Properties

Label 350.6.a.r.1.1
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.88819\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -7.77639 q^{3} +16.0000 q^{4} +31.1056 q^{6} -49.0000 q^{7} -64.0000 q^{8} -182.528 q^{9} -588.329 q^{11} -124.422 q^{12} -147.515 q^{13} +196.000 q^{14} +256.000 q^{16} -63.1806 q^{17} +730.111 q^{18} -1612.51 q^{19} +381.043 q^{21} +2353.32 q^{22} +1484.73 q^{23} +497.689 q^{24} +590.061 q^{26} +3309.07 q^{27} -784.000 q^{28} -1691.84 q^{29} -7446.52 q^{31} -1024.00 q^{32} +4575.08 q^{33} +252.722 q^{34} -2920.44 q^{36} -2439.79 q^{37} +6450.03 q^{38} +1147.14 q^{39} +334.413 q^{41} -1524.17 q^{42} -11933.5 q^{43} -9413.27 q^{44} -5938.91 q^{46} +5866.15 q^{47} -1990.76 q^{48} +2401.00 q^{49} +491.317 q^{51} -2360.24 q^{52} -25017.1 q^{53} -13236.3 q^{54} +3136.00 q^{56} +12539.5 q^{57} +6767.38 q^{58} -52348.0 q^{59} +16847.5 q^{61} +29786.1 q^{62} +8943.86 q^{63} +4096.00 q^{64} -18300.3 q^{66} +69080.7 q^{67} -1010.89 q^{68} -11545.8 q^{69} +30528.0 q^{71} +11681.8 q^{72} +46165.7 q^{73} +9759.17 q^{74} -25800.1 q^{76} +28828.1 q^{77} -4588.54 q^{78} -1869.00 q^{79} +18621.6 q^{81} -1337.65 q^{82} -106022. q^{83} +6096.69 q^{84} +47734.0 q^{86} +13156.4 q^{87} +37653.1 q^{88} -38290.7 q^{89} +7228.25 q^{91} +23755.6 q^{92} +57907.0 q^{93} -23464.6 q^{94} +7963.02 q^{96} +90755.9 q^{97} -9604.00 q^{98} +107386. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 20 q^{3} + 32 q^{4} - 80 q^{6} - 98 q^{7} - 128 q^{8} + 346 q^{9} - 1070 q^{11} + 320 q^{12} + 736 q^{13} + 392 q^{14} + 512 q^{16} - 1904 q^{17} - 1384 q^{18} + 828 q^{19} - 980 q^{21}+ \cdots - 147190 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −7.77639 −0.498856 −0.249428 0.968393i \(-0.580243\pi\)
−0.249428 + 0.968393i \(0.580243\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 31.1056 0.352744
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) −182.528 −0.751143
\(10\) 0 0
\(11\) −588.329 −1.46602 −0.733008 0.680220i \(-0.761884\pi\)
−0.733008 + 0.680220i \(0.761884\pi\)
\(12\) −124.422 −0.249428
\(13\) −147.515 −0.242091 −0.121045 0.992647i \(-0.538625\pi\)
−0.121045 + 0.992647i \(0.538625\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −63.1806 −0.0530226 −0.0265113 0.999649i \(-0.508440\pi\)
−0.0265113 + 0.999649i \(0.508440\pi\)
\(18\) 730.111 0.531138
\(19\) −1612.51 −1.02475 −0.512375 0.858762i \(-0.671234\pi\)
−0.512375 + 0.858762i \(0.671234\pi\)
\(20\) 0 0
\(21\) 381.043 0.188550
\(22\) 2353.32 1.03663
\(23\) 1484.73 0.585230 0.292615 0.956230i \(-0.405475\pi\)
0.292615 + 0.956230i \(0.405475\pi\)
\(24\) 497.689 0.176372
\(25\) 0 0
\(26\) 590.061 0.171184
\(27\) 3309.07 0.873568
\(28\) −784.000 −0.188982
\(29\) −1691.84 −0.373564 −0.186782 0.982401i \(-0.559806\pi\)
−0.186782 + 0.982401i \(0.559806\pi\)
\(30\) 0 0
\(31\) −7446.52 −1.39171 −0.695855 0.718182i \(-0.744975\pi\)
−0.695855 + 0.718182i \(0.744975\pi\)
\(32\) −1024.00 −0.176777
\(33\) 4575.08 0.731330
\(34\) 252.722 0.0374927
\(35\) 0 0
\(36\) −2920.44 −0.375572
\(37\) −2439.79 −0.292987 −0.146494 0.989212i \(-0.546799\pi\)
−0.146494 + 0.989212i \(0.546799\pi\)
\(38\) 6450.03 0.724608
\(39\) 1147.14 0.120768
\(40\) 0 0
\(41\) 334.413 0.0310687 0.0155343 0.999879i \(-0.495055\pi\)
0.0155343 + 0.999879i \(0.495055\pi\)
\(42\) −1524.17 −0.133325
\(43\) −11933.5 −0.984229 −0.492115 0.870530i \(-0.663776\pi\)
−0.492115 + 0.870530i \(0.663776\pi\)
\(44\) −9413.27 −0.733008
\(45\) 0 0
\(46\) −5938.91 −0.413820
\(47\) 5866.15 0.387354 0.193677 0.981065i \(-0.437959\pi\)
0.193677 + 0.981065i \(0.437959\pi\)
\(48\) −1990.76 −0.124714
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 491.317 0.0264506
\(52\) −2360.24 −0.121045
\(53\) −25017.1 −1.22334 −0.611671 0.791112i \(-0.709502\pi\)
−0.611671 + 0.791112i \(0.709502\pi\)
\(54\) −13236.3 −0.617706
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) 12539.5 0.511202
\(58\) 6767.38 0.264150
\(59\) −52348.0 −1.95781 −0.978904 0.204322i \(-0.934501\pi\)
−0.978904 + 0.204322i \(0.934501\pi\)
\(60\) 0 0
\(61\) 16847.5 0.579710 0.289855 0.957071i \(-0.406393\pi\)
0.289855 + 0.957071i \(0.406393\pi\)
\(62\) 29786.1 0.984088
\(63\) 8943.86 0.283905
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −18300.3 −0.517129
\(67\) 69080.7 1.88005 0.940026 0.341104i \(-0.110801\pi\)
0.940026 + 0.341104i \(0.110801\pi\)
\(68\) −1010.89 −0.0265113
\(69\) −11545.8 −0.291945
\(70\) 0 0
\(71\) 30528.0 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(72\) 11681.8 0.265569
\(73\) 46165.7 1.01394 0.506970 0.861964i \(-0.330766\pi\)
0.506970 + 0.861964i \(0.330766\pi\)
\(74\) 9759.17 0.207173
\(75\) 0 0
\(76\) −25800.1 −0.512375
\(77\) 28828.1 0.554102
\(78\) −4588.54 −0.0853962
\(79\) −1869.00 −0.0336932 −0.0168466 0.999858i \(-0.505363\pi\)
