Properties

Label 350.6.a.l.1.1
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} -162.000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} -162.000 q^{9} -187.000 q^{11} +144.000 q^{12} -627.000 q^{13} +196.000 q^{14} +256.000 q^{16} -1813.00 q^{17} -648.000 q^{18} +258.000 q^{19} +441.000 q^{21} -748.000 q^{22} -2970.00 q^{23} +576.000 q^{24} -2508.00 q^{26} -3645.00 q^{27} +784.000 q^{28} +1299.00 q^{29} +1916.00 q^{31} +1024.00 q^{32} -1683.00 q^{33} -7252.00 q^{34} -2592.00 q^{36} -6578.00 q^{37} +1032.00 q^{38} -5643.00 q^{39} +6676.00 q^{41} +1764.00 q^{42} -3178.00 q^{43} -2992.00 q^{44} -11880.0 q^{46} +22001.0 q^{47} +2304.00 q^{48} +2401.00 q^{49} -16317.0 q^{51} -10032.0 q^{52} -26168.0 q^{53} -14580.0 q^{54} +3136.00 q^{56} +2322.00 q^{57} +5196.00 q^{58} +3932.00 q^{59} -48740.0 q^{61} +7664.00 q^{62} -7938.00 q^{63} +4096.00 q^{64} -6732.00 q^{66} +44832.0 q^{67} -29008.0 q^{68} -26730.0 q^{69} +63736.0 q^{71} -10368.0 q^{72} -60470.0 q^{73} -26312.0 q^{74} +4128.00 q^{76} -9163.00 q^{77} -22572.0 q^{78} -43721.0 q^{79} +6561.00 q^{81} +26704.0 q^{82} -97276.0 q^{83} +7056.00 q^{84} -12712.0 q^{86} +11691.0 q^{87} -11968.0 q^{88} +45560.0 q^{89} -30723.0 q^{91} -47520.0 q^{92} +17244.0 q^{93} +88004.0 q^{94} +9216.00 q^{96} +57295.0 q^{97} +9604.00 q^{98} +30294.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 36.0000 0.408248
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) −162.000 −0.666667
\(10\) 0 0
\(11\) −187.000 −0.465972 −0.232986 0.972480i \(-0.574850\pi\)
−0.232986 + 0.972480i \(0.574850\pi\)
\(12\) 144.000 0.288675
\(13\) −627.000 −1.02899 −0.514493 0.857495i \(-0.672020\pi\)
−0.514493 + 0.857495i \(0.672020\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1813.00 −1.52151 −0.760756 0.649038i \(-0.775172\pi\)
−0.760756 + 0.649038i \(0.775172\pi\)
\(18\) −648.000 −0.471405
\(19\) 258.000 0.163959 0.0819796 0.996634i \(-0.473876\pi\)
0.0819796 + 0.996634i \(0.473876\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) −748.000 −0.329492
\(23\) −2970.00 −1.17068 −0.585338 0.810789i \(-0.699038\pi\)
−0.585338 + 0.810789i \(0.699038\pi\)
\(24\) 576.000 0.204124
\(25\) 0 0
\(26\) −2508.00 −0.727602
\(27\) −3645.00 −0.962250
\(28\) 784.000 0.188982
\(29\) 1299.00 0.286823 0.143412 0.989663i \(-0.454193\pi\)
0.143412 + 0.989663i \(0.454193\pi\)
\(30\) 0 0
\(31\) 1916.00 0.358089 0.179045 0.983841i \(-0.442699\pi\)
0.179045 + 0.983841i \(0.442699\pi\)
\(32\) 1024.00 0.176777
\(33\) −1683.00 −0.269029
\(34\) −7252.00 −1.07587
\(35\) 0 0
\(36\) −2592.00 −0.333333
\(37\) −6578.00 −0.789932 −0.394966 0.918696i \(-0.629244\pi\)
−0.394966 + 0.918696i \(0.629244\pi\)
