Properties

Label 350.6.a.v.1.2
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-12,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1378776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 336x + 840 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.52911\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -2.52911 q^{3} +16.0000 q^{4} +10.1164 q^{6} +49.0000 q^{7} -64.0000 q^{8} -236.604 q^{9} -267.715 q^{11} -40.4658 q^{12} -896.081 q^{13} -196.000 q^{14} +256.000 q^{16} -61.1910 q^{17} +946.414 q^{18} +1622.37 q^{19} -123.926 q^{21} +1070.86 q^{22} +4280.88 q^{23} +161.863 q^{24} +3584.33 q^{26} +1212.97 q^{27} +784.000 q^{28} -7422.33 q^{29} -8936.12 q^{31} -1024.00 q^{32} +677.080 q^{33} +244.764 q^{34} -3785.66 q^{36} +640.734 q^{37} -6489.48 q^{38} +2266.29 q^{39} +3879.45 q^{41} +495.705 q^{42} +19769.9 q^{43} -4283.44 q^{44} -17123.5 q^{46} -2063.78 q^{47} -647.452 q^{48} +2401.00 q^{49} +154.759 q^{51} -14337.3 q^{52} -19772.5 q^{53} -4851.88 q^{54} -3136.00 q^{56} -4103.15 q^{57} +29689.3 q^{58} +46458.9 q^{59} -53924.4 q^{61} +35744.5 q^{62} -11593.6 q^{63} +4096.00 q^{64} -2708.32 q^{66} +44624.4 q^{67} -979.055 q^{68} -10826.8 q^{69} -50547.9 q^{71} +15142.6 q^{72} +24073.0 q^{73} -2562.94 q^{74} +25957.9 q^{76} -13118.0 q^{77} -9065.15 q^{78} +1991.87 q^{79} +54426.9 q^{81} -15517.8 q^{82} +50516.4 q^{83} -1982.82 q^{84} -79079.6 q^{86} +18771.9 q^{87} +17133.8 q^{88} +60371.0 q^{89} -43908.0 q^{91} +68494.1 q^{92} +22600.4 q^{93} +8255.14 q^{94} +2589.81 q^{96} +121045. q^{97} -9604.00 q^{98} +63342.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - q^{3} + 48 q^{4} + 4 q^{6} + 147 q^{7} - 192 q^{8} - 56 q^{9} - 11 q^{11} - 16 q^{12} + 482 q^{13} - 588 q^{14} + 768 q^{16} + 1185 q^{17} + 224 q^{18} - 1811 q^{19} - 49 q^{21} + 44 q^{22}+ \cdots + 109448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −2.52911 −0.162242 −0.0811212 0.996704i \(-0.525850\pi\)
−0.0811212 + 0.996704i \(0.525850\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 10.1164 0.114723
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) −236.604 −0.973677
\(10\) 0 0
\(11\) −267.715 −0.667100 −0.333550 0.942732i \(-0.608247\pi\)
−0.333550 + 0.942732i \(0.608247\pi\)
\(12\) −40.4658 −0.0811212
\(13\) −896.081 −1.47058 −0.735291 0.677752i \(-0.762954\pi\)
−0.735291 + 0.677752i \(0.762954\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −61.1910 −0.0513529 −0.0256765 0.999670i \(-0.508174\pi\)
−0.0256765 + 0.999670i \(0.508174\pi\)
\(18\) 946.414 0.688494
\(19\) 1622.37 1.03102 0.515508 0.856885i \(-0.327603\pi\)
0.515508 + 0.856885i \(0.327603\pi\)
\(20\) 0 0
\(21\) −123.926 −0.0613219
\(22\) 1070.86 0.471711
\(23\) 4280.88 1.68738 0.843691 0.536829i \(-0.180378\pi\)
0.843691 + 0.536829i \(0.180378\pi\)
\(24\) 161.863 0.0573614
\(25\) 0 0
\(26\) 3584.33 1.03986
\(27\) 1212.97 0.320214
\(28\) 784.000 0.188982
\(29\) −7422.33 −1.63887 −0.819437 0.573170i \(-0.805714\pi\)
−0.819437 + 0.573170i \(0.805714\pi\)
\(30\) 0 0
\(31\) −8936.12 −1.67011 −0.835055 0.550167i \(-0.814564\pi\)
−0.835055 + 0.550167i \(0.814564\pi\)
\(32\) −1024.00 −0.176777
\(33\) 677.080 0.108232
\(34\) 244.764 0.0363120
\(35\) 0 0
\(36\) −3785.66 −0.486839
\(37\) 640.734 0.0769438 0.0384719 0.999260i \(-0.487751\pi\)
0.0384719 + 0.999260i \(0.487751\pi\)
\(38\) −6489.48 −0.729039
\(39\) 2266.29 0.238591
\(40\) 0 0
\(41\) 3879.45 0.360422 0.180211 0.983628i \(-0.442322\pi\)
0.180211 + 0.983628i \(0.442322\pi\)
\(42\) 495.705 0.0433611
\(43\) 19769.9 1.63055 0.815274 0.579075i \(-0.196586\pi\)
0.815274 + 0.579075i \(0.196586\pi\)
\(44\) −4283.44 −0.333550
\(45\) 0 0
\(46\) −17123.5 −1.19316
\(47\) −2063.78 −0.136276 −0.0681380 0.997676i \(-0.521706\pi\)
−0.0681380 + 0.997676i \(0.521706\pi\)
\(48\) −647.452 −0.0405606
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 154.759 0.00833162
\(52\) −14337.3 −0.735291
\(53\) −19772.5 −0.966878 −0.483439 0.875378i \(-0.660612\pi\)
−0.483439 + 0.875378i \(0.660612\pi\)
\(54\) −4851.88 −0.226426
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) −4103.15 −0.167275
\(58\) 29689.3 1.15886
\(59\) 46458.9 1.73756 0.868778 0.495202i \(-0.164906\pi\)
0.868778 + 0.495202i \(0.164906\pi\)
\(60\) 0 0
\(61\) −53924.4 −1.85550 −0.927750 0.373203i \(-0.878259\pi\)
−0.927750 + 0.373203i \(0.878259\pi\)
\(62\) 35744.5 1.18095
\(63\) −11593.6 −0.368015
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −2708.32 −0.0765315
\(67\) 44624.4 1.21447 0.607234 0.794523i \(-0.292279\pi\)
0.607234 + 0.794523i \(0.292279\pi\)
\(68\) −979.055 −0.0256765
\(69\) −10826.8 −0.273765
\(70\) 0 0
\(71\) −50547.9 −1.19003 −0.595014 0.803716i \(-0.702853\pi\)
−0.595014 + 0.803716i \(0.702853\pi\)
\(72\) 15142.6 0.344247
\(73\) 24073.0 0.528717 0.264358 0.964425i \(-0.414840\pi\)
0.264358 + 0.964425i \(0.414840\pi\)