−0.0168466 + 0.999858i \(0.505363\pi\)
\(80\) 0 0
\(81\) 18621.6 0.315359
\(82\) −1337.65 −0.0219689
\(83\) −106022. −1.68928 −0.844642 0.535332i \(-0.820187\pi\)
−0.844642 + 0.535332i \(0.820187\pi\)
\(84\) 6096.69 0.0942748
\(85\) 0 0
\(86\) 47734.0 0.695955
\(87\) 13156.4 0.186355
\(88\) 37653.1 0.518315
\(89\) −38290.7 −0.512411 −0.256206 0.966622i \(-0.582472\pi\)
−0.256206 + 0.966622i \(0.582472\pi\)
\(90\) 0 0
\(91\) 7228.25 0.0915018
\(92\) 23755.6 0.292615
\(93\) 57907.0 0.694263
\(94\) −23464.6 −0.273901
\(95\) 0 0
\(96\) 7963.02 0.0881860
\(97\) 90755.9 0.979367 0.489683 0.871900i \(-0.337112\pi\)
0.489683 + 0.871900i \(0.337112\pi\)
\(98\) −9604.00 −0.101015
\(99\) 107386. 1.10119
\(100\) 0 0
\(101\) 115241. 1.12409 0.562046 0.827106i \(-0.310014\pi\)
0.562046 + 0.827106i \(0.310014\pi\)
\(102\) −1965.27 −0.0187034
\(103\) −8842.67 −0.0821278 −0.0410639 0.999157i \(-0.513075\pi\)
−0.0410639 + 0.999157i \(0.513075\pi\)
\(104\) 9440.98 0.0855921
\(105\) 0 0
\(106\) 100068. 0.865033
\(107\) 131403. 1.10955 0.554775 0.832000i \(-0.312804\pi\)
0.554775 + 0.832000i \(0.312804\pi\)
\(108\) 52945.1 0.436784
\(109\) −115386. −0.930223 −0.465112 0.885252i \(-0.653986\pi\)
−0.465112 + 0.885252i \(0.653986\pi\)
\(110\) 0 0
\(111\) 18972.8 0.146158
\(112\) −12544.0 −0.0944911
\(113\) 114989. 0.847152 0.423576 0.905861i \(-0.360775\pi\)
0.423576 + 0.905861i \(0.360775\pi\)
\(114\) −50158.0 −0.361475
\(115\) 0 0
\(116\) −27069.5 −0.186782
\(117\) 26925.6 0.181845
\(118\) 209392. 1.38438
\(119\) 3095.85 0.0200407
\(120\) 0 0
\(121\) 185080. 1.14920
\(122\) −67390.0 −0.409917
\(123\) −2600.52 −0.0154988
\(124\) −119144. −0.695855
\(125\) 0 0
\(126\) −35775.4 −0.200751
\(127\) 205537. 1.13079 0.565394 0.824821i \(-0.308724\pi\)
0.565394 + 0.824821i \(0.308724\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 92799.5 0.490988
\(130\) 0 0
\(131\) 188494. 0.959662 0.479831 0.877361i \(-0.340698\pi\)
0.479831 + 0.877361i \(0.340698\pi\)
\(132\) 73201.2 0.365665
\(133\) 79012.9 0.387319
\(134\) −276323. −1.32940
\(135\) 0 0
\(136\) 4043.56 0.0187463
\(137\) −40844.0 −0.185920 −0.0929602 0.995670i \(-0.529633\pi\)
−0.0929602 + 0.995670i \(0.529633\pi\)
\(138\) 46183.2 0.206437
\(139\) −7349.31 −0.0322633 −0.0161317 0.999870i \(-0.505135\pi\)
−0.0161317 + 0.999870i \(0.505135\pi\)
\(140\) 0 0
\(141\) −45617.5 −0.193234
\(142\) −122112. −0.508204
\(143\) 86787.5 0.354909
\(144\) −46727.1 −0.187786
\(145\) 0 0
\(146\) −184663. −0.716964
\(147\) −18671.1 −0.0712651
\(148\) −39036.7 −0.146494
\(149\) 277980. 1.02576 0.512882 0.858459i \(-0.328578\pi\)
0.512882 + 0.858459i \(0.328578\pi\)
\(150\) 0 0
\(151\) 100921. 0.360197 0.180099 0.983649i \(-0.442358\pi\)
0.180099 + 0.983649i \(0.442358\pi\)
\(152\) 103201. 0.362304
\(153\) 11532.2 0.0398276
\(154\) −115313. −0.391809
\(155\) 0 0
\(156\) 18354.2 0.0603842
\(157\) 202146. 0.654511 0.327255 0.944936i \(-0.393876\pi\)
0.327255 + 0.944936i \(0.393876\pi\)
\(158\) 7476.02 0.0238247
\(159\) 194543. 0.610271
\(160\) 0 0
\(161\) −72751.6 −0.221196
\(162\) −74486.6 −0.222993
\(163\) 120232. 0.354448 0.177224 0.984171i \(-0.443288\pi\)
0.177224 + 0.984171i \(0.443288\pi\)
\(164\) 5350.60 0.0155343
\(165\) 0 0
\(166\) 424090. 1.19450
\(167\) −368050. −1.02121 −0.510605 0.859815i \(-0.670579\pi\)
−0.510605 + 0.859815i \(0.670579\pi\)
\(168\) −24386.8 −0.0666624
\(169\) −349532. −0.941392
\(170\) 0 0
\(171\) 294328. 0.769734
\(172\) −190936. −0.492115
\(173\) −50079.2 −0.127216 −0.0636080 0.997975i \(-0.520261\pi\)
−0.0636080 + 0.997975i \(0.520261\pi\)
\(174\) −52625.8 −0.131773
\(175\) 0 0
\(176\) −150612. −0.366504
\(177\) 407078. 0.976663
\(178\) 153163. 0.362329
\(179\) −366552. −0.855073 −0.427536 0.903998i \(-0.640618\pi\)
−0.427536 + 0.903998i \(0.640618\pi\)
\(180\) 0 0
\(181\) 237963. 0.539899 0.269949 0.962874i \(-0.412993\pi\)
0.269949 + 0.962874i \(0.412993\pi\)
\(182\) −28913.0 −0.0647015
\(183\) −131013. −0.289192
\(184\) −95022.5 −0.206910
\(185\) 0 0
\(186\) −231628. −0.490918
\(187\) 37171.0 0.0777320
\(188\) 93858.4 0.193677
\(189\) −162144. −0.330177
\(190\) 0 0
\(191\) 180213. 0.357439 0.178720 0.983900i \(-0.442804\pi\)
0.178720 + 0.983900i \(0.442804\pi\)
\(192\) −31852.1 −0.0623569
\(193\) −671065. −1.29679 −0.648397 0.761302i \(-0.724560\pi\)
−0.648397 + 0.761302i \(0.724560\pi\)
\(194\) −363023. −0.692517
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 432242. 0.793527 0.396763 0.917921i \(-0.370133\pi\)
0.396763 + 0.917921i \(0.370133\pi\)
\(198\) −429546. −0.778657
\(199\) 912639. 1.63368 0.816839 0.576866i \(-0.195724\pi\)
0.816839 + 0.576866i \(0.195724\pi\)
\(200\) 0 0
\(201\) −537198. −0.937874
\(202\) −460962. −0.794853
\(203\) 82900.4 0.141194
\(204\) 7861.07 0.0132253
\(205\) 0 0
\(206\) 35370.7 0.0580731
\(207\) −271004. −0.439592
