Properties

Label 350.6.a.v
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1378776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 336x + 840 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} - \beta_1 q^{3} + 16 q^{4} + 4 \beta_1 q^{6} + 49 q^{7} - 64 q^{8} + (\beta_{2} - 3 \beta_1 - 18) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - \beta_1 q^{3} + 16 q^{4} + 4 \beta_1 q^{6} + 49 q^{7} - 64 q^{8} + (\beta_{2} - 3 \beta_1 - 18) q^{9} + (\beta_{2} - 24 \beta_1 + 4) q^{11} - 16 \beta_1 q^{12} + (5 \beta_{2} + 159) q^{13} - 196 q^{14} + 256 q^{16} + (3 \beta_{2} + 81 \beta_1 + 367) q^{17} + ( - 4 \beta_{2} + 12 \beta_1 + 72) q^{18} + ( - 11 \beta_{2} - 45 \beta_1 - 585) q^{19} - 49 \beta_1 q^{21} + ( - 4 \beta_{2} + 96 \beta_1 - 16) q^{22} + ( - 16 \beta_{2} - 99 \beta_1 + 1155) q^{23} + 64 \beta_1 q^{24} + ( - 20 \beta_{2} - 636) q^{26} + ( - \beta_{2} + 153 \beta_1 + 615) q^{27} + 784 q^{28} + (37 \beta_{2} - 111 \beta_1 + 666) q^{29} + (31 \beta_{2} - 90 \beta_1 - 2167) q^{31} - 1024 q^{32} + (20 \beta_{2} - 175 \beta_1 + 5340) q^{33} + ( - 12 \beta_{2} - 324 \beta_1 - 1468) q^{34} + (16 \beta_{2} - 48 \beta_1 - 288) q^{36} + ( - 13 \beta_{2} - 171 \beta_1 - 1670) q^{37} + (44 \beta_{2} + 180 \beta_1 + 2340) q^{38} + ( - 20 \beta_{2} - 654 \beta_1 - 300) q^{39} + ( - 62 \beta_{2} - 105 \beta_1 - 8938) q^{41} + 196 \beta_1 q^{42} + ( - 70 \beta_{2} - 609 \beta_1 + 6539) q^{43} + (16 \beta_{2} - 384 \beta_1 + 64) q^{44} + (64 \beta_{2} + 396 \beta_1 - 4620) q^{46} + ( - 4 \beta_{2} - 888 \beta_1 - 662) q^{47} - 256 \beta_1 q^{48} + 2401 q^{49} + ( - 93 \beta_{2} - 421 \beta_1 - 18405) q^{51} + (80 \beta_{2} + 2544) q^{52} + (98 \beta_{2} - 546 \beta_1 + 2288) q^{53} + (4 \beta_{2} - 612 \beta_1 - 2460) q^{54} - 3136 q^{56} + (89 \beta_{2} + 1539 \beta_1 + 10785) q^{57} + ( - 148 \beta_{2} + 444 \beta_1 - 2664) q^{58} + ( - 169 \beta_{2} + 2238 \beta_1 + 5137) q^{59} + (199 \beta_{2} + 750 \beta_1 - 13829) q^{61} + ( - 124 \beta_{2} + 360 \beta_1 + 8668) q^{62} + (49 \beta_{2} - 147 \beta_1 - 882) q^{63} + 4096 q^{64} + ( - 80 \beta_{2} + 700 \beta_1 - 21360) q^{66} + ( - 141 \beta_{2} + 108 \beta_1 + 14598) q^{67} + (48 \beta_{2} + 1296 \beta_1 + 5872) q^{68} + (163 \beta_{2} + 132 \beta_1 + 23235) q^{69} + (110 \beta_{2} - 2493 \beta_1 - 21031) q^{71} + ( - 64 \beta_{2} + 192 \beta_1 + 1152) q^{72} + ( - 8 \beta_{2} + 1215 \beta_1 + 19312) q^{73} + (52 \beta_{2} + 684 \beta_1 + 6680) q^{74} + ( - 176 \beta_{2} - 720 \beta_1 - 9360) q^{76} + (49 \beta_{2} - 1176 \beta_1 + 196) q^{77} + (80 \beta_{2} + 2616 \beta_1 + 1200) q^{78} + (204 \beta_{2} + 333 \beta_1 + 44197) q^{79} + ( - 392 \beta_{2} + 672 \beta_1 - 29991) q^{81} + (248 \beta_{2} + 420 \beta_1 + 35752) q^{82} + ( - 106 \beta_{2} - 1953 \beta_1 + 33088) q^{83} - 784 \beta_1 q^{84} + (280 \beta_{2} + 2436 \beta_1 - 26156) q^{86} + ( - 37 \beta_{2} - 4662 \beta_1 + 22755) q^{87} + ( - 64 \beta_{2} + 1536 \beta_1 - 256) q^{88} + ( - 132 \beta_{2} + 5475 \beta_1 + 18670) q^{89} + (245 \beta_{2} + 7791) q^{91} + ( - 256 \beta_{2} - 1584 \beta_1 + 18480) q^{92} + ( - 34 \beta_{2} - 1172 \beta_1 + 18390) q^{93} + (16 \beta_{2} + 3552 \beta_1 + 2648) q^{94} + 1024 \beta_1 q^{96} + ( - 123 \beta_{2} - 576 \beta_1 + 96547) q^{97} - 9604 q^{98} + ( - 148 \beta_{2} - 2013 \beta_1 + 37203) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - q^{3} + 48 q^{4} + 4 q^{6} + 147 q^{7} - 192 q^{8} - 56 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 12 q^{2} - q^{3} + 48 q^{4} + 4 q^{6} + 147 q^{7} - 192 q^{8} - 