\(74\) −2562.94 −0.0544075
\(75\) 0 0
\(76\) 25957.9 0.515508
\(77\) −13118.0 −0.252140
\(78\) −9065.15 −0.168709
\(79\) 1991.87 0.0359082 0.0179541 0.999839i \(-0.494285\pi\)
0.0179541 + 0.999839i \(0.494285\pi\)
\(80\) 0 0
\(81\) 54426.9 0.921725
\(82\) −15517.8 −0.254857
\(83\) 50516.4 0.804891 0.402445 0.915444i \(-0.368160\pi\)
0.402445 + 0.915444i \(0.368160\pi\)
\(84\) −1982.82 −0.0306609
\(85\) 0 0
\(86\) −79079.6 −1.15297
\(87\) 18771.9 0.265895
\(88\) 17133.8 0.235855
\(89\) 60371.0 0.807892 0.403946 0.914783i \(-0.367638\pi\)
0.403946 + 0.914783i \(0.367638\pi\)
\(90\) 0 0
\(91\) −43908.0 −0.555828
\(92\) 68494.1 0.843691
\(93\) 22600.4 0.270963
\(94\) 8255.14 0.0963617
\(95\) 0 0
\(96\) 2589.81 0.0286807
\(97\) 121045. 1.30623 0.653113 0.757260i \(-0.273463\pi\)
0.653113 + 0.757260i \(0.273463\pi\)
\(98\) −9604.00 −0.101015
\(99\) 63342.3 0.649540
\(100\) 0 0
\(101\) −40068.2 −0.390838 −0.195419 0.980720i \(-0.562607\pi\)
−0.195419 + 0.980720i \(0.562607\pi\)
\(102\) −619.035 −0.00589135
\(103\) 141505. 1.31426 0.657128 0.753779i \(-0.271771\pi\)
0.657128 + 0.753779i \(0.271771\pi\)
\(104\) 57349.2 0.519929
\(105\) 0 0
\(106\) 79090.0 0.683686
\(107\) −73248.0 −0.618495 −0.309248 0.950982i \(-0.600077\pi\)
−0.309248 + 0.950982i \(0.600077\pi\)
\(108\) 19407.5 0.160107
\(109\) 181497. 1.46320 0.731601 0.681733i \(-0.238774\pi\)
0.731601 + 0.681733i \(0.238774\pi\)
\(110\) 0 0
\(111\) −1620.49 −0.0124835
\(112\) 12544.0 0.0944911
\(113\) −61085.2 −0.450028 −0.225014 0.974356i \(-0.572243\pi\)
−0.225014 + 0.974356i \(0.572243\pi\)
\(114\) 16412.6 0.118281
\(115\) 0 0
\(116\) −118757. −0.819437
\(117\) 212016. 1.43187
\(118\) −185836. −1.22864
\(119\) −2998.36 −0.0194096
\(120\) 0 0
\(121\) −89379.7 −0.554978
\(122\) 215698. 1.31204
\(123\) −9811.56 −0.0584757
\(124\) −142978. −0.835055
\(125\) 0 0
\(126\) 46374.3 0.260226
\(127\) 165980. 0.913158 0.456579 0.889683i \(-0.349075\pi\)
0.456579 + 0.889683i \(0.349075\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −50000.3 −0.264544
\(130\) 0 0
\(131\) 162690. 0.828291 0.414146 0.910211i \(-0.364080\pi\)
0.414146 + 0.910211i \(0.364080\pi\)
\(132\) 10833.3 0.0541160
\(133\) 79496.1 0.389688
\(134\) −178498. −0.858758
\(135\) 0 0
\(136\) 3916.22 0.0181560
\(137\) 224926. 1.02385 0.511926 0.859029i \(-0.328932\pi\)
0.511926 + 0.859029i \(0.328932\pi\)
\(138\) 43307.2 0.193581
\(139\) 372472. 1.63515 0.817574 0.575824i \(-0.195319\pi\)
0.817574 + 0.575824i \(0.195319\pi\)
\(140\) 0 0
\(141\) 5219.54 0.0221098
\(142\) 202191. 0.841476
\(143\) 239894. 0.981025
\(144\) −60570.5 −0.243419
\(145\) 0 0
\(146\) −96292.0 −0.373859
\(147\) −6072.39 −0.0231775
\(148\) 10251.7 0.0384719
\(149\) 166217. 0.613350 0.306675 0.951814i \(-0.400783\pi\)
0.306675 + 0.951814i \(0.400783\pi\)
\(150\) 0 0
\(151\) 289233. 1.03230 0.516149 0.856499i \(-0.327365\pi\)
0.516149 + 0.856499i \(0.327365\pi\)
\(152\) −103832. −0.364519
\(153\) 14478.0 0.0500012
\(154\) 52472.1 0.178290
\(155\) 0 0
\(156\) 36260.6 0.119295
\(157\) −259507. −0.840232 −0.420116 0.907470i \(-0.638011\pi\)
−0.420116 + 0.907470i \(0.638011\pi\)
\(158\) −7967.49 −0.0253909
\(159\) 50006.8 0.156869
\(160\) 0 0
\(161\) 209763. 0.637770
\(162\) −217708. −0.651758
\(163\) −353857. −1.04318 −0.521590 0.853196i \(-0.674661\pi\)
−0.521590 + 0.853196i \(0.674661\pi\)
\(164\) 62071.2 0.180211
\(165\) 0 0
\(166\) −202065. −0.569144
\(167\) 116741. 0.323917 0.161959 0.986798i \(-0.448219\pi\)
0.161959 + 0.986798i \(0.448219\pi\)
\(168\) 7931.29 0.0216806
\(169\) 431669. 1.16261
\(170\) 0 0
\(171\) −383858. −1.00388
\(172\) 316319. 0.815274
\(173\) −206069. −0.523476 −0.261738 0.965139i \(-0.584296\pi\)
−0.261738 + 0.965139i \(0.584296\pi\)
\(174\) −75087.6 −0.188016
\(175\) 0 0
\(176\) −68535.0 −0.166775
\(177\) −117500. −0.281905
\(178\) −241484. −0.571266
\(179\) −35189.4 −0.0820879 −0.0410440 0.999157i \(-0.513068\pi\)
−0.0410440 + 0.999157i \(0.513068\pi\)
\(180\) 0 0
\(181\) −338848. −0.768791 −0.384395 0.923169i \(-0.625590\pi\)
−0.384395 + 0.923169i \(0.625590\pi\)
\(182\) 175632. 0.393029
\(183\) 136381. 0.301041
\(184\) −273976. −0.596580
\(185\) 0 0
\(186\) −90401.7 −0.191600
\(187\) 16381.7 0.0342575
\(188\) −33020.5 −0.0681380
\(189\) 59435.5 0.121030
\(190\) 0 0
\(191\) 68297.5 0.135463 0.0677316 0.997704i \(-0.478424\pi\)
0.0677316 + 0.997704i \(0.478424\pi\)
\(192\) −10359.2 −0.0202803
\(193\) 699065. 1.35090 0.675452 0.737404i \(-0.263949\pi\)
0.675452 + 0.737404i \(0.263949\pi\)
\(194\) −484181. −0.923641
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −407750. −0.748563 −0.374281 0.927315i \(-0.622111\pi\)
−0.374281 + 0.927315i \(0.622111\pi\)
\(198\) −253369. −0.459294
\(199\) −191571. −0.342924 −0.171462 0.985191i \(-0.554849\pi\)
−0.171462 + 0.985191i \(0.554849\pi\)
\(200\) 0 0