\(208\) −37763.9 −0.0605227
\(209\) 948686. 1.50230
\(210\) 0 0
\(211\) −984209. −1.52188 −0.760941 0.648821i \(-0.775262\pi\)
−0.760941 + 0.648821i \(0.775262\pi\)
\(212\) −400274. −0.611671
\(213\) −237398. −0.358532
\(214\) −525614. −0.784571
\(215\) 0 0
\(216\) −211780. −0.308853
\(217\) 364879. 0.526017
\(218\) 461544. 0.657767
\(219\) −359002. −0.505809
\(220\) 0 0
\(221\) 9320.10 0.0128363
\(222\) −75891.1 −0.103349
\(223\) −363329. −0.489257 −0.244629 0.969617i \(-0.578666\pi\)
−0.244629 + 0.969617i \(0.578666\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −459957. −0.599027
\(227\) −587124. −0.756250 −0.378125 0.925755i \(-0.623431\pi\)
−0.378125 + 0.925755i \(0.623431\pi\)
\(228\) 200632. 0.255601
\(229\) 1.21082e6 1.52578 0.762891 0.646528i \(-0.223779\pi\)
0.762891 + 0.646528i \(0.223779\pi\)
\(230\) 0 0
\(231\) −224179. −0.276417
\(232\) 108278. 0.132075
\(233\) −163067. −0.196778 −0.0983890 0.995148i \(-0.531369\pi\)
−0.0983890 + 0.995148i \(0.531369\pi\)
\(234\) −107703. −0.128584
\(235\) 0 0
\(236\) −837568. −0.978904
\(237\) 14534.1 0.0168081
\(238\) −12383.4 −0.0141709
\(239\) 1.27658e6 1.44562 0.722809 0.691048i \(-0.242851\pi\)
0.722809 + 0.691048i \(0.242851\pi\)
\(240\) 0 0
\(241\) −506946. −0.562237 −0.281118 0.959673i \(-0.590705\pi\)
−0.281118 + 0.959673i \(0.590705\pi\)
\(242\) −740321. −0.812609
\(243\) −948913. −1.03089
\(244\) 269560. 0.289855
\(245\) 0 0
\(246\) 10402.1 0.0109593
\(247\) 237870. 0.248083
\(248\) 476577. 0.492044
\(249\) 824472. 0.842709
\(250\) 0 0
\(251\) −1.72797e6 −1.73122 −0.865611 0.500717i \(-0.833070\pi\)
−0.865611 + 0.500717i \(0.833070\pi\)
\(252\) 143102. 0.141953
\(253\) −873508. −0.857957
\(254\) −822148. −0.799587
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 104724. 0.0989043 0.0494522 0.998776i \(-0.484252\pi\)
0.0494522 + 0.998776i \(0.484252\pi\)
\(258\) −371198. −0.347181
\(259\) 119550. 0.110739
\(260\) 0 0
\(261\) 308809. 0.280600
\(262\) −753974. −0.678584
\(263\) −1.36123e6 −1.21351 −0.606755 0.794889i \(-0.707529\pi\)
−0.606755 + 0.794889i \(0.707529\pi\)
\(264\) −292805. −0.258564
\(265\) 0 0
\(266\) −316052. −0.273876
\(267\) 297764. 0.255619
\(268\) 1.10529e6 0.940026
\(269\) −347865. −0.293109 −0.146555 0.989203i \(-0.546818\pi\)
−0.146555 + 0.989203i \(0.546818\pi\)
\(270\) 0 0
\(271\) 1.18265e6 0.978209 0.489104 0.872225i \(-0.337324\pi\)
0.489104 + 0.872225i \(0.337324\pi\)
\(272\) −16174.2 −0.0132557
\(273\) −56209.7 −0.0456462
\(274\) 163376. 0.131466
\(275\) 0 0
\(276\) −184733. −0.145973
\(277\) −628741. −0.492348 −0.246174 0.969226i \(-0.579174\pi\)
−0.246174 + 0.969226i \(0.579174\pi\)
\(278\) 29397.2 0.0228136
\(279\) 1.35920e6 1.04537
\(280\) 0 0
\(281\) 1.51236e6 1.14258 0.571292 0.820747i \(-0.306442\pi\)
0.571292 + 0.820747i \(0.306442\pi\)
\(282\) 182470. 0.136637
\(283\) 1.17843e6 0.874654 0.437327 0.899303i \(-0.355925\pi\)
0.437327 + 0.899303i \(0.355925\pi\)
\(284\) 488448. 0.359354
\(285\) 0 0
\(286\) −347150. −0.250959
\(287\) −16386.2 −0.0117429
\(288\) 186908. 0.132785
\(289\) −1.41587e6 −0.997189
\(290\) 0 0
\(291\) −705753. −0.488563
\(292\) 738651. 0.506970
\(293\) 490855. 0.334029 0.167014 0.985954i \(-0.446587\pi\)
0.167014 + 0.985954i \(0.446587\pi\)
\(294\) 74684.4 0.0503920
\(295\) 0 0
\(296\) 156147. 0.103587
\(297\) −1.94682e6 −1.28066
\(298\) −1.11192e6 −0.725325
\(299\) −219020. −0.141679
\(300\) 0 0
\(301\) 584741. 0.372004
\(302\) −403685. −0.254698
\(303\) −896155. −0.560759
\(304\) −412802. −0.256188
\(305\) 0 0
\(306\) −46128.8 −0.0281623
\(307\) −2.29867e6 −1.39197 −0.695986 0.718055i \(-0.745033\pi\)
−0.695986 + 0.718055i \(0.745033\pi\)
\(308\) 461250. 0.277051
\(309\) 68764.0 0.0409699
\(310\) 0 0
\(311\) −1.61778e6 −0.948459 −0.474229 0.880401i \(-0.657273\pi\)
−0.474229 + 0.880401i \(0.657273\pi\)
\(312\) −73416.7 −0.0426981
\(313\) −174399. −0.100620 −0.0503099 0.998734i \(-0.516021\pi\)
−0.0503099 + 0.998734i \(0.516021\pi\)
\(314\) −808586. −0.462809
\(315\) 0 0
\(316\) −29904.1 −0.0168466
\(317\) −3.28000e6 −1.83327 −0.916633 0.399730i \(-0.869104\pi\)
−0.916633 + 0.399730i \(0.869104\pi\)
\(318\) −778171. −0.431527
\(319\) 995361. 0.547651
\(320\) 0 0
\(321\) −1.02184e6 −0.553506
\(322\) 291006. 0.156409
\(323\) 101879. 0.0543349
\(324\) 297946. 0.157680
\(325\) 0 0
\(326\) −480929. −0.250632
\(327\) 897287. 0.464047
\(328\) −21402.4 −0.0109844
\(329\) −287441. −0.146406
\(330\) 0 0
\(331\) −82124.6 −0.0412006 −0.0206003 0.999788i \(-0.506558\pi\)
−0.0206003 + 0.999788i \(0.506558\pi\)
\(332\) −1.69636e6 −0.844642
\(333\) 445330. 0.220075
\(334\) 1.47220e6 0.722105
\(335\) 0 0
\(336\) 97547.0 0.0471374
\(337\) 1.84526e6 0.885079 0.442540 0.896749i \(-0.354078\pi\)
0.442540 + 0.896749i \(0.354078\pi\)
\(338\) 1.39813e6 0.665665
\(339\) −894201. −0.422606