\(38\) 1032.00 0.115937
\(39\) −5643.00 −0.594085
\(40\) 0 0
\(41\) 6676.00 0.620236 0.310118 0.950698i \(-0.399632\pi\)
0.310118 + 0.950698i \(0.399632\pi\)
\(42\) 1764.00 0.154303
\(43\) −3178.00 −0.262109 −0.131055 0.991375i \(-0.541836\pi\)
−0.131055 + 0.991375i \(0.541836\pi\)
\(44\) −2992.00 −0.232986
\(45\) 0 0
\(46\) −11880.0 −0.827793
\(47\) 22001.0 1.45277 0.726387 0.687286i \(-0.241198\pi\)
0.726387 + 0.687286i \(0.241198\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −16317.0 −0.878446
\(52\) −10032.0 −0.514493
\(53\) −26168.0 −1.27962 −0.639810 0.768533i \(-0.720987\pi\)
−0.639810 + 0.768533i \(0.720987\pi\)
\(54\) −14580.0 −0.680414
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) 2322.00 0.0946619
\(58\) 5196.00 0.202815
\(59\) 3932.00 0.147056 0.0735281 0.997293i \(-0.476574\pi\)
0.0735281 + 0.997293i \(0.476574\pi\)
\(60\) 0 0
\(61\) −48740.0 −1.67711 −0.838554 0.544819i \(-0.816598\pi\)
−0.838554 + 0.544819i \(0.816598\pi\)
\(62\) 7664.00 0.253207
\(63\) −7938.00 −0.251976
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −6732.00 −0.190232
\(67\) 44832.0 1.22012 0.610058 0.792357i \(-0.291146\pi\)
0.610058 + 0.792357i \(0.291146\pi\)
\(68\) −29008.0 −0.760756
\(69\) −26730.0 −0.675890
\(70\) 0 0
\(71\) 63736.0 1.50051 0.750255 0.661148i \(-0.229931\pi\)
0.750255 + 0.661148i \(0.229931\pi\)
\(72\) −10368.0 −0.235702
\(73\) −60470.0 −1.32811 −0.664053 0.747685i \(-0.731165\pi\)
−0.664053 + 0.747685i \(0.731165\pi\)
\(74\) −26312.0 −0.558566
\(75\) 0 0
\(76\) 4128.00 0.0819796
\(77\) −9163.00 −0.176121
\(78\) −22572.0 −0.420081
\(79\) −43721.0 −0.788174 −0.394087 0.919073i \(-0.628939\pi\)
−0.394087 + 0.919073i \(0.628939\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 26704.0 0.438573
\(83\) −97276.0 −1.54992 −0.774962 0.632008i \(-0.782231\pi\)
−0.774962 + 0.632008i \(0.782231\pi\)
\(84\) 7056.00 0.109109
\(85\) 0 0
\(86\) −12712.0 −0.185339
\(87\) 11691.0 0.165597
\(88\) −11968.0 −0.164746
\(89\) 45560.0 0.609689 0.304845 0.952402i \(-0.401395\pi\)
0.304845 + 0.952402i \(0.401395\pi\)
\(90\) 0 0
\(91\) −30723.0 −0.388920
\(92\) −47520.0 −0.585338
\(93\) 17244.0 0.206743
\(94\) 88004.0 1.02727
\(95\) 0 0
\(96\) 9216.00 0.102062
\(97\) 57295.0 0.618283 0.309142 0.951016i \(-0.399958\pi\)
0.309142 + 0.951016i \(0.399958\pi\)
\(98\) 9604.00 0.101015
\(99\) 30294.0 0.310648
\(100\) 0 0
\(101\) −44970.0 −0.438651 −0.219326 0.975652i \(-0.570386\pi\)
−0.219326 + 0.975652i \(0.570386\pi\)
\(102\) −65268.0 −0.621155
\(103\) 101405. 0.941817 0.470908 0.882182i \(-0.343926\pi\)
0.470908 + 0.882182i \(0.343926\pi\)
\(104\) −40128.0 −0.363801
\(105\) 0 0