\(201\) −112860. −0.197038
\(202\) 160273. 0.276364
\(203\) −363694. −0.619436
\(204\) 2476.14 0.00416581
\(205\) 0 0
\(206\) −566022. −0.929319
\(207\) −1.01287e6 −1.64297
\(208\) −229397. −0.367645
\(209\) −434332. −0.687791
\(210\) 0 0
\(211\) 868386. 1.34279 0.671393 0.741101i \(-0.265696\pi\)
0.671393 + 0.741101i \(0.265696\pi\)
\(212\) −316360. −0.483439
\(213\) 127841. 0.193073
\(214\) 292992. 0.437342
\(215\) 0 0
\(216\) −77630.1 −0.113213
\(217\) −437870. −0.631242
\(218\) −725989. −1.03464
\(219\) −60883.2 −0.0857803
\(220\) 0 0
\(221\) 54832.1 0.0755186
\(222\) 6481.94 0.00882720
\(223\) 1.13512e6 1.52855 0.764275 0.644891i \(-0.223097\pi\)
0.764275 + 0.644891i \(0.223097\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 244341. 0.318218
\(227\) −567988. −0.731602 −0.365801 0.930693i \(-0.619205\pi\)
−0.365801 + 0.930693i \(0.619205\pi\)
\(228\) −65650.4 −0.0836373
\(229\) 482333. 0.607797 0.303899 0.952704i \(-0.401712\pi\)
0.303899 + 0.952704i \(0.401712\pi\)
\(230\) 0 0
\(231\) 33176.9 0.0409078
\(232\) 475029. 0.579429
\(233\) 1.37986e6 1.66512 0.832562 0.553932i \(-0.186873\pi\)
0.832562 + 0.553932i \(0.186873\pi\)
\(234\) −848064. −1.01249
\(235\) 0 0
\(236\) 743342. 0.868778
\(237\) −5037.66 −0.00582584
\(238\) 11993.4 0.0137246
\(239\) −819638. −0.928170 −0.464085 0.885791i \(-0.653617\pi\)
−0.464085 + 0.885791i \(0.653617\pi\)
\(240\) 0 0
\(241\) 248460. 0.275558 0.137779 0.990463i \(-0.456004\pi\)
0.137779 + 0.990463i \(0.456004\pi\)
\(242\) 357519. 0.392429
\(243\) −432403. −0.469757
\(244\) −862791. −0.927750
\(245\) 0 0
\(246\) 39246.2 0.0413486
\(247\) −1.45377e6 −1.51619
\(248\) 571912. 0.590473
\(249\) −127761. −0.130587
\(250\) 0 0
\(251\) −166104. −0.166416 −0.0832081 0.996532i \(-0.526517\pi\)
−0.0832081 + 0.996532i \(0.526517\pi\)
\(252\) −185497. −0.184008
\(253\) −1.14606e6 −1.12565
\(254\) −663919. −0.645700
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.58823e6 −1.49996 −0.749980 0.661460i \(-0.769937\pi\)
−0.749980 + 0.661460i \(0.769937\pi\)
\(258\) 200001. 0.187061
\(259\) 31396.0 0.0290820
\(260\) 0 0
\(261\) 1.75615e6 1.59573
\(262\) −650761. −0.585690
\(263\) −128781. −0.114806 −0.0574029 0.998351i \(-0.518282\pi\)
−0.0574029 + 0.998351i \(0.518282\pi\)
\(264\) −43333.1 −0.0382658
\(265\) 0 0
\(266\) −317984. −0.275551
\(267\) −152685. −0.131074
\(268\) 713991. 0.607234
\(269\) 1.79127e6 1.50932 0.754658 0.656118i \(-0.227803\pi\)
0.754658 + 0.656118i \(0.227803\pi\)
\(270\) 0 0
\(271\) −1.24380e6 −1.02879 −0.514395 0.857553i \(-0.671983\pi\)
−0.514395 + 0.857553i \(0.671983\pi\)
\(272\) −15664.9 −0.0128382
\(273\) 111048. 0.0901788
\(274\) −899703. −0.723973
\(275\) 0 0
\(276\) −173229. −0.136882
\(277\) 335893. 0.263028 0.131514 0.991314i \(-0.458016\pi\)
0.131514 + 0.991314i \(0.458016\pi\)
\(278\) −1.48989e6 −1.15622
\(279\) 2.11432e6 1.62615
\(280\) 0 0
\(281\) 689796. 0.521141 0.260570 0.965455i \(-0.416089\pi\)
0.260570 + 0.965455i \(0.416089\pi\)
\(282\) −20878.1 −0.0156340
\(283\) −292861. −0.217368 −0.108684 0.994076i \(-0.534664\pi\)
−0.108684 + 0.994076i \(0.534664\pi\)
\(284\) −808766. −0.595014
\(285\) 0 0
\(286\) −959577. −0.693689
\(287\) 190093. 0.136227
\(288\) 242282. 0.172123
\(289\) −1.41611e6 −0.997363
\(290\) 0 0
\(291\) −306137. −0.211925
\(292\) 385168. 0.264358
\(293\) −2.30017e6 −1.56528 −0.782639 0.622476i \(-0.786127\pi\)
−0.782639 + 0.622476i \(0.786127\pi\)
\(294\) 24289.6 0.0163890
\(295\) 0 0
\(296\) −41007.0 −0.0272037
\(297\) −324730. −0.213615
\(298\) −664866. −0.433704
\(299\) −3.83602e6 −2.48143
\(300\) 0 0
\(301\) 968726. 0.616289
\(302\) −1.15693e6 −0.729944
\(303\) 101337. 0.0634105
\(304\) 415326. 0.257754
\(305\) 0 0
\(306\) −57912.0 −0.0353562
\(307\) 481066. 0.291312 0.145656 0.989335i \(-0.453471\pi\)
0.145656 + 0.989335i \(0.453471\pi\)
\(308\) −209888. −0.126070
\(309\) −357883. −0.213228
\(310\) 0 0
\(311\) 1.06065e6 0.621827 0.310913 0.950438i \(-0.399365\pi\)
0.310913 + 0.950438i \(0.399365\pi\)
\(312\) −145042. −0.0843546
\(313\) 1.64246e6 0.947618 0.473809 0.880628i \(-0.342879\pi\)
0.473809 + 0.880628i \(0.342879\pi\)
\(314\) 1.03803e6 0.594134
\(315\) 0 0
\(316\) 31870.0 0.0179541
\(317\) −1.24413e6 −0.695372 −0.347686 0.937611i \(-0.613033\pi\)
−0.347686 + 0.937611i \(0.613033\pi\)
\(318\) −200027. −0.110923
\(319\) 1.98707e6 1.09329
\(320\) 0 0
\(321\) 185252. 0.100346
\(322\) −839052. −0.450972
\(323\) −99274.3 −0.0529457
\(324\) 870831. 0.460863
\(325\) 0 0
\(326\) 1.41543e6 0.737639
\(327\) −459027. −0.237393
\(328\) −248285. −0.127428
\(329\) −101125. −0.0515075
\(330\) 0 0
\(331\) 617637. 0.309858 0.154929 0.987926i \(-0.450485\pi\)
0.154929 + 0.987926i \(0.450485\pi\)
\(332\) 808262. 0.402445
\(333\) −151600. −0.0749184
\(334\) −466966. −0.229044
\(335\) 0 0
\(336\) −31725.1 −0.0153305