\(340\) 0 0
\(341\) 4.38100e6 2.04027
\(342\) −1.17731e6 −0.544284
\(343\) −117649. −0.0539949
\(344\) 763743. 0.347978
\(345\) 0 0
\(346\) 200317. 0.0899553
\(347\) −2.68081e6 −1.19521 −0.597603 0.801792i \(-0.703880\pi\)
−0.597603 + 0.801792i \(0.703880\pi\)
\(348\) 210503. 0.0931773
\(349\) 3.46523e6 1.52289 0.761444 0.648231i \(-0.224491\pi\)
0.761444 + 0.648231i \(0.224491\pi\)
\(350\) 0 0
\(351\) −488138. −0.211483
\(352\) 602449. 0.259157
\(353\) 237146. 0.101293 0.0506465 0.998717i \(-0.483872\pi\)
0.0506465 + 0.998717i \(0.483872\pi\)
\(354\) −1.62831e6 −0.690605
\(355\) 0 0
\(356\) −612652. −0.256206
\(357\) −24074.5 −0.00999740
\(358\) 1.46621e6 0.604628
\(359\) −1.33358e6 −0.546115 −0.273057 0.961998i \(-0.588035\pi\)
−0.273057 + 0.961998i \(0.588035\pi\)
\(360\) 0 0
\(361\) 124084. 0.0501127
\(362\) −951851. −0.381766
\(363\) −1.43926e6 −0.573286
\(364\) 115652. 0.0457509
\(365\) 0 0
\(366\) 524051. 0.204489
\(367\) 4.51463e6 1.74967 0.874837 0.484418i \(-0.160969\pi\)
0.874837 + 0.484418i \(0.160969\pi\)
\(368\) 380090. 0.146308
\(369\) −61039.6 −0.0233370
\(370\) 0 0
\(371\) 1.22584e6 0.462380
\(372\) 926512. 0.347131
\(373\) 3.81113e6 1.41834 0.709172 0.705035i \(-0.249069\pi\)
0.709172 + 0.705035i \(0.249069\pi\)
\(374\) −148684. −0.0549648
\(375\) 0 0
\(376\) −375434. −0.136950
\(377\) 249573. 0.0904366
\(378\) 648578. 0.233471
\(379\) −896148. −0.320466 −0.160233 0.987079i \(-0.551225\pi\)
−0.160233 + 0.987079i \(0.551225\pi\)
\(380\) 0 0
\(381\) −1.59834e6 −0.564100
\(382\) −720852. −0.252748
\(383\) −1.51304e6 −0.527051 −0.263526 0.964652i \(-0.584885\pi\)
−0.263526 + 0.964652i \(0.584885\pi\)
\(384\) 127408. 0.0440930
\(385\) 0 0
\(386\) 2.68426e6 0.916972
\(387\) 2.17819e6 0.739297
\(388\) 1.45209e6 0.489683
\(389\) −5.36445e6 −1.79743 −0.898714 0.438536i \(-0.855497\pi\)
−0.898714 + 0.438536i \(0.855497\pi\)
\(390\) 0 0
\(391\) −93805.8 −0.0310304
\(392\) −153664. −0.0505076
\(393\) −1.46580e6 −0.478733
\(394\) −1.72897e6 −0.561108
\(395\) 0 0
\(396\) 1.71818e6 0.550594
\(397\) 2.84949e6 0.907385 0.453692 0.891158i \(-0.350107\pi\)
0.453692 + 0.891158i \(0.350107\pi\)
\(398\) −3.65056e6 −1.15518
\(399\) −614435. −0.193216
\(400\) 0 0
\(401\) 2.81190e6 0.873250 0.436625 0.899644i \(-0.356174\pi\)
0.436625 + 0.899644i \(0.356174\pi\)
\(402\) 2.14879e6 0.663177
\(403\) 1.09848e6 0.336921
\(404\) 1.84385e6 0.562046
\(405\) 0 0
\(406\) −331602. −0.0998393
\(407\) 1.43540e6 0.429524
\(408\) −31444.3 −0.00935171
\(409\) 3.76521e6 1.11296 0.556482 0.830859i \(-0.312151\pi\)
0.556482 + 0.830859i \(0.312151\pi\)
\(410\) 0 0
\(411\) 317619. 0.0927474
\(412\) −141483. −0.0410639
\(413\) 2.56505e6 0.739982
\(414\) 1.08402e6 0.310838
\(415\) 0 0
\(416\) 151056. 0.0427960
\(417\) 57151.1 0.0160948
\(418\) −3.79474e6 −1.06229
\(419\) −1.22257e6 −0.340202 −0.170101 0.985427i \(-0.554409\pi\)
−0.170101 + 0.985427i \(0.554409\pi\)
\(420\) 0 0
\(421\) 5.01813e6 1.37987 0.689933 0.723874i \(-0.257640\pi\)
0.689933 + 0.723874i \(0.257640\pi\)
\(422\) 3.93684e6 1.07613
\(423\) −1.07074e6 −0.290959
\(424\) 1.60110e6 0.432517
\(425\) 0 0
\(426\) 949591. 0.253520
\(427\) −825527. −0.219110
\(428\) 2.10245e6 0.554775
\(429\) −674894. −0.177048
\(430\) 0 0
\(431\) −4.55140e6 −1.18019 −0.590095 0.807334i \(-0.700910\pi\)
−0.590095 + 0.807334i \(0.700910\pi\)
\(432\) 847122. 0.218392
\(433\) 3.75433e6 0.962306 0.481153 0.876637i \(-0.340218\pi\)
0.481153 + 0.876637i \(0.340218\pi\)
\(434\) −1.45952e6 −0.371950
\(435\) 0 0
\(436\) −1.84618e6 −0.465112
\(437\) −2.39413e6 −0.599715
\(438\) 1.43601e6 0.357661
\(439\) 4.57813e6 1.13378 0.566888 0.823795i \(-0.308147\pi\)
0.566888 + 0.823795i \(0.308147\pi\)
\(440\) 0 0
\(441\) −438249. −0.107306
\(442\) −37280.4 −0.00907663
\(443\) 4.09528e6 0.991459 0.495729 0.868477i \(-0.334901\pi\)
0.495729 + 0.868477i \(0.334901\pi\)
\(444\) 303564. 0.0730791
\(445\) 0 0
\(446\) 1.45331e6 0.345957
\(447\) −2.16168e6 −0.511708
\(448\) −200704. −0.0472456
\(449\) −5.87346e6 −1.37492 −0.687461 0.726221i \(-0.741275\pi\)
−0.687461 + 0.726221i \(0.741275\pi\)
\(450\) 0 0
\(451\) −196745. −0.0455472
\(452\) 1.83983e6 0.423576
\(453\) −784804. −0.179687
\(454\) 2.34850e6 0.534750
\(455\) 0 0
\(456\) −802527. −0.180737
\(457\) 5.40551e6 1.21073 0.605364 0.795949i \(-0.293028\pi\)
0.605364 + 0.795949i \(0.293028\pi\)
\(458\) −4.84330e6 −1.07889
\(459\) −209069. −0.0463188
\(460\) 0 0
\(461\) −2.02999e6 −0.444879 −0.222440 0.974946i \(-0.571402\pi\)
−0.222440 + 0.974946i \(0.571402\pi\)
\(462\) 896715. 0.195456
\(463\) 2.20634e6 0.478321 0.239160 0.970980i \(-0.423128\pi\)
0.239160 + 0.970980i \(0.423128\pi\)
\(464\) −433112. −0.0933911
\(465\) 0 0
\(466\) 652268. 0.139143
\(467\) 9.24988e6 1.96266 0.981328 0.192342i \(-0.0616084\pi\)
0.981328 + 0.192342i \(0.0616084\pi\)
