Properties

Label 350.6.a.u
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 643x - 1542 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + (\beta_1 - 3) q^{3} + 16 q^{4} + ( - 4 \beta_1 + 12) q^{6} - 49 q^{7} - 64 q^{8} + (\beta_{2} - 2 \beta_1 + 195) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + (\beta_1 - 3) q^{3} + 16 q^{4} + ( - 4 \beta_1 + 12) q^{6} - 49 q^{7} - 64 q^{8} + (\beta_{2} - 2 \beta_1 + 195) q^{9} + ( - \beta_{2} - 5 \beta_1 - 36) q^{11} + (16 \beta_1 - 48) q^{12} + ( - \beta_{2} + \beta_1 - 281) q^{13} + 196 q^{14} + 256 q^{16} + ( - \beta_{2} + 52 \beta_1 - 84) q^{17} + ( - 4 \beta_{2} + 8 \beta_1 - 780) q^{18} + ( - 3 \beta_{2} + 146) q^{19} + ( - 49 \beta_1 + 147) q^{21} + (4 \beta_{2} + 20 \beta_1 + 144) q^{22} + (10 \beta_{2} - 97 \beta_1 + 168) q^{23} + ( - 64 \beta_1 + 192) q^{24} + (4 \beta_{2} - 4 \beta_1 + 1124) q^{26} + ( - 9 \beta_{2} + 148 \beta_1 - 888) q^{27} - 784 q^{28} + ( - 3 \beta_{2} - 162 \beta_1 + 435) q^{29} + (7 \beta_{2} - 157 \beta_1 + 1577) q^{31} - 1024 q^{32} + (2 \beta_{2} - 239 \beta_1 - 1863) q^{33} + (4 \beta_{2} - 208 \beta_1 + 336) q^{34} + (16 \beta_{2} - 32 \beta_1 + 3120) q^{36} + (23 \beta_{2} - 116 \beta_1 + 1879) q^{37} + (12 \beta_{2} - 584) q^{38} + (8 \beta_{2} - 478 \beta_1 + 1446) q^{39} + ( - 44 \beta_{2} - 55 \beta_1 + 645) q^{41} + (196 \beta_1 - 588) q^{42} + ( - 32 \beta_{2} - 349 \beta_1 - 6434) q^{43} + ( - 16 \beta_{2} - 80 \beta_1 - 576) q^{44} + ( - 40 \beta_{2} + 388 \beta_1 - 672) q^{46} + ( - 20 \beta_{2} + 128 \beta_1 - 2598) q^{47} + (256 \beta_1 - 768) q^{48} + 2401 q^{49} + (59 \beta_{2} - 230 \beta_1 + 22734) q^{51} + ( - 16 \beta_{2} + 16 \beta_1 - 4496) q^{52} + ( - 6 \beta_{2} - 996 \beta_1 - 10602) q^{53} + (36 \beta_{2} - 592 \beta_1 + 3552) q^{54} + 3136 q^{56} + (21 \beta_{2} - 448 \beta_1 + 84) q^{57} + (12 \beta_{2} + 648 \beta_1 - 1740) q^{58} + (47 \beta_{2} - 173 \beta_1 - 5343) q^{59} + (13 \beta_{2} - 547 \beta_1 + 32765) q^{61} + ( - 28 \beta_{2} + 628 \beta_1 - 6308) q^{62} + ( - 49 \beta_{2} + 98 \beta_1 - 9555) q^{63} + 4096 q^{64} + ( - 8 \beta_{2} + 956 \beta_1 + 7452) q^{66} + (13 \beta_{2} - 691 \beta_1 - 10766) q^{67} + ( - 16 \beta_{2} + 832 \beta_1 - 1344) q^{68} + ( - 167 \beta_{2} + 2051 \beta_1 - 43857) q^{69} + (28 \beta_{2} + 371 \beta_1 + 51624) q^{71} + ( - 64 \beta_{2} + 128 \beta_1 - 12480) q^{72} + (74 \beta_{2} - 485 \beta_1 - 10229) q^{73} + ( - 92 \beta_{2} + 464 \beta_1 - 7516) q^{74} + ( - 48 \beta_{2} + 2336) q^{76} + (49 \beta_{2} + 245 \beta_1 + 1764) q^{77} + ( - 32 \beta_{2} + 1912 \beta_1 - 5784) q^{78} + (158 \beta_{2} + 4171 \beta_1 - 27958) q^{79} + ( - 32 \beta_{2} - 2036 \beta_1 + 20337) q^{81} + (176 \beta_{2} + 220 \beta_1 - 2580) q^{82} + (282 \beta_{2} + 867 \beta_1 + 15861) q^{83} + ( - 784 \beta_1 + 2352) q^{84} + (128 \beta_{2} + 1396 \beta_1 + 25736) q^{86} + ( - 141 \beta_{2} - 321 \beta_1 - 70281) q^{87} + (64 \beta_{2} + 320 \beta_1 + 2304) q^{88} + (46 \beta_{2} + 2123 \beta_1 - 70203) q^{89} + (49 \beta_{2} - 49 \beta_1 + 13769) q^{91} + (160 \beta_{2} - 1552 \beta_1 + 2688) q^{92} + ( - 206 \beta_{2} + 2806 \beta_1 - 73302) q^{93} + (80 \beta_{2} - 512 \beta_1 + 10392) q^{94} + ( - 1024 \beta_1 + 3072) q^{96} + ( - 85 \beta_{2} - 1979 \beta_1 - 83129) q^{97} - 9604 q^{98} + ( - 10 \beta_{2} - 491 \beta_1 - 88542) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - 9 q^{3} + 48 q^{4} + 36 q^{6} - 147 q^{7} - 192 q^{8} + 584 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 12 q^{2} - 9 q^{3} + 48 q^{4} + 36 q^{6} - 147 q^{7} - 192 q^{8} + 584 