\(337\) −1.66929e6 −0.800678 −0.400339 0.916367i \(-0.631108\pi\)
−0.400339 + 0.916367i \(0.631108\pi\)
\(338\) −1.72668e6 −0.822089
\(339\) 154491. 0.0730137
\(340\) 0 0
\(341\) 2.39233e6 1.11413
\(342\) 1.53543e6 0.709849
\(343\) 117649. 0.0539949
\(344\) −1.26527e6 −0.576486
\(345\) 0 0
\(346\) 824275. 0.370154
\(347\) 1.75377e6 0.781895 0.390947 0.920413i \(-0.372147\pi\)
0.390947 + 0.920413i \(0.372147\pi\)
\(348\) 300350. 0.132947
\(349\) −313728. −0.137876 −0.0689382 0.997621i \(-0.521961\pi\)
−0.0689382 + 0.997621i \(0.521961\pi\)
\(350\) 0 0
\(351\) −1.08692e6 −0.470901
\(352\) 274140. 0.117928
\(353\) −395659. −0.168999 −0.0844995 0.996424i \(-0.526929\pi\)
−0.0844995 + 0.996424i \(0.526929\pi\)
\(354\) 469999. 0.199337
\(355\) 0 0
\(356\) 965936. 0.403946
\(357\) 7583.17 0.00314906
\(358\) 140758. 0.0580449
\(359\) 3.45067e6 1.41308 0.706541 0.707673i \(-0.250255\pi\)
0.706541 + 0.707673i \(0.250255\pi\)
\(360\) 0 0
\(361\) 155983. 0.0629953
\(362\) 1.35539e6 0.543617
\(363\) 226051. 0.0900410
\(364\) −702528. −0.277914
\(365\) 0 0
\(366\) −545523. −0.212868
\(367\) 641978. 0.248803 0.124401 0.992232i \(-0.460299\pi\)
0.124401 + 0.992232i \(0.460299\pi\)
\(368\) 1.09590e6 0.421845
\(369\) −917892. −0.350934
\(370\) 0 0
\(371\) −968852. −0.365446
\(372\) 361607. 0.135481
\(373\) −3.04138e6 −1.13188 −0.565938 0.824448i \(-0.691486\pi\)
−0.565938 + 0.824448i \(0.691486\pi\)
\(374\) −65526.9 −0.0242237
\(375\) 0 0
\(376\) 132082. 0.0481809
\(377\) 6.65101e6 2.41010
\(378\) −237742. −0.0855809
\(379\) −2.52318e6 −0.902297 −0.451148 0.892449i \(-0.648985\pi\)
−0.451148 + 0.892449i \(0.648985\pi\)
\(380\) 0 0
\(381\) −419781. −0.148153
\(382\) −273190. −0.0957869
\(383\) −4.97184e6 −1.73189 −0.865945 0.500140i \(-0.833282\pi\)
−0.865945 + 0.500140i \(0.833282\pi\)
\(384\) 41436.9 0.0143403
\(385\) 0 0
\(386\) −2.79626e6 −0.955234
\(387\) −4.67763e6 −1.58763
\(388\) 1.93672e6 0.653113
\(389\) 2.87669e6 0.963870 0.481935 0.876207i \(-0.339934\pi\)
0.481935 + 0.876207i \(0.339934\pi\)
\(390\) 0 0
\(391\) −261951. −0.0866519
\(392\) −153664. −0.0505076
\(393\) −411461. −0.134384
\(394\) 1.63100e6 0.529314
\(395\) 0 0
\(396\) 1.01348e6 0.324770
\(397\) 4.49103e6 1.43011 0.715055 0.699068i \(-0.246402\pi\)
0.715055 + 0.699068i \(0.246402\pi\)
\(398\) 766286. 0.242484
\(399\) −201054. −0.0632239
\(400\) 0 0
\(401\) −2.93396e6 −0.911156 −0.455578 0.890196i \(-0.650567\pi\)
−0.455578 + 0.890196i \(0.650567\pi\)
\(402\) 451440. 0.139327
\(403\) 8.00749e6 2.45603
\(404\) −641091. −0.195419
\(405\) 0 0
\(406\) 1.45478e6 0.438007
\(407\) −171534. −0.0513292
\(408\) −9904.55 −0.00294567
\(409\) 3.00941e6 0.889556 0.444778 0.895641i \(-0.353283\pi\)
0.444778 + 0.895641i \(0.353283\pi\)
\(410\) 0 0
\(411\) −568862. −0.166112
\(412\) 2.26409e6 0.657128
\(413\) 2.27649e6 0.656735
\(414\) 4.05149e6 1.16175
\(415\) 0 0
\(416\) 917587. 0.259965
\(417\) −942023. −0.265290
\(418\) 1.73733e6 0.486342
\(419\) 1.41273e6 0.393120 0.196560 0.980492i \(-0.437023\pi\)
0.196560 + 0.980492i \(0.437023\pi\)
\(420\) 0 0
\(421\) 1.75531e6 0.482667 0.241334 0.970442i \(-0.422415\pi\)
0.241334 + 0.970442i \(0.422415\pi\)
\(422\) −3.47355e6 −0.949493
\(423\) 488299. 0.132689
\(424\) 1.26544e6 0.341843
\(425\) 0 0
\(426\) −511364. −0.136523
\(427\) −2.64230e6 −0.701313
\(428\) −1.17197e6 −0.309248
\(429\) −606719. −0.159164
\(430\) 0 0
\(431\) −2.08219e6 −0.539917 −0.269958 0.962872i \(-0.587010\pi\)
−0.269958 + 0.962872i \(0.587010\pi\)
\(432\) 310520. 0.0800536
\(433\) 1.51218e6 0.387599 0.193800 0.981041i \(-0.437919\pi\)
0.193800 + 0.981041i \(0.437919\pi\)
\(434\) 1.75148e6 0.446356
\(435\) 0 0
\(436\) 2.90396e6 0.731601
\(437\) 6.94517e6 1.73972
\(438\) 243533. 0.0606558
\(439\) −3.94138e6 −0.976084 −0.488042 0.872820i \(-0.662289\pi\)
−0.488042 + 0.872820i \(0.662289\pi\)
\(440\) 0 0
\(441\) −568085. −0.139097
\(442\) −219328. −0.0533997
\(443\) 2.71502e6 0.657301 0.328651 0.944452i \(-0.393406\pi\)
0.328651 + 0.944452i \(0.393406\pi\)
\(444\) −25927.8 −0.00624177
\(445\) 0 0
\(446\) −4.54048e6 −1.08085
\(447\) −420380. −0.0995115
\(448\) 200704. 0.0472456
\(449\) −5.32421e6 −1.24635 −0.623174 0.782084i \(-0.714157\pi\)
−0.623174 + 0.782084i \(0.714157\pi\)
\(450\) 0 0
\(451\) −1.03859e6 −0.240437
\(452\) −977363. −0.225014
\(453\) −731501. −0.167482
\(454\) 2.27195e6 0.517321
\(455\) 0 0
\(456\) 262602. 0.0591405
\(457\) 6.65930e6 1.49155 0.745776 0.666197i \(-0.232079\pi\)
0.745776 + 0.666197i \(0.232079\pi\)
\(458\) −1.92933e6 −0.429778
\(459\) −74222.8 −0.0164439
\(460\) 0 0
\(461\) −8.90090e6 −1.95066 −0.975330 0.220754i \(-0.929148\pi\)
−0.975330 + 0.220754i \(0.929148\pi\)
\(462\) −132708. −0.0289262
\(463\) 1.42794e6 0.309570 0.154785 0.987948i \(-0.450532\pi\)
0.154785 + 0.987948i \(0.450532\pi\)
\(464\) −1.90012e6 −0.409718
\(465\) 0 0