\(468\) 430810. 0.0909225
\(469\) −3.38495e6 −0.710593
\(470\) 0 0
\(471\) −1.57197e6 −0.326506
\(472\) 3.35027e6 0.692189
\(473\) 7.02082e6 1.44290
\(474\) −58136.4 −0.0118851
\(475\) 0 0
\(476\) 49533.6 0.0100203
\(477\) 4.56632e6 0.918904
\(478\) −5.10632e6 −1.02221
\(479\) −8.73710e6 −1.73992 −0.869959 0.493125i \(-0.835855\pi\)
−0.869959 + 0.493125i \(0.835855\pi\)
\(480\) 0 0
\(481\) 359907. 0.0709295
\(482\) 2.02779e6 0.397561
\(483\) 565745. 0.110345
\(484\) 2.96128e6 0.574601
\(485\) 0 0
\(486\) 3.79565e6 0.728947
\(487\) −5.75797e6 −1.10014 −0.550069 0.835119i \(-0.685398\pi\)
−0.550069 + 0.835119i \(0.685398\pi\)
\(488\) −1.07824e6 −0.204958
\(489\) −934973. −0.176818
\(490\) 0 0
\(491\) 21277.9 0.00398314 0.00199157 0.999998i \(-0.499366\pi\)
0.00199157 + 0.999998i \(0.499366\pi\)
\(492\) −41608.3 −0.00774939
\(493\) 106892. 0.0198074
\(494\) −951478. −0.175421
\(495\) 0 0
\(496\) −1.90631e6 −0.347928
\(497\) −1.49587e6 −0.271646
\(498\) −3.29789e6 −0.595885
\(499\) −8.04194e6 −1.44580 −0.722902 0.690950i \(-0.757192\pi\)
−0.722902 + 0.690950i \(0.757192\pi\)
\(500\) 0 0
\(501\) 2.86210e6 0.509437
\(502\) 6.91189e6 1.22416
\(503\) −5.82427e6 −1.02641 −0.513206 0.858266i \(-0.671542\pi\)
−0.513206 + 0.858266i \(0.671542\pi\)
\(504\) −572407. −0.100376
\(505\) 0 0
\(506\) 3.49403e6 0.606667
\(507\) 2.71810e6 0.469619
\(508\) 3.28859e6 0.565394
\(509\) 1.43672e6 0.245798 0.122899 0.992419i \(-0.460781\pi\)
0.122899 + 0.992419i \(0.460781\pi\)
\(510\) 0 0
\(511\) −2.26212e6 −0.383233
\(512\) −262144. −0.0441942
\(513\) −5.33590e6 −0.895188
\(514\) −418898. −0.0699359
\(515\) 0 0
\(516\) 1.48479e6 0.245494
\(517\) −3.45123e6 −0.567868
\(518\) −478199. −0.0783041
\(519\) 389435. 0.0634624
\(520\) 0 0
\(521\) −8.10030e6 −1.30739 −0.653697 0.756756i \(-0.726783\pi\)
−0.653697 + 0.756756i \(0.726783\pi\)
\(522\) −1.23523e6 −0.198414
\(523\) −375315. −0.0599987 −0.0299993 0.999550i \(-0.509551\pi\)
−0.0299993 + 0.999550i \(0.509551\pi\)
\(524\) 3.01590e6 0.479831
\(525\) 0 0
\(526\) 5.44493e6 0.858081
\(527\) 470475. 0.0737922
\(528\) 1.17122e6 0.182833
\(529\) −4.23193e6 −0.657505
\(530\) 0 0
\(531\) 9.55496e6 1.47059
\(532\) 1.26421e6 0.193660
\(533\) −49331.0 −0.00752145
\(534\) −1.19105e6 −0.180750
\(535\) 0 0
\(536\) −4.42116e6 −0.664698
\(537\) 2.85045e6 0.426558
\(538\) 1.39146e6 0.207260
\(539\) −1.41258e6 −0.209431
\(540\) 0 0
\(541\) −8.56631e6 −1.25835 −0.629174 0.777265i \(-0.716607\pi\)
−0.629174 + 0.777265i \(0.716607\pi\)
\(542\) −4.73058e6 −0.691698
\(543\) −1.85049e6 −0.269332
\(544\) 64696.9 0.00937316
\(545\) 0 0
\(546\) 224839. 0.0322767
\(547\) 5.94955e6 0.850190 0.425095 0.905149i \(-0.360241\pi\)
0.425095 + 0.905149i \(0.360241\pi\)
\(548\) −653504. −0.0929602
\(549\) −3.07514e6 −0.435445
\(550\) 0 0
\(551\) 2.72811e6 0.382810
\(552\) 738932. 0.103218
\(553\) 91581.2 0.0127348
\(554\) 2.51497e6 0.348143
\(555\) 0 0
\(556\) −117589. −0.0161317
\(557\) −3.48878e6 −0.476470 −0.238235 0.971208i \(-0.576569\pi\)
−0.238235 + 0.971208i \(0.576569\pi\)
\(558\) −5.43679e6 −0.739191
\(559\) 1.76037e6 0.238273
\(560\) 0 0
\(561\) −289056. −0.0387770
\(562\) −6.04943e6 −0.807930
\(563\) 4.65749e6 0.619271 0.309635 0.950855i \(-0.399793\pi\)
0.309635 + 0.950855i \(0.399793\pi\)
\(564\) −729879. −0.0966170
\(565\) 0 0
\(566\) −4.71371e6 −0.618474
\(567\) −912460. −0.119195
\(568\) −1.95379e6 −0.254102
\(569\) −5.01530e6 −0.649406 −0.324703 0.945816i \(-0.605264\pi\)
−0.324703 + 0.945816i \(0.605264\pi\)
\(570\) 0 0
\(571\) −8.50936e6 −1.09221 −0.546106 0.837716i \(-0.683890\pi\)
−0.546106 + 0.837716i \(0.683890\pi\)
\(572\) 1.38860e6 0.177455
\(573\) −1.40141e6 −0.178311
\(574\) 65544.9 0.00830346
\(575\) 0 0
\(576\) −747634. −0.0938929
\(577\) −1.46073e7 −1.82654 −0.913270 0.407354i \(-0.866452\pi\)
−0.913270 + 0.407354i \(0.866452\pi\)
\(578\) 5.66346e6 0.705119
\(579\) 5.21846e6 0.646913
\(580\) 0 0
\(581\) 5.19510e6 0.638489
\(582\) 2.82301e6 0.345466
\(583\) 1.47183e7 1.79344
\(584\) −2.95460e6 −0.358482
\(585\) 0 0
\(586\) −1.96342e6 −0.236194
\(587\) −3.92273e6 −0.469887 −0.234943 0.972009i \(-0.575491\pi\)
−0.234943 + 0.972009i \(0.575491\pi\)
\(588\) −298738. −0.0356325
\(589\) 1.20076e7 1.42616
\(590\) 0 0
\(591\) −3.36128e6 −0.395855
\(592\) −624587. −0.0732468
\(593\) 1.98554e6 0.231869 0.115934 0.993257i \(-0.463014\pi\)
0.115934 + 0.993257i \(0.463014\pi\)
\(594\) 7.78729e6 0.905566
\(595\) 0 0
\(596\) 4.44768e6 0.512882
\(597\) −7.09704e6 −0.814969
\(598\) 876079. 0.100182
\(599\) −1.21357e7 −1.38196 −0.690982 0.722871i \(-0.742822\pi\)
−0.690982 + 0.722871i \(0.742822\pi\)
\(600\) 0 0
\(601\) 1.45565e7 1.64388 0.821942 0.569570i \(-0.192890\pi\)
0.821942 + 0.569570i \(0.192890\pi\)
\(602\) −2.33896e6 −0.263046
\(603\) −1.26091e7 −1.41219
\(604\) 1.61474e6 0.180099
