 1.04427 0.522134 0.852863i \(-0.325136\pi\)
0.522134 + 0.852863i \(0.325136\pi\)
\(938\) −270737. −0.0100471
\(939\) −3.02118e7 −1.11818
\(940\) 0 0
\(941\) 2.88859e7 1.06344 0.531718 0.846921i \(-0.321547\pi\)
0.531718 + 0.846921i \(0.321547\pi\)
\(942\) 1.41949e7 0.521201
\(943\) −2.09731e7 −0.768038
\(944\) −1.29990e7 −0.474768
\(945\) 0 0
\(946\) −2.71174e7 −0.985189
\(947\) 1.60037e6 0.0579889 0.0289945 0.999580i \(-0.490769\pi\)
0.0289945 + 0.999580i \(0.490769\pi\)
\(948\) 1.64267e7 0.593648
\(949\) −2.44852e6 −0.0882549
\(950\) 0 0
\(951\) −1.68638e7 −0.604652
\(952\) 2.93178e6 0.104843
\(953\) −3.00786e7 −1.07282 −0.536409 0.843958i \(-0.680220\pi\)
−0.536409 + 0.843958i \(0.680220\pi\)
\(954\) −9.65606e6 −0.343502
\(955\) 0 0
\(956\) −2.50623e7 −0.886902
\(957\) 5.84748e7 2.06390
\(958\) −2.71662e7 −0.956346
\(959\) −1.16938e6 −0.0410590
\(960\) 0 0
\(961\) −2.46372e7 −0.860564
\(962\) −1.22199e6 −0.0425725
\(963\) 1.15686e7 0.401989
\(964\) 1.00966e7 0.349930
\(965\) 0 0
\(966\) −6.59195e6 −0.227285
\(967\) 1.44210e7 0.495940 0.247970 0.968768i \(-0.420237\pi\)
0.247970 + 0.968768i \(0.420237\pi\)
\(968\) −8.30682e6 −0.284935
\(969\) 1.06735e7 0.365171
\(970\) 0 0
\(971\) −3.83778e7 −1.30627 −0.653133 0.757243i \(-0.726546\pi\)
−0.653133 + 0.757243i \(0.726546\pi\)
\(972\) −1.32191e7 −0.448784
\(973\) 1.69568e7 0.574198
\(974\) 2.44591e7 0.826119
\(975\) 0 0
\(976\) −3.15554e6 −0.106035
\(977\) −2.03028e7 −0.680485 −0.340242 0.940338i \(-0.610509\pi\)
−0.340242 + 0.940338i \(0.610509\pi\)
\(978\) −4.88862e7 −1.63433
\(979\) −5.16836e7 −1.72344
\(980\) 0 0
\(981\) 1.40507e7 0.466149
\(982\) 2.64826e7 0.876358
\(983\) −5.66641e7 −1.87035 −0.935177 0.354180i \(-0.884760\pi\)
−0.935177 + 0.354180i \(0.884760\pi\)
\(984\) 1.44153e7 0.474609
\(985\) 0 0
\(986\) 2.13345e7 0.698861
\(987\) 1.48048e7 0.483738
\(988\) −5.33346e6 −0.173827
\(989\) 2.22456e7 0.723192
\(990\) 0 0
\(991\) −4.65268e7 −1.50494 −0.752470 0.658627i \(-0.771138\pi\)
−0.752470 + 0.658627i \(0.771138\pi\)
\(992\) −2.04594e6 −0.0660105
\(993\) 2.08604e7 0.671352
\(994\) −6.87143e6 −0.220588
\(995\) 0 0
\(996\) 1.87959e7 0.600364
\(997\) 5.00877e7 1.59585 0.797926 0.602755i \(-0.205930\pi\)
0.797926 + 0.602755i \(0.205930\pi\)
\(998\) −6.17918e6 −0.196383
\(999\) −1.30589e6 −0.0413992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.v.1.3 3
5.2 odd 4 350.6.c.m.99.1 6
5.3 odd 4 350.6.c.m.99.6 6
5.4 even 2 350.6.a.w.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.6.a.v.1.3 3 1.1 even 1 trivial
350.6.a.w.1.1 yes 3 5.4 even 2
350.6.c.m.99.1 6 5.2 odd 4
350.6.c.m.99.6 6 5.3 odd 4