\(106\) −104672. −0.904828
\(107\) 166002. 1.40170 0.700848 0.713311i \(-0.252805\pi\)
0.700848 + 0.713311i \(0.252805\pi\)
\(108\) −58320.0 −0.481125
\(109\) 8289.00 0.0668245 0.0334123 0.999442i \(-0.489363\pi\)
0.0334123 + 0.999442i \(0.489363\pi\)
\(110\) 0 0
\(111\) −59202.0 −0.456067
\(112\) 12544.0 0.0944911
\(113\) −263206. −1.93910 −0.969549 0.244898i \(-0.921245\pi\)
−0.969549 + 0.244898i \(0.921245\pi\)
\(114\) 9288.00 0.0669360
\(115\) 0 0
\(116\) 20784.0 0.143412
\(117\) 101574. 0.685990
\(118\) 15728.0 0.103984
\(119\) −88837.0 −0.575078
\(120\) 0 0
\(121\) −126082. −0.782870
\(122\) −194960. −1.18589
\(123\) 60084.0 0.358093
\(124\) 30656.0 0.179045
\(125\) 0 0
\(126\) −31752.0 −0.178174
\(127\) −30052.0 −0.165335 −0.0826674 0.996577i \(-0.526344\pi\)
−0.0826674 + 0.996577i \(0.526344\pi\)
\(128\) 16384.0 0.0883883
\(129\) −28602.0 −0.151329
\(130\) 0 0
\(131\) −120050. −0.611201 −0.305600 0.952160i \(-0.598857\pi\)
−0.305600 + 0.952160i \(0.598857\pi\)
\(132\) −26928.0 −0.134515
\(133\) 12642.0 0.0619707
\(134\) 179328. 0.862752
\(135\) 0 0
\(136\) −116032. −0.537936
\(137\) −31776.0 −0.144643 −0.0723216 0.997381i \(-0.523041\pi\)
−0.0723216 + 0.997381i \(0.523041\pi\)
\(138\) −106920. −0.477927
\(139\) −200162. −0.878708 −0.439354 0.898314i \(-0.644793\pi\)
−0.439354 + 0.898314i \(0.644793\pi\)
\(140\) 0 0
\(141\) 198009. 0.838759
\(142\) 254944. 1.06102
\(143\) 117249. 0.479478
\(144\) −41472.0 −0.166667
\(145\) 0 0
\(146\) −241880. −0.939113
\(147\) 21609.0 0.0824786
\(148\) −105248. −0.394966
\(149\) 309642. 1.14260 0.571300 0.820741i \(-0.306439\pi\)
0.571300 + 0.820741i \(0.306439\pi\)
\(150\) 0 0
\(151\) −208657. −0.744716 −0.372358 0.928089i \(-0.621451\pi\)
−0.372358 + 0.928089i \(0.621451\pi\)
\(152\) 16512.0 0.0579683
\(153\) 293706. 1.01434
\(154\) −36652.0 −0.124536
\(155\) 0 0
\(156\) −90288.0 −0.297042
\(157\) −36010.0 −0.116593 −0.0582967 0.998299i \(-0.518567\pi\)
−0.0582967 + 0.998299i \(0.518567\pi\)
\(158\) −174884. −0.557324
\(159\) −235512. −0.738789
\(160\) 0 0
\(161\) −145530. −0.442474
\(162\) 26244.0 0.0785674
\(163\) −175670. −0.517879 −0.258940 0.965893i \(-0.583373\pi\)
−0.258940 + 0.965893i \(0.583373\pi\)
\(164\) 106816. 0.310118
\(165\) 0 0
\(166\) −389104. −1.09596
\(167\) 157413. 0.436767 0.218383 0.975863i \(-0.429922\pi\)
0.218383 + 0.975863i \(0.429922\pi\)
\(168\) 28224.0 0.0771517
\(169\) 21836.0 0.0588107
\(170\) 0 0
\(171\) −41796.0 −0.109306
\(172\) −50848.0 −0.131055
\(173\) 23471.0 0.0596233 0.0298117 0.999556i \(-0.490509\pi\)
0.0298117 + 0.999556i \(0.490509\pi\)
\(174\) 46764.0 0.117095
\(175\) 0 0
\(176\) −47872.0 −0.116493
\(177\) 35388.0 0.0849030