\(605\) 0 0
\(606\) 3.58462e6 0.396517
\(607\) 4.81923e6 0.530892 0.265446 0.964126i \(-0.414481\pi\)
0.265446 + 0.964126i \(0.414481\pi\)
\(608\) 1.65121e6 0.181152
\(609\) −644666. −0.0704354
\(610\) 0 0
\(611\) −865347. −0.0937750
\(612\) 184515. 0.0199138
\(613\) 1.27574e7 1.37123 0.685616 0.727964i \(-0.259533\pi\)
0.685616 + 0.727964i \(0.259533\pi\)
\(614\) 9.19468e6 0.984273
\(615\) 0 0
\(616\) −1.84500e6 −0.195905
\(617\) 845244. 0.0893859 0.0446930 0.999001i \(-0.485769\pi\)
0.0446930 + 0.999001i \(0.485769\pi\)
\(618\) −275056. −0.0289701
\(619\) −1.64444e7 −1.72501 −0.862505 0.506048i \(-0.831106\pi\)
−0.862505 + 0.506048i \(0.831106\pi\)
\(620\) 0 0
\(621\) 4.91306e6 0.511238
\(622\) 6.47112e6 0.670662
\(623\) 1.87625e6 0.193673
\(624\) 293667. 0.0301921
\(625\) 0 0
\(626\) 697596. 0.0711489
\(627\) −7.37735e6 −0.749431
\(628\) 3.23434e6 0.327255
\(629\) 154147. 0.0155349
\(630\) 0 0
\(631\) −1.36092e7 −1.36069 −0.680343 0.732894i \(-0.738169\pi\)
−0.680343 + 0.732894i \(0.738169\pi\)
\(632\) 119616. 0.0119124
\(633\) 7.65359e6 0.759200
\(634\) 1.31200e7 1.29631
\(635\) 0 0
\(636\) 3.11269e6 0.305135
\(637\) −354184. −0.0345844
\(638\) −3.98145e6 −0.387248
\(639\) −5.57221e6 −0.539853
\(640\) 0 0
\(641\) 1.20347e6 0.115688 0.0578440 0.998326i \(-0.481577\pi\)
0.0578440 + 0.998326i \(0.481577\pi\)
\(642\) 4.08738e6 0.391388
\(643\) −1.31941e7 −1.25849 −0.629247 0.777205i \(-0.716637\pi\)
−0.629247 + 0.777205i \(0.716637\pi\)
\(644\) −1.16403e6 −0.110598
\(645\) 0 0
\(646\) −407517. −0.0384206
\(647\) 382498. 0.0359227 0.0179613 0.999839i \(-0.494282\pi\)
0.0179613 + 0.999839i \(0.494282\pi\)
\(648\) −1.19178e6 −0.111496
\(649\) 3.07978e7 2.87018
\(650\) 0 0
\(651\) −2.83744e6 −0.262407
\(652\) 1.92372e6 0.177224
\(653\) 1.34972e7 1.23868 0.619342 0.785121i \(-0.287399\pi\)
0.619342 + 0.785121i \(0.287399\pi\)
\(654\) −3.58915e6 −0.328131
\(655\) 0 0
\(656\) 85609.6 0.00776717
\(657\) −8.42652e6 −0.761614
\(658\) 1.14977e6 0.103525
\(659\) 1.01824e7 0.913353 0.456676 0.889633i \(-0.349040\pi\)
0.456676 + 0.889633i \(0.349040\pi\)
\(660\) 0 0
\(661\) 140948. 0.0125475 0.00627373 0.999980i \(-0.498003\pi\)
0.00627373 + 0.999980i \(0.498003\pi\)
\(662\) 328498. 0.0291332
\(663\) −72476.7 −0.00640346
\(664\) 6.78544e6 0.597252
\(665\) 0 0
\(666\) −1.78132e6 −0.155617
\(667\) −2.51193e6 −0.218621
\(668\) −5.88880e6 −0.510605
\(669\) 2.82538e6 0.244069
\(670\) 0 0
\(671\) −9.91187e6 −0.849864
\(672\) −390188. −0.0333312
\(673\) −7.93418e6 −0.675250 −0.337625 0.941281i \(-0.609624\pi\)
−0.337625 + 0.941281i \(0.609624\pi\)
\(674\) −7.38103e6 −0.625846
\(675\) 0 0
\(676\) −5.59252e6 −0.470696
\(677\) −1.73979e7 −1.45890 −0.729451 0.684033i \(-0.760224\pi\)
−0.729451 + 0.684033i \(0.760224\pi\)
\(678\) 3.57681e6 0.298828
\(679\) −4.44704e6 −0.370166
\(680\) 0 0
\(681\) 4.56571e6 0.377260
\(682\) −1.75240e7 −1.44269
\(683\) −1.48842e7 −1.22088 −0.610442 0.792061i \(-0.709008\pi\)
−0.610442 + 0.792061i \(0.709008\pi\)
\(684\) 4.70924e6 0.384867
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) −9.41584e6 −0.761145
\(688\) −3.05497e6 −0.246057
\(689\) 3.69041e6 0.296160
\(690\) 0 0
\(691\) −1.14830e7 −0.914869 −0.457435 0.889243i \(-0.651232\pi\)
−0.457435 + 0.889243i \(0.651232\pi\)
\(692\) −801267. −0.0636080
\(693\) −5.26193e6 −0.416210
\(694\) 1.07232e7 0.845138
\(695\) 0 0
\(696\) −842012. −0.0658863
\(697\) −21128.4 −0.00164734
\(698\) −1.38609e7 −1.07684
\(699\) 1.26807e6 0.0981638
\(700\) 0 0
\(701\) 2.06197e7 1.58485 0.792423 0.609972i \(-0.208819\pi\)
0.792423 + 0.609972i \(0.208819\pi\)
\(702\) 1.95255e6 0.149541
\(703\) 3.93418e6 0.300239
\(704\) −2.40980e6 −0.183252
\(705\) 0 0
\(706\) −948585. −0.0716250
\(707\) −5.64679e6 −0.424867
\(708\) 6.51325e6 0.488332
\(709\) 7.75134e6 0.579110 0.289555 0.957161i \(-0.406493\pi\)
0.289555 + 0.957161i \(0.406493\pi\)
\(710\) 0 0
\(711\) 341145. 0.0253084
\(712\) 2.45061e6 0.181165
\(713\) −1.10560e7 −0.814471
\(714\) 96298.1 0.00706923
\(715\) 0 0
\(716\) −5.86483e6 −0.427536
\(717\) −9.92719e6 −0.721155
\(718\) 5.33433e6 0.386161
\(719\) 2.39851e7 1.73029 0.865146 0.501521i \(-0.167226\pi\)
0.865146 + 0.501521i \(0.167226\pi\)
\(720\) 0 0
\(721\) 433291. 0.0310414
\(722\) −496336. −0.0354351
\(723\) 3.94221e6 0.280475
\(724\) 3.80740e6 0.269949
\(725\) 0 0
\(726\) 5.75702e6 0.405374
\(727\) 1.05562e7 0.740750 0.370375 0.928882i \(-0.379229\pi\)
0.370375 + 0.928882i \(0.379229\pi\)
\(728\) −462608. −0.0323508
\(729\) 2.85406e6 0.198904
\(730\) 0 0
\(731\) 753965. 0.0521864
\(732\) −2.09620e6 −0.144596
\(733\) −1.99297e7 −1.37007 −0.685033 0.728512i \(-0.740212\pi\)
−0.685033 + 0.728512i \(0.740212\pi\)
\(734\) −1.80585e7 −1.23721
\(735\) 0 0
\(736\) −1.52036e6 −0.103455
\(737\) −4.06422e7 −2.75618
\(738\) 244158. 0.0165018