\(466\) −5.51946e6 −1.17742
\(467\) 2.22536e6 0.472180 0.236090 0.971731i \(-0.424134\pi\)
0.236090 + 0.971731i \(0.424134\pi\)
\(468\) 3.39226e6 0.715936
\(469\) 2.18660e6 0.459025
\(470\) 0 0
\(471\) 656321. 0.136321
\(472\) −2.97337e6 −0.614319
\(473\) −5.29270e6 −1.08774
\(474\) 20150.7 0.00411949
\(475\) 0 0
\(476\) −47973.7 −0.00970479
\(477\) 4.67824e6 0.941427
\(478\) 3.27855e6 0.656315
\(479\) −1.25431e6 −0.249785 −0.124893 0.992170i \(-0.539859\pi\)
−0.124893 + 0.992170i \(0.539859\pi\)
\(480\) 0 0
\(481\) −574150. −0.113152
\(482\) −993839. −0.194849
\(483\) −530514. −0.103473
\(484\) −1.43008e6 −0.277489
\(485\) 0 0
\(486\) 1.72961e6 0.332168
\(487\) 7.51934e6 1.43667 0.718336 0.695697i \(-0.244904\pi\)
0.718336 + 0.695697i \(0.244904\pi\)
\(488\) 3.45116e6 0.656018
\(489\) 894944. 0.169248
\(490\) 0 0
\(491\) −2.33106e6 −0.436365 −0.218183 0.975908i \(-0.570013\pi\)
−0.218183 + 0.975908i \(0.570013\pi\)
\(492\) −156985. −0.0292378
\(493\) 454180. 0.0841609
\(494\) 5.81510e6 1.07211
\(495\) 0 0
\(496\) −2.28765e6 −0.417527
\(497\) −2.47685e6 −0.449788
\(498\) 511046. 0.0923393
\(499\) 4.03781e6 0.725930 0.362965 0.931803i \(-0.381765\pi\)
0.362965 + 0.931803i \(0.381765\pi\)
\(500\) 0 0
\(501\) −295252. −0.0525531
\(502\) 664416. 0.117674
\(503\) 6.49570e6 1.14474 0.572369 0.819996i \(-0.306025\pi\)
0.572369 + 0.819996i \(0.306025\pi\)
\(504\) 741989. 0.130113
\(505\) 0 0
\(506\) 4.58422e6 0.795956
\(507\) −1.09174e6 −0.188625
\(508\) 2.65568e6 0.456579
\(509\) −1.16552e7 −1.99400 −0.997000 0.0773970i \(-0.975339\pi\)
−0.997000 + 0.0773970i \(0.975339\pi\)
\(510\) 0 0
\(511\) 1.17958e6 0.199836
\(512\) −262144. −0.0441942
\(513\) 1.96789e6 0.330146
\(514\) 6.35291e6 1.06063
\(515\) 0 0
\(516\) −800004. −0.132272
\(517\) 552506. 0.0909097
\(518\) −125584. −0.0205641
\(519\) 521171. 0.0849301
\(520\) 0 0
\(521\) −4.37636e6 −0.706349 −0.353174 0.935558i \(-0.614898\pi\)
−0.353174 + 0.935558i \(0.614898\pi\)
\(522\) −7.02460e6 −1.12835
\(523\) −9.49630e6 −1.51810 −0.759050 0.651033i \(-0.774336\pi\)
−0.759050 + 0.651033i \(0.774336\pi\)
\(524\) 2.60304e6 0.414146
\(525\) 0 0
\(526\) 515126. 0.0811800
\(527\) 546810. 0.0857650
\(528\) 173333. 0.0270580
\(529\) 1.18896e7 1.84726
\(530\) 0 0
\(531\) −1.09923e7 −1.69182
\(532\) 1.27194e6 0.194844
\(533\) −3.47631e6 −0.530029
\(534\) 610740. 0.0926836
\(535\) 0 0
\(536\) −2.85596e6 −0.429379
\(537\) 88997.8 0.0133181
\(538\) −7.16508e6 −1.06725
\(539\) −642783. −0.0953000
\(540\) 0 0
\(541\) 9.30701e6 1.36715 0.683576 0.729879i \(-0.260424\pi\)
0.683576 + 0.729879i \(0.260424\pi\)
\(542\) 4.97519e6 0.727464
\(543\) 856983. 0.124730
\(544\) 62659.5 0.00907800
\(545\) 0 0
\(546\) −444192. −0.0637661
\(547\) −1.51435e6 −0.216401 −0.108200 0.994129i \(-0.534509\pi\)
−0.108200 + 0.994129i \(0.534509\pi\)
\(548\) 3.59881e6 0.511926
\(549\) 1.27587e7 1.80666
\(550\) 0 0
\(551\) −1.20418e7 −1.68971
\(552\) 692916. 0.0967905
\(553\) 97601.8 0.0135720
\(554\) −1.34357e6 −0.185989
\(555\) 0 0
\(556\) 5.95956e6 0.817574
\(557\) −1.22656e7 −1.67514 −0.837572 0.546327i \(-0.816026\pi\)
−0.837572 + 0.546327i \(0.816026\pi\)
\(558\) −8.45728e6 −1.14986
\(559\) −1.77154e7 −2.39785
\(560\) 0 0
\(561\) −41431.2 −0.00555802
\(562\) −2.75918e6 −0.368502
\(563\) −1.38325e6 −0.183920 −0.0919601 0.995763i \(-0.529313\pi\)
−0.0919601 + 0.995763i \(0.529313\pi\)
\(564\) 83512.6 0.0110549
\(565\) 0 0
\(566\) 1.17144e6 0.153702
\(567\) 2.66692e6 0.348379
\(568\) 3.23506e6 0.420738
\(569\) −1.90452e6 −0.246607 −0.123303 0.992369i \(-0.539349\pi\)
−0.123303 + 0.992369i \(0.539349\pi\)
\(570\) 0 0
\(571\) −705632. −0.0905708 −0.0452854 0.998974i \(-0.514420\pi\)
−0.0452854 + 0.998974i \(0.514420\pi\)
\(572\) 3.83831e6 0.490512
\(573\) −172732. −0.0219779
\(574\) −760373. −0.0963267
\(575\) 0 0
\(576\) −969128. −0.121710
\(577\) −9.59475e6 −1.19976 −0.599879 0.800090i \(-0.704785\pi\)
−0.599879 + 0.800090i \(0.704785\pi\)
\(578\) 5.66445e6 0.705242
\(579\) −1.76801e6 −0.219174
\(580\) 0 0
\(581\) 2.47530e6 0.304220
\(582\) 1.22455e6 0.149854
\(583\) 5.29339e6 0.645004
\(584\) −1.54067e6 −0.186930
\(585\) 0 0
\(586\) 9.20069e6 1.10682
\(587\) 1.21853e7 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(588\) −97158.3 −0.0115887
\(589\) −1.44977e7 −1.72191
\(590\) 0 0
\(591\) 1.03124e6 0.121449
\(592\) 164028. 0.0192359
\(593\) −1.50682e7 −1.75965 −0.879824 0.475300i \(-0.842340\pi\)
−0.879824 + 0.475300i \(0.842340\pi\)
\(594\) 1.29892e6 0.151049
\(595\) 0 0
\(596\) 2.65947e6 0.306675
\(597\) 484505. 0.0556368
\(598\) 1.53441e7 1.75464
\(599\) −3.77218e6 −0.429561 −0.214781 0.976662i \(-0.568904\pi\)
−0.214781 + 0.976662i \(0.568904\pi\)
\(600\) 0 0
\(601\) 9.60700e6 1.08493 0.542465 0.840078i \(-0.317491\pi\)
0.542465 + 0.840078i \(0.317491\pi\)
\(602\) −3.87490e6 −0.435782
\(603\) −1.05583e7 −1.18250
