Properties

Label 350.6.a.r
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{79}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + (\beta + 10) q^{3} + 16 q^{4} + ( - 4 \beta - 40) q^{6} - 49 q^{7} - 64 q^{8} + (20 \beta + 173) q^{9} + (3 \beta - 535) q^{11} + (16 \beta + 160) q^{12} + (29 \beta + 368) q^{13} + 196 q^{14}+ \cdots + ( - 10181 \beta - 73595) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 20 q^{3} + 32 q^{4} - 80 q^{6} - 98 q^{7} - 128 q^{8} + 346 q^{9} - 1070 q^{11} + 320 q^{12} + 736 q^{13} + 392 q^{14} + 512 q^{16} - 1904 q^{17} - 1384 q^{18} + 828 q^{19} - 980 q^{21}+ \cdots - 147190 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.88819
8.88819
−4.00000 −7.77639 16.0000 0 31.1056 −49.0000 −64.0000 −182.528 0
1.2 −4.00000 27.7764 16.0000 0 −111.106 −49.0000 −64.0000 528.528 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.r 2
5.b even 2 1 350.6.a.s yes 2
5.c odd 4 2 350.6.c.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.r 2 1.a even 1 1 trivial
350.6.a.s yes 2 5.b even 2 1
350.6.c.i 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{2} - 20T_{3} - 216 \) Copy content Toggle raw display
\( T_{13}^{2} - 736T_{13} - 130332 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 20T - 216 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1070 T + 283381 \) Copy content Toggle raw display
$13$ \( T^{2} - 736T - 130332 \) Copy content Toggle raw display
$17$ \( T^{2} + 1904 T + 116304 \) Copy content Toggle raw display
$19$ \( T^{2} - 828 T - 3935340 \) Copy content Toggle raw display
$23$ \( T^{2} - 1654 T + 251325 \) Copy content Toggle raw display
$29$ \( T^{2} + 2246 T + 937545 \) Copy content Toggle raw display
$31$ \( T^{2} - 288 T - 57595228 \) Copy content Toggle raw display
$37$ \( T^{2} - 8986 T - 27876551 \) Copy content Toggle raw display
$41$ \( T^{2} - 11228 T + 3642952 \) Copy content Toggle raw display
$43$ \( T^{2} - 3402 T - 183005923 \) Copy content Toggle raw display
$47$ \( T^{2} - 15572 T + 56935972 \) Copy content Toggle raw display
$53$ \( T^{2} + 16188 T - 220879228 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 2124282020 \) Copy content Toggle raw display
$61$ \( T^{2} - 15172 T - 28227960 \) Copy content Toggle raw display
$67$ \( T^{2} - 78966 T + 682884189 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1567614723 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1233469320 \) Copy content Toggle raw display
$79$ \( T^{2} + 72106 T + 131273245 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 6215296876 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1086335900 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 10668157580 \) Copy content Toggle raw display
show more
show less