\(739\) −1.38830e7 −0.935133 −0.467567 0.883958i \(-0.654869\pi\)
−0.467567 + 0.883958i \(0.654869\pi\)
\(740\) 0 0
\(741\) −1.84977e6 −0.123757
\(742\) −4.90336e6 −0.326952
\(743\) −1.74009e7 −1.15638 −0.578190 0.815902i \(-0.696241\pi\)
−0.578190 + 0.815902i \(0.696241\pi\)
\(744\) −3.70605e6 −0.245459
\(745\) 0 0
\(746\) −1.52445e7 −1.00292
\(747\) 1.93520e7 1.26889
\(748\) 594735. 0.0388660
\(749\) −6.43877e6 −0.419371
\(750\) 0 0
\(751\) −2.22259e7 −1.43800 −0.719001 0.695009i \(-0.755400\pi\)
−0.719001 + 0.695009i \(0.755400\pi\)
\(752\) 1.50173e6 0.0968386
\(753\) 1.34374e7 0.863630
\(754\) −998292. −0.0639483
\(755\) 0 0
\(756\) −2.59431e6 −0.165089
\(757\) −1.78715e6 −0.113350 −0.0566750 0.998393i \(-0.518050\pi\)
−0.0566750 + 0.998393i \(0.518050\pi\)
\(758\) 3.58459e6 0.226604
\(759\) 6.79274e6 0.427997
\(760\) 0 0
\(761\) 2.01942e7 1.26406 0.632028 0.774946i \(-0.282223\pi\)
0.632028 + 0.774946i \(0.282223\pi\)
\(762\) 6.39335e6 0.398879
\(763\) 5.65392e6 0.351591
\(764\) 2.88341e6 0.178720
\(765\) 0 0
\(766\) 6.05215e6 0.372682
\(767\) 7.72213e6 0.473967
\(768\) −509633. −0.0311785
\(769\) 1.76651e7 1.07721 0.538604 0.842559i \(-0.318952\pi\)
0.538604 + 0.842559i \(0.318952\pi\)
\(770\) 0 0
\(771\) −814378. −0.0493390
\(772\) −1.07370e7 −0.648397
\(773\) 8.11314e6 0.488360 0.244180 0.969730i \(-0.421481\pi\)
0.244180 + 0.969730i \(0.421481\pi\)
\(774\) −8.71277e6 −0.522762
\(775\) 0 0
\(776\) −5.80838e6 −0.346258
\(777\) −929666. −0.0552426
\(778\) 2.14578e7 1.27097
\(779\) −539243. −0.0318376
\(780\) 0 0
\(781\) −1.79605e7 −1.05364
\(782\) 375223. 0.0219418
\(783\) −5.59843e6 −0.326334
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 5.86320e6 0.338515
\(787\) 2.26545e7 1.30382 0.651909 0.758297i \(-0.273969\pi\)
0.651909 + 0.758297i \(0.273969\pi\)
\(788\) 6.91588e6 0.396763
\(789\) 1.05855e7 0.605366
\(790\) 0 0
\(791\) −5.63448e6 −0.320193
\(792\) −6.87273e6 −0.389329
\(793\) −2.48526e6 −0.140343
\(794\) −1.13980e7 −0.641618
\(795\) 0 0
\(796\) 1.46022e7 0.816839
\(797\) 2.92055e7 1.62862 0.814309 0.580431i \(-0.197116\pi\)
0.814309 + 0.580431i \(0.197116\pi\)
\(798\) 2.45774e6 0.136625
\(799\) −370627. −0.0205385
\(800\) 0 0
\(801\) 6.98912e6 0.384894
\(802\) −1.12476e7 −0.617481
\(803\) −2.71606e7 −1.48645
\(804\) −8.59517e6 −0.468937
\(805\) 0 0
\(806\) −4.39390e6 −0.238239
\(807\) 2.70513e6 0.146219
\(808\) −7.37539e6 −0.397426
\(809\) −3.04067e7 −1.63342 −0.816709 0.577050i \(-0.804204\pi\)
−0.816709 + 0.577050i \(0.804204\pi\)
\(810\) 0 0
\(811\) −1.67648e7 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(812\) 1.32641e6 0.0705970
\(813\) −9.19672e6 −0.487985
\(814\) −5.74160e6 −0.303719
\(815\) 0 0
\(816\) 125777. 0.00661266
\(817\) 1.92429e7 1.00859
\(818\) −1.50609e7 −0.786985
\(819\) −1.31936e6 −0.0687309
\(820\) 0 0
\(821\) 4.39417e6 0.227520 0.113760 0.993508i \(-0.463711\pi\)
0.113760 + 0.993508i \(0.463711\pi\)
\(822\) −1.27048e6 −0.0655823
\(823\) 2.59030e7 1.33306 0.666531 0.745477i \(-0.267778\pi\)
0.666531 + 0.745477i \(0.267778\pi\)
\(824\) 565931. 0.0290366
\(825\) 0 0
\(826\) −1.02602e7 −0.523246
\(827\) −2.02511e6 −0.102964 −0.0514820 0.998674i \(-0.516394\pi\)
−0.0514820 + 0.998674i \(0.516394\pi\)
\(828\) −4.33606e6 −0.219796
\(829\) 1.62217e7 0.819802 0.409901 0.912130i \(-0.365563\pi\)
0.409901 + 0.912130i \(0.365563\pi\)
\(830\) 0 0
\(831\) 4.88934e6 0.245611
\(832\) −604223. −0.0302614
\(833\) −151697. −0.00757466
\(834\) −228604. −0.0113807
\(835\) 0 0
\(836\) 1.51790e7 0.751150
\(837\) −2.46410e7 −1.21575
\(838\) 4.89026e6 0.240559
\(839\) −2.68249e7 −1.31563 −0.657815 0.753179i \(-0.728519\pi\)
−0.657815 + 0.753179i \(0.728519\pi\)
\(840\) 0 0
\(841\) −1.76488e7 −0.860450
\(842\) −2.00725e7 −0.975712
\(843\) −1.17607e7 −0.569985
\(844\) −1.57473e7 −0.760941
\(845\) 0 0
\(846\) 4.28294e6 0.205739
\(847\) −9.06893e6 −0.434358
\(848\) −6.40438e6 −0.305835
\(849\) −9.16390e6 −0.436326
\(850\) 0 0
\(851\) −3.62242e6 −0.171465
\(852\) −3.79836e6 −0.179266
\(853\) 3.43612e7 1.61695 0.808474 0.588532i \(-0.200294\pi\)
0.808474 + 0.588532i \(0.200294\pi\)
\(854\) 3.30211e6 0.154934
\(855\) 0 0
\(856\) −8.40982e6 −0.392285
\(857\) 1.12064e6 0.0521212 0.0260606 0.999660i \(-0.491704\pi\)
0.0260606 + 0.999660i \(0.491704\pi\)
\(858\) 2.69957e6 0.125192
\(859\) 3.04895e7 1.40983 0.704916 0.709291i \(-0.250985\pi\)
0.704916 + 0.709291i \(0.250985\pi\)
\(860\) 0 0
\(861\) 127426. 0.00585799
\(862\) 1.82056e7 0.834520
\(863\) 2.62444e6 0.119953 0.0599763 0.998200i \(-0.480897\pi\)
0.0599763 + 0.998200i \(0.480897\pi\)
\(864\) −3.38849e6 −0.154426
\(865\) 0 0
\(866\) −1.50173e7 −0.680453
\(867\) 1.10103e7 0.497453
\(868\) 5.83807e6 0.263009
\(869\) 1.09959e6 0.0493948
\(870\) 0 0
\(871\) −1.01905e7 −0.455143
\(872\) 7.38471e6 0.328884