q^{9} - 107 q^{11} - 144 q^{12} - 842 q^{13} + 588 q^{14} + 768 q^{16} - 251 q^{17} - 2336 q^{18} + 441 q^{19} + 441 q^{21} + 428 q^{22} + 494 q^{23} + 576 q^{24} + 3368 q^{26} - 2655 q^{27} - 2352 q^{28} + 1308 q^{29} + 4724 q^{31} - 3072 q^{32} - 5591 q^{33} + 1004 q^{34} + 9344 q^{36} + 5614 q^{37} - 1764 q^{38} + 4330 q^{39} + 1979 q^{41} - 1764 q^{42} - 19270 q^{43} - 1712 q^{44} - 1976 q^{46} - 7774 q^{47} - 2304 q^{48} + 7203 q^{49} + 68143 q^{51} - 13472 q^{52} - 31800 q^{53} + 10620 q^{54} + 9408 q^{56} + 231 q^{57} - 5232 q^{58} - 16076 q^{59} + 98282 q^{61} - 18896 q^{62} - 28616 q^{63} + 12288 q^{64} + 22364 q^{66} - 32311 q^{67} - 4016 q^{68} - 131404 q^{69} + 154844 q^{71} - 37376 q^{72} - 30761 q^{73} - 22456 q^{74} + 7056 q^{76} + 5243 q^{77} - 17320 q^{78} - 84032 q^{79} + 61043 q^{81} - 7916 q^{82} + 47301 q^{83} + 7056 q^{84} + 77080 q^{86} - 210702 q^{87} + 6848 q^{88} - 210655 q^{89} + 41258 q^{91} + 7904 q^{92} - 219700 q^{93} + 31096 q^{94} + 9216 q^{96} - 249302 q^{97} - 28812 q^{98} - 265616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 643x - 1542 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 429 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4\beta _1 + 429 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−24.0606
−2.42018
26.4808
−4.00000 −27.0606 16.0000 0 108.242 −49.0000 −64.0000 489.275 0
1.2 −4.00000 −5.42018 16.0000 0 21.6807 −49.0000 −64.0000 −213.622 0
1.3 −4.00000 23.4808 16.0000 0 −93.9231 −49.0000 −64.0000 308.346 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.u 3
5.b even 2 1 350.6.a.x yes 3
5.c odd 4 2 350.6.c.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.u 3 1.a even 1 1 trivial
350.6.a.x yes 3 5.b even 2 1
350.6.c.n 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{3} + 9T_{3}^{2} - 616T_{3} - 3444 \) Copy content Toggle raw display
\( T_{13}^{3} + 842T_{13}^{2} + 105560T_{13} - 30165296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 9 T^{2} + \cdots - 3444 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T + 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 107 T^{2} + \cdots - 21103983 \) Copy content Toggle raw display
$13$ \( T^{3} + 842 T^{2} + \cdots - 30165296 \) Copy content Toggle raw display
$17$ \( T^{3} + 251 T^{2} + \cdots + 362765088 \) Copy content Toggle raw display
$19$ \( T^{3} - 441 T^{2} + \cdots - 289884980 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 13661587800 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 32353852950 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 9395311072 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 199886955928 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 1366682605092 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 948878648976 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 144057481848 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 2577509373456 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 533329584480 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 28835515765000 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 3526453467747 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 128336306971662 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 8390323795700 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 10\!\cdots\!50 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 567810730049976 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 65722788999000 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 364862905632400 \) Copy content Toggle raw display
show more
show less