\(604\) 4.62772e6 0.516149
\(605\) 0 0
\(606\) −405347. −0.0448380
\(607\) 8.41593e6 0.927108 0.463554 0.886069i \(-0.346574\pi\)
0.463554 + 0.886069i \(0.346574\pi\)
\(608\) −1.66131e6 −0.182260
\(609\) 919823. 0.100499
\(610\) 0 0
\(611\) 1.84932e6 0.200405
\(612\) 231648. 0.0250006
\(613\) 1.30421e7 1.40184 0.700918 0.713242i \(-0.252774\pi\)
0.700918 + 0.713242i \(0.252774\pi\)
\(614\) −1.92427e6 −0.205989
\(615\) 0 0
\(616\) 839554. 0.0891450
\(617\) 1.09403e7 1.15695 0.578477 0.815699i \(-0.303647\pi\)
0.578477 + 0.815699i \(0.303647\pi\)
\(618\) 1.43153e6 0.150775
\(619\) −1.16825e7 −1.22549 −0.612743 0.790282i \(-0.709934\pi\)
−0.612743 + 0.790282i \(0.709934\pi\)
\(620\) 0 0
\(621\) 5.19258e6 0.540324
\(622\) −4.24258e6 −0.439698
\(623\) 2.95818e6 0.305355
\(624\) 580170. 0.0596477
\(625\) 0 0
\(626\) −6.56983e6 −0.670067
\(627\) 1.09847e6 0.111589
\(628\) −4.15211e6 −0.420116
\(629\) −39207.1 −0.00395128
\(630\) 0 0
\(631\) −1.05048e7 −1.05030 −0.525150 0.851010i \(-0.675991\pi\)
−0.525150 + 0.851010i \(0.675991\pi\)
\(632\) −127480. −0.0126955
\(633\) −2.19624e6 −0.217857
\(634\) 4.97652e6 0.491702
\(635\) 0 0
\(636\) 800109. 0.0784343
\(637\) −2.15149e6 −0.210083
\(638\) −7.94828e6 −0.773074
\(639\) 1.19598e7 1.15870
\(640\) 0 0
\(641\) 1.89782e7 1.82435 0.912177 0.409796i \(-0.134400\pi\)
0.912177 + 0.409796i \(0.134400\pi\)
\(642\) −741009. −0.0709555
\(643\) 1.00231e7 0.956041 0.478021 0.878349i \(-0.341354\pi\)
0.478021 + 0.878349i \(0.341354\pi\)
\(644\) 3.35621e6 0.318885
\(645\) 0 0
\(646\) 397097. 0.0374383
\(647\) −9.92873e6 −0.932466 −0.466233 0.884662i \(-0.654389\pi\)
−0.466233 + 0.884662i \(0.654389\pi\)
\(648\) −3.48332e6 −0.325879
\(649\) −1.24377e7 −1.15912
\(650\) 0 0
\(651\) 1.10742e6 0.102414
\(652\) −5.66172e6 −0.521590
\(653\) −2.10468e7 −1.93154 −0.965768 0.259406i \(-0.916473\pi\)
−0.965768 + 0.259406i \(0.916473\pi\)
\(654\) 1.83611e6 0.167862
\(655\) 0 0
\(656\) 993140. 0.0901054
\(657\) −5.69576e6 −0.514800
\(658\) 404502. 0.0364213
\(659\) −390852. −0.0350589 −0.0175295 0.999846i \(-0.505580\pi\)
−0.0175295 + 0.999846i \(0.505580\pi\)
\(660\) 0 0
\(661\) 2.05713e7 1.83129 0.915647 0.401982i \(-0.131679\pi\)
0.915647 + 0.401982i \(0.131679\pi\)
\(662\) −2.47055e6 −0.219103
\(663\) −138676. −0.0122523
\(664\) −3.23305e6 −0.284572
\(665\) 0 0
\(666\) 606400. 0.0529753
\(667\) −3.17741e7 −2.76541
\(668\) 1.86786e6 0.161959
\(669\) −2.87084e6 −0.247996
\(670\) 0 0
\(671\) 1.44364e7 1.23780
\(672\) 126901. 0.0108403
\(673\) −1.65065e6 −0.140481 −0.0702405 0.997530i \(-0.522377\pi\)
−0.0702405 + 0.997530i \(0.522377\pi\)
\(674\) 6.67717e6 0.566165
\(675\) 0 0
\(676\) 6.90670e6 0.581305
\(677\) 1.71440e7 1.43760 0.718802 0.695214i \(-0.244691\pi\)
0.718802 + 0.695214i \(0.244691\pi\)
\(678\) −617964. −0.0516285
\(679\) 5.93122e6 0.493707
\(680\) 0 0
\(681\) 1.43650e6 0.118697
\(682\) −9.56933e6 −0.787809
\(683\) −41131.0 −0.00337379 −0.00168689 0.999999i \(-0.500537\pi\)
−0.00168689 + 0.999999i \(0.500537\pi\)
\(684\) −6.14173e6 −0.501939
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) −1.21987e6 −0.0986105
\(688\) 5.06110e6 0.407637
\(689\) 1.77178e7 1.42187
\(690\) 0 0
\(691\) −1.31496e7 −1.04765 −0.523825 0.851826i \(-0.675495\pi\)
−0.523825 + 0.851826i \(0.675495\pi\)
\(692\) −3.29710e6 −0.261738
\(693\) 3.10377e6 0.245503
\(694\) −7.01507e6 −0.552883
\(695\) 0 0
\(696\) −1.20140e6 −0.0940080
\(697\) −237387. −0.0185087
\(698\) 1.25491e6 0.0974934
\(699\) −3.48983e6 −0.270154
\(700\) 0 0
\(701\) 1.01963e7 0.783698 0.391849 0.920029i \(-0.371836\pi\)
0.391849 + 0.920029i \(0.371836\pi\)
\(702\) 4.34768e6 0.332977
\(703\) 1.03951e6 0.0793303
\(704\) −1.09656e6 −0.0833875
\(705\) 0 0
\(706\) 1.58264e6 0.119500
\(707\) −1.96334e6 −0.147723
\(708\) −1.87999e6 −0.140953
\(709\) 1.15049e7 0.859540 0.429770 0.902939i \(-0.358595\pi\)
0.429770 + 0.902939i \(0.358595\pi\)
\(710\) 0 0
\(711\) −471284. −0.0349630
\(712\) −3.86375e6 −0.285633
\(713\) −3.82545e7 −2.81811
\(714\) −30332.7 −0.00222672
\(715\) 0 0
\(716\) −563030. −0.0410440
\(717\) 2.07295e6 0.150589
\(718\) −1.38027e7 −0.999199
\(719\) −2.27054e7 −1.63798 −0.818988 0.573811i \(-0.805464\pi\)
−0.818988 + 0.573811i \(0.805464\pi\)
\(720\) 0 0
\(721\) 6.93377e6 0.496742
\(722\) −623930. −0.0445444
\(723\) −628382. −0.0447073
\(724\) −5.42156e6 −0.384395
\(725\) 0 0
\(726\) −904204. −0.0636686
\(727\) −4.77668e6 −0.335189 −0.167595 0.985856i \(-0.553600\pi\)
−0.167595 + 0.985856i \(0.553600\pi\)
\(728\) 2.81011e6 0.196515
\(729\) −1.21322e7 −0.845510
\(730\) 0 0
\(731\) −1.20974e6 −0.0837334
\(732\) 2.18209e6 0.150520
\(733\) −345377. −0.0237429 −0.0118714 0.999930i \(-0.503779\pi\)
−0.0118714 + 0.999930i \(0.503779\pi\)
\(734\) −2.56791e6 −0.175930
\(735\) 0 0
\(736\) −4.38362e6 −0.298290
\(737\) −1.19466e7 −0.810171