56 q^{9} - 11 q^{11} - 16 q^{12} + 482 q^{13} - 588 q^{14} + 768 q^{16} + 1185 q^{17} + 224 q^{18} - 1811 q^{19} - 49 q^{21} + 44 q^{22} + 3350 q^{23} + 64 q^{24} - 1928 q^{26} + 1997 q^{27} + 2352 q^{28} + 1924 q^{29} - 6560 q^{31} - 3072 q^{32} + 15865 q^{33} - 4740 q^{34} - 896 q^{36} - 5194 q^{37} + 7244 q^{38} - 1574 q^{39} - 26981 q^{41} + 196 q^{42} + 18938 q^{43} - 176 q^{44} - 13400 q^{46} - 2878 q^{47} - 256 q^{48} + 7203 q^{49} - 55729 q^{51} + 7712 q^{52} + 6416 q^{53} - 7988 q^{54} - 9408 q^{56} + 33983 q^{57} - 7696 q^{58} + 17480 q^{59} - 40538 q^{61} + 26240 q^{62} - 2744 q^{63} + 12288 q^{64} - 63460 q^{66} + 43761 q^{67} + 18960 q^{68} + 70000 q^{69} - 65476 q^{71} + 3584 q^{72} + 59143 q^{73} + 20776 q^{74} - 28976 q^{76} - 539 q^{77} + 6296 q^{78} + 133128 q^{79} - 89693 q^{81} + 107924 q^{82} + 97205 q^{83} - 784 q^{84} - 75752 q^{86} + 63566 q^{87} + 704 q^{88} + 61353 q^{89} + 23618 q^{91} + 53600 q^{92} + 53964 q^{93} + 11512 q^{94} + 1024 q^{96} + 288942 q^{97} - 28812 q^{98} + 109448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 336x + 840 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3\nu - 225 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3\beta _1 + 225 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.4760
2.52911
−19.0051
−4.00000 −17.4760 16.0000 0 69.9039 49.0000 −64.0000 62.4100 0
1.2 −4.00000 −2.52911 16.0000 0 10.1164 49.0000 −64.0000 −236.604 0
1.3 −4.00000 19.0051 16.0000 0 −76.0204 49.0000 −64.0000 118.194 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.v 3
5.b even 2 1 350.6.a.w yes 3
5.c odd 4 2 350.6.c.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.v 3 1.a even 1 1 trivial
350.6.a.w yes 3 5.b even 2 1
350.6.c.m 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{3} + T_{3}^{2} - 336T_{3} - 840 \) Copy content Toggle raw display
\( T_{13}^{3} - 482T_{13}^{2} - 778092T_{13} + 409313016 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} + \cdots - 840 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T - 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 11 T^{2} + \cdots - 40799375 \) Copy content Toggle raw display
$13$ \( T^{3} - 482 T^{2} + \cdots + 409313016 \) Copy content Toggle raw display
$17$ \( T^{3} - 1185 T^{2} + \cdots - 124770352 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 2760714180 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 20458305000 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 154187630694 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 6751381392 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 2252461080 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 873981504312 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 3330798232544 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 548315678232 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 2327818797872 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 51424466453808 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 17091016362224 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 138366600597 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 88582122380350 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 4194036142072 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 8297801992798 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 47223196825812 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 560143115269220 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 829971851107000 \) Copy content Toggle raw display
show more
show less