\(873\) −1.65655e7 −0.735645
\(874\) 9.57653e6 0.424062
\(875\) 0 0
\(876\) −5.74404e6 −0.252905
\(877\) 5.66401e6 0.248671 0.124335 0.992240i \(-0.460320\pi\)
0.124335 + 0.992240i \(0.460320\pi\)
\(878\) −1.83125e7 −0.801700
\(879\) −3.81708e6 −0.166632
\(880\) 0 0
\(881\) 2.21548e7 0.961676 0.480838 0.876810i \(-0.340333\pi\)
0.480838 + 0.876810i \(0.340333\pi\)
\(882\) 1.75300e6 0.0758769
\(883\) −2.14786e7 −0.927050 −0.463525 0.886084i \(-0.653416\pi\)
−0.463525 + 0.886084i \(0.653416\pi\)
\(884\) 149122. 0.00641815
\(885\) 0 0
\(886\) −1.63811e7 −0.701067
\(887\) 2.26847e7 0.968106 0.484053 0.875039i \(-0.339164\pi\)
0.484053 + 0.875039i \(0.339164\pi\)
\(888\) −1.21426e6 −0.0516747
\(889\) −1.00713e7 −0.427397
\(890\) 0 0
\(891\) −1.09557e7 −0.462321
\(892\) −5.81326e6 −0.244629
\(893\) −9.45922e6 −0.396941
\(894\) 8.64672e6 0.361832
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) 1.70318e6 0.0706774
\(898\) 2.34938e7 0.972217
\(899\) 1.25984e7 0.519894
\(900\) 0 0
\(901\) 1.58060e6 0.0648648
\(902\) 786979. 0.0322067
\(903\) −4.54717e6 −0.185576
\(904\) −7.35931e6 −0.299513
\(905\) 0 0
\(906\) 3.13921e6 0.127058
\(907\) 3.98778e7 1.60958 0.804790 0.593560i \(-0.202278\pi\)
0.804790 + 0.593560i \(0.202278\pi\)
\(908\) −9.39399e6 −0.378125
\(909\) −2.10346e7 −0.844354
\(910\) 0 0
\(911\) 1.25677e7 0.501717 0.250858 0.968024i \(-0.419287\pi\)
0.250858 + 0.968024i \(0.419287\pi\)
\(912\) 3.21011e6 0.127801
\(913\) 6.23761e7 2.47652
\(914\) −2.16220e7 −0.856113
\(915\) 0 0
\(916\) 1.93732e7 0.762891
\(917\) −9.23619e6 −0.362718
\(918\) 836275. 0.0327524
\(919\) −4.18208e6 −0.163344 −0.0816720 0.996659i \(-0.526026\pi\)
−0.0816720 + 0.996659i \(0.526026\pi\)
\(920\) 0 0
\(921\) 1.78753e7 0.694393
\(922\) 8.11997e6 0.314577
\(923\) −4.50335e6 −0.173993
\(924\) −3.58686e6 −0.138208
\(925\) 0 0
\(926\) −8.82534e6 −0.338224
\(927\) 1.61403e6 0.0616898
\(928\) 1.73245e6 0.0660375
\(929\) 4.65328e7 1.76897 0.884484 0.466571i \(-0.154511\pi\)
0.884484 + 0.466571i \(0.154511\pi\)
\(930\) 0 0
\(931\) −3.87163e6 −0.146393
\(932\) −2.60907e6 −0.0983890
\(933\) 1.25805e7 0.473144
\(934\) −3.69995e7 −1.38781
\(935\) 0 0
\(936\) −1.72324e6 −0.0642919
\(937\) 2.69548e7 1.00297 0.501484 0.865167i \(-0.332787\pi\)
0.501484 + 0.865167i \(0.332787\pi\)
\(938\) 1.35398e7 0.502465
\(939\) 1.35620e6 0.0501947
\(940\) 0 0
\(941\) −6.83412e6 −0.251599 −0.125799 0.992056i \(-0.540150\pi\)
−0.125799 + 0.992056i \(0.540150\pi\)
\(942\) 6.28788e6 0.230875
\(943\) 496511. 0.0181823
\(944\) −1.34011e7 −0.489452
\(945\) 0 0
\(946\) −2.80833e7 −1.02028
\(947\) 1.70413e7 0.617487 0.308743 0.951145i \(-0.400092\pi\)
0.308743 + 0.951145i \(0.400092\pi\)
\(948\) 232546. 0.00840403
\(949\) −6.81014e6 −0.245466
\(950\) 0 0
\(951\) 2.55065e7 0.914535
\(952\) −198134. −0.00708545
\(953\) −5.08910e6 −0.181513 −0.0907567 0.995873i \(-0.528929\pi\)
−0.0907567 + 0.995873i \(0.528929\pi\)
\(954\) −1.82653e7 −0.649764
\(955\) 0 0
\(956\) 2.04253e7 0.722809
\(957\) −7.74032e6 −0.273199
\(958\) 3.49484e7 1.23031
\(959\) 2.00136e6 0.0702713
\(960\) 0 0
\(961\) 2.68215e7 0.936859
\(962\) −1.43963e6 −0.0501547
\(963\) −2.39848e7 −0.833431
\(964\) −8.11114e6 −0.281118
\(965\) 0 0
\(966\) −2.26298e6 −0.0780257
\(967\) 3.03945e7 1.04527 0.522635 0.852556i \(-0.324949\pi\)
0.522635 + 0.852556i \(0.324949\pi\)
\(968\) −1.18451e7 −0.406304
\(969\) −792252. −0.0271053
\(970\) 0 0
\(971\) 3.40735e7 1.15976 0.579881 0.814701i \(-0.303099\pi\)
0.579881 + 0.814701i \(0.303099\pi\)
\(972\) −1.51826e7 −0.515443
\(973\) 360116. 0.0121944
\(974\) 2.30319e7 0.777915
\(975\) 0 0
\(976\) 4.31296e6 0.144928
\(977\) −1.28684e6 −0.0431307 −0.0215654 0.999767i \(-0.506865\pi\)
−0.0215654 + 0.999767i \(0.506865\pi\)
\(978\) 3.73989e6 0.125029
\(979\) 2.25276e7 0.751203
\(980\) 0 0
\(981\) 2.10612e7 0.698731
\(982\) −85111.7 −0.00281650
\(983\) 4.75992e7 1.57114 0.785571 0.618771i \(-0.212369\pi\)
0.785571 + 0.618771i \(0.212369\pi\)
\(984\) 166433. 0.00547965
\(985\) 0 0
\(986\) −427567. −0.0140059
\(987\) 2.23526e6 0.0730356
\(988\) 3.80591e6 0.124041
\(989\) −1.77180e7 −0.576001
\(990\) 0 0
\(991\) 2.23288e7 0.722239 0.361120 0.932520i \(-0.382395\pi\)
0.361120 + 0.932520i \(0.382395\pi\)
\(992\) 7.62523e6 0.246022
\(993\) 638632. 0.0205531
\(994\) 5.98349e6 0.192083
\(995\) 0 0
\(996\) 1.31915e7 0.421354
\(997\) 4.81000e7 1.53252 0.766262 0.642528i \(-0.222114\pi\)
0.766262 + 0.642528i \(0.222114\pi\)
\(998\) 3.21678e7 1.02234
\(999\) −8.07344e6 −0.255944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.r.1.1 2
5.2 odd 4 350.6.c.i.99.2 4
5.3 odd 4 350.6.c.i.99.3 4
5.4 even 2 350.6.a.s.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.6.a.r.1.1 2 1.1 even 1 trivial
350.6.a.s.1.2 yes 2 5.4 even 2
350.6.c.i.99.2 4 5.2 odd 4
350.6.c.i.99.3 4 5.3 odd 4