\(738\) 3.67157e6 0.248148
\(739\) 1.90895e6 0.128583 0.0642916 0.997931i \(-0.479521\pi\)
0.0642916 + 0.997931i \(0.479521\pi\)
\(740\) 0 0
\(741\) 3.67676e6 0.245991
\(742\) 3.87541e6 0.258409
\(743\) 4.62625e6 0.307438 0.153719 0.988115i \(-0.450875\pi\)
0.153719 + 0.988115i \(0.450875\pi\)
\(744\) −1.44643e6 −0.0957998
\(745\) 0 0
\(746\) 1.21655e7 0.800357
\(747\) −1.19524e7 −0.783704
\(748\) 262108. 0.0171288
\(749\) −3.58915e6 −0.233769
\(750\) 0 0
\(751\) −1.30711e7 −0.845689 −0.422844 0.906202i \(-0.638968\pi\)
−0.422844 + 0.906202i \(0.638968\pi\)
\(752\) −528329. −0.0340690
\(753\) 420095. 0.0269998
\(754\) −2.66041e7 −1.70420
\(755\) 0 0
\(756\) 950969. 0.0605148
\(757\) 1.55732e7 0.987732 0.493866 0.869538i \(-0.335583\pi\)
0.493866 + 0.869538i \(0.335583\pi\)
\(758\) 1.00927e7 0.638020
\(759\) 2.89850e6 0.182629
\(760\) 0 0
\(761\) −2.70655e7 −1.69416 −0.847081 0.531463i \(-0.821642\pi\)
−0.847081 + 0.531463i \(0.821642\pi\)
\(762\) 1.67912e6 0.104760
\(763\) 8.89337e6 0.553038
\(764\) 1.09276e6 0.0677316
\(765\) 0 0
\(766\) 1.98874e7 1.22463
\(767\) −4.16310e7 −2.55522
\(768\) −165748. −0.0101402
\(769\) 2.46671e6 0.150419 0.0752095 0.997168i \(-0.476037\pi\)
0.0752095 + 0.997168i \(0.476037\pi\)
\(770\) 0 0
\(771\) 4.01680e6 0.243357
\(772\) 1.11850e7 0.675452
\(773\) 1.56465e6 0.0941821 0.0470911 0.998891i \(-0.485005\pi\)
0.0470911 + 0.998891i \(0.485005\pi\)
\(774\) 1.87105e7 1.12262
\(775\) 0 0
\(776\) −7.74690e6 −0.461821
\(777\) −79403.8 −0.00471834
\(778\) −1.15067e7 −0.681559
\(779\) 6.29390e6 0.371601
\(780\) 0 0
\(781\) 1.35324e7 0.793867
\(782\) 1.04780e6 0.0612722
\(783\) −9.00307e6 −0.524791
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 1.64584e6 0.0950238
\(787\) −8.04368e6 −0.462933 −0.231466 0.972843i \(-0.574352\pi\)
−0.231466 + 0.972843i \(0.574352\pi\)
\(788\) −6.52400e6 −0.374281
\(789\) 325702. 0.0186264
\(790\) 0 0
\(791\) −2.99317e6 −0.170095
\(792\) −4.05391e6 −0.229647
\(793\) 4.83207e7 2.72866
\(794\) −1.79641e7 −1.01124
\(795\) 0 0
\(796\) −3.06514e6 −0.171462
\(797\) −9.65319e6 −0.538301 −0.269151 0.963098i \(-0.586743\pi\)
−0.269151 + 0.963098i \(0.586743\pi\)
\(798\) 804217. 0.0447060
\(799\) 126285. 0.00699817
\(800\) 0 0
\(801\) −1.42840e7 −0.786627
\(802\) 1.17358e7 0.644285
\(803\) −6.44470e6 −0.352707
\(804\) −1.80576e6 −0.0985191
\(805\) 0 0
\(806\) −3.20300e7 −1.73668
\(807\) −4.53032e6 −0.244875
\(808\) 2.56436e6 0.138182
\(809\) 3.45796e7 1.85758 0.928792 0.370602i \(-0.120849\pi\)
0.928792 + 0.370602i \(0.120849\pi\)
\(810\) 0 0
\(811\) 2.20981e6 0.117978 0.0589892 0.998259i \(-0.481212\pi\)
0.0589892 + 0.998259i \(0.481212\pi\)
\(812\) −5.81911e6 −0.309718
\(813\) 3.14570e6 0.166913
\(814\) 686136. 0.0362952
\(815\) 0 0
\(816\) 39618.2 0.00208291
\(817\) 3.20741e7 1.68112
\(818\) −1.20376e7 −0.629011
\(819\) 1.03888e7 0.541197
\(820\) 0 0
\(821\) −1.19800e7 −0.620297 −0.310149 0.950688i \(-0.600379\pi\)
−0.310149 + 0.950688i \(0.600379\pi\)
\(822\) 2.27545e6 0.117459
\(823\) 2.56594e7 1.32053 0.660264 0.751034i \(-0.270445\pi\)
0.660264 + 0.751034i \(0.270445\pi\)
\(824\) −9.05635e6 −0.464660
\(825\) 0 0
\(826\) −9.10594e6 −0.464381
\(827\) 6.48745e6 0.329845 0.164923 0.986307i \(-0.447263\pi\)
0.164923 + 0.986307i \(0.447263\pi\)
\(828\) −1.62059e7 −0.821483
\(829\) −1.60180e7 −0.809510 −0.404755 0.914425i \(-0.632643\pi\)
−0.404755 + 0.914425i \(0.632643\pi\)
\(830\) 0 0
\(831\) −849511. −0.0426743
\(832\) −3.67035e6 −0.183823
\(833\) −146919. −0.00733613
\(834\) 3.76809e6 0.187589
\(835\) 0 0
\(836\) −6.94932e6 −0.343896
\(837\) −1.08393e7 −0.534793
\(838\) −5.65094e6 −0.277978
\(839\) −2.14692e7 −1.05296 −0.526479 0.850188i \(-0.676488\pi\)
−0.526479 + 0.850188i \(0.676488\pi\)
\(840\) 0 0
\(841\) 3.45799e7 1.68591
\(842\) −7.02123e6 −0.341297
\(843\) −1.74457e6 −0.0845511
\(844\) 1.38942e7 0.671393
\(845\) 0 0
\(846\) −1.95320e6 −0.0938252
\(847\) −4.37961e6 −0.209762
\(848\) −5.06176e6 −0.241719
\(849\) 740677. 0.0352663
\(850\) 0 0
\(851\) 2.74290e6 0.129833
\(852\) 2.04546e6 0.0965365
\(853\) 5.16759e6 0.243173 0.121586 0.992581i \(-0.461202\pi\)
0.121586 + 0.992581i \(0.461202\pi\)
\(854\) 1.05692e7 0.495903
\(855\) 0 0
\(856\) 4.68787e6 0.218671
\(857\) −2.40841e7 −1.12015 −0.560077 0.828440i \(-0.689229\pi\)
−0.560077 + 0.828440i \(0.689229\pi\)
\(858\) 2.42688e6 0.112546
\(859\) −3.85746e7 −1.78369 −0.891844 0.452343i \(-0.850588\pi\)
−0.891844 + 0.452343i \(0.850588\pi\)
\(860\) 0 0
\(861\) −480766. −0.0221017
\(862\) 8.32875e6 0.381779
\(863\) 1.26527e7 0.578304 0.289152 0.957283i \(-0.406627\pi\)
0.289152 + 0.957283i \(0.406627\pi\)
\(864\) −1.24208e6 −0.0566064
\(865\) 0 0
\(866\) −6.04871e6 −0.274074
\(867\) 3.58150e6 0.161815
\(868\) −7.00592e6 −0.315621
\(869\) −533254. −0.0239544
\(870\) 0 0
\(871\) −3.99871e7 −1.78597
\(872\) −1.16158e7 −0.517320
\(873\) −2.86397e7 −1.27184
\(874\) −2.77807e7 −1.23017
\(875\) 0 0
\(876\) −974132. −0.0428901
\(877\) 1.61444e7 0.708797 0.354399 0.935094i \(-0.384686\pi\)
0.354399 + 0.935094i \(0.384686\pi\)
\(878\) 1.57655e7 0.690196
\(879\) 5.81739e6 0.253955
\(880\) 0 0
\(881\) 3.71933e7 1.61445 0.807225 0.590244i \(-0.200969\pi\)
0.807225 + 0.590244i \(0.200969\pi\)
\(882\) 2.27234e6 0.0983563
\(883\) 1.42372e7 0.614503 0.307251 0.951628i \(-0.400591\pi\)
0.307251 + 0.951628i \(0.400591\pi\)
\(884\) 877313. 0.0377593
\(885\) 0 0
\(886\) −1.08601e7 −0.464782
\(887\) 3.30742e7 1.41150 0.705749 0.708462i \(-0.250611\pi\)
0.705749 + 0.708462i \(0.250611\pi\)
\(888\) 103711. 0.00441360
\(889\) 8.13301e6 0.345141
\(890\) 0 0
\(891\) −1.45709e7 −0.614883
\(892\) 1.81619e7 0.764275
\(893\) −3.34822e6 −0.140503
\(894\) 1.68152e6 0.0703652
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 9.70170e6 0.402594
\(898\) 2.12968e7 0.881300
\(899\) 6.63269e7 2.73710
\(900\) 0 0
\(901\) 1.20990e6 0.0496520
\(902\) 4.15435e6 0.170015
\(903\) −2.45001e6 −0.0999883
\(904\) 3.90945e6 0.159109
\(905\) 0 0
\(906\) 2.92600e6 0.118428
\(907\) −1.41066e7 −0.569382 −0.284691 0.958619i \(-0.591891\pi\)
−0.284691 + 0.958619i \(0.591891\pi\)
\(908\) −9.08781e6 −0.365801
\(909\) 9.48028e6 0.380550
\(910\) 0 0
\(911\) −4.56582e7 −1.82273 −0.911366 0.411597i \(-0.864971\pi\)
−0.911366 + 0.411597i \(0.864971\pi\)
\(912\) −1.05041e6 −0.0418187
\(913\) −1.35240e7 −0.536943
\(914\) −2.66372e7 −1.05469
\(915\) 0 0
\(916\) 7.71734e6 0.303899
\(917\) 7.97182e6 0.313065
\(918\) 296891. 0.0116276
\(919\) 2.92150e7 1.14108 0.570541 0.821269i \(-0.306734\pi\)
0.570541 + 0.821269i \(0.306734\pi\)
\(920\) 0 0
\(921\) −1.21667e6 −0.0472632
\(922\) 3.56036e7 1.37932
\(923\) 4.52950e7 1.75003
\(924\) 530831. 0.0204539
\(925\) 0 0
\(926\) −5.71177e6 −0.218899
\(927\) −3.34807e7 −1.27966
\(928\) 7.60047e6 0.289715
\(929\) 1.54242e7 0.586357 0.293179 0.956058i \(-0.405287\pi\)
0.293179 + 0.956058i \(0.405287\pi\)
\(930\) 0 0
\(931\) 3.89531e6 0.147288
\(932\) 2.20778e7 0.832562
\(933\) −2.68249e6 −0.100887
\(934\) −8.90142e6 −0.333881
\(935\) 0 0
\(936\) −1.35690e7 −0.506243
\(937\) −1.30699e6 −0.0486322 −0.0243161 0.999704i \(-0.507741\pi\)
−0.0243161 + 0.999704i \(0.507741\pi\)
\(938\) −8.74639e6 −0.324580
\(939\) −4.15396e6 −0.153744
\(940\) 0 0
\(941\) 1.48116e7 0.545290 0.272645 0.962115i \(-0.412102\pi\)
0.272645 + 0.962115i \(0.412102\pi\)
\(942\) −2.62528e6 −0.0963937
\(943\) 1.66075e7 0.608169
\(944\) 1.18935e7 0.434389
\(945\) 0 0
\(946\) 2.11708e7 0.769147
\(947\) 2.03359e7 0.736867 0.368434 0.929654i \(-0.379894\pi\)
0.368434 + 0.929654i \(0.379894\pi\)
\(948\) −80602.6 −0.00291292
\(949\) −2.15714e7 −0.777521
\(950\) 0 0
\(951\) 3.14654e6 0.112819
\(952\) 191895. 0.00686232
\(953\) 1.41872e7 0.506015 0.253008 0.967464i \(-0.418580\pi\)
0.253008 + 0.967464i \(0.418580\pi\)
\(954\) −1.87130e7 −0.665690
\(955\) 0 0
\(956\) −1.31142e7 −0.464085
\(957\) −5.02552e6 −0.177378
\(958\) 5.01725e6 0.176625
\(959\) 1.10214e7 0.386980
\(960\) 0 0
\(961\) 5.12252e7 1.78927
\(962\) 2.29660e6 0.0800106
\(963\) 1.73307e7 0.602215
\(964\) 3.97536e6 0.137779
\(965\) 0 0
\(966\) 2.12205e6 0.0731668
\(967\) 4.99631e7 1.71824 0.859118 0.511777i \(-0.171013\pi\)
0.859118 + 0.511777i \(0.171013\pi\)
\(968\) 5.72030e6 0.196214
\(969\) 251076. 0.00859004
\(970\) 0 0
\(971\) −1.87628e7 −0.638629 −0.319314 0.947649i \(-0.603453\pi\)
−0.319314 + 0.947649i \(0.603453\pi\)
\(972\) −6.91845e6 −0.234879
\(973\) 1.82511e7 0.618028
\(974\) −3.00774e7 −1.01588
\(975\) 0 0
\(976\) −1.38046e7 −0.463875
\(977\) 4.77178e7 1.59935 0.799676 0.600432i \(-0.205005\pi\)
0.799676 + 0.600432i \(0.205005\pi\)
\(978\) −3.57978e6 −0.119676
\(979\) −1.61622e7 −0.538945
\(980\) 0 0
\(981\) −4.29429e7 −1.42469
\(982\) 9.32425e6 0.308557
\(983\) −3.67695e6 −0.121368 −0.0606840 0.998157i \(-0.519328\pi\)
−0.0606840 + 0.998157i \(0.519328\pi\)
\(984\) 627940. 0.0206743
\(985\) 0 0
\(986\) −1.81672e6 −0.0595108
\(987\) 255757. 0.00835671
\(988\) −2.32604e7 −0.758097
\(989\) 8.46326e7 2.75136
\(990\) 0 0
\(991\) 3.89025e7 1.25833 0.629164 0.777273i \(-0.283397\pi\)
0.629164 + 0.777273i \(0.283397\pi\)
\(992\) 9.15059e6 0.295236
\(993\) −1.56207e6 −0.0502722
\(994\) 9.90738e6 0.318048
\(995\) 0 0
\(996\) −2.04418e6 −0.0652937
\(997\) 1.84228e7 0.586974 0.293487 0.955963i \(-0.405184\pi\)
0.293487 + 0.955963i \(0.405184\pi\)
\(998\) −1.61512e7 −0.513310
\(999\) 777191. 0.0246385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.v.1.2 3
5.2 odd 4 350.6.c.m.99.2 6
5.3 odd 4 350.6.c.m.99.5 6
5.4 even 2 350.6.a.w.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.6.a.v.1.2 3 1.1 even 1 trivial
350.6.a.w.1.2 yes 3 5.4 even 2
350.6.c.m.99.2 6 5.2 odd 4
350.6.c.m.99.5 6 5.3 odd 4