\(178\) 182240. 0.431116
\(179\) 612228. 1.42817 0.714086 0.700058i \(-0.246842\pi\)
0.714086 + 0.700058i \(0.246842\pi\)
\(180\) 0 0
\(181\) 528832. 1.19983 0.599917 0.800062i \(-0.295200\pi\)
0.599917 + 0.800062i \(0.295200\pi\)
\(182\) −122892. −0.275008
\(183\) −438660. −0.968279
\(184\) −190080. −0.413897
\(185\) 0 0
\(186\) 68976.0 0.146189
\(187\) 339031. 0.708982
\(188\) 352016. 0.726387
\(189\) −178605. −0.363696
\(190\) 0 0
\(191\) 540369. 1.07178 0.535892 0.844287i \(-0.319976\pi\)
0.535892 + 0.844287i \(0.319976\pi\)
\(192\) 36864.0 0.0721688
\(193\) −960320. −1.85576 −0.927882 0.372874i \(-0.878372\pi\)
−0.927882 + 0.372874i \(0.878372\pi\)
\(194\) 229180. 0.437192
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −761944. −1.39881 −0.699403 0.714728i \(-0.746551\pi\)
−0.699403 + 0.714728i \(0.746551\pi\)
\(198\) 121176. 0.219661
\(199\) 125084. 0.223908 0.111954 0.993713i \(-0.464289\pi\)
0.111954 + 0.993713i \(0.464289\pi\)
\(200\) 0 0
\(201\) 403488. 0.704434
\(202\) −179880. −0.310173
\(203\) 63651.0 0.108409
\(204\) −261072. −0.439223
\(205\) 0 0
\(206\) 405620. 0.665965
\(207\) 481140. 0.780451
\(208\) −160512. −0.257246
\(209\) −48246.0 −0.0764004
\(210\) 0 0
\(211\) 627547. 0.970376 0.485188 0.874410i \(-0.338751\pi\)
0.485188 + 0.874410i \(0.338751\pi\)
\(212\) −418688. −0.639810
\(213\) 573624. 0.866320
\(214\) 664008. 0.991149
\(215\) 0 0
\(216\) −233280. −0.340207
\(217\) 93884.0 0.135345
\(218\) 33156.0 0.0472521
\(219\) −544230. −0.766782
\(220\) 0 0
\(221\) 1.13675e6 1.56561
\(222\) −236808. −0.322488
\(223\) 1.22110e6 1.64433 0.822166 0.569248i \(-0.192766\pi\)
0.822166 + 0.569248i \(0.192766\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −1.05282e6 −1.37115
\(227\) −390547. −0.503047 −0.251524 0.967851i \(-0.580932\pi\)
−0.251524 + 0.967851i \(0.580932\pi\)
\(228\) 37152.0 0.0473309
\(229\) −712124. −0.897360 −0.448680 0.893692i \(-0.648106\pi\)
−0.448680 + 0.893692i \(0.648106\pi\)
\(230\) 0 0
\(231\) −82467.0 −0.101683
\(232\) 83136.0 0.101407
\(233\) −561576. −0.677671 −0.338835 0.940846i \(-0.610033\pi\)
−0.338835 + 0.940846i \(0.610033\pi\)
\(234\) 406296. 0.485068
\(235\) 0 0
\(236\) 62912.0 0.0735281
\(237\) −393489. −0.455053
\(238\) −355348. −0.406641
\(239\) −1.36084e6 −1.54103 −0.770515 0.637421i \(-0.780001\pi\)
−0.770515 + 0.637421i \(0.780001\pi\)
\(240\) 0 0
\(241\) 530050. 0.587860 0.293930 0.955827i \(-0.405037\pi\)
0.293930 + 0.955827i \(0.405037\pi\)
\(242\) −504328. −0.553573
\(243\) 944784. 1.02640
\(244\) −779840. −0.838554
\(245\) 0 0
\(246\) 240336. 0.253210
\(247\) −161766. −0.168712
\(248\) 122624. 0.126604
\(249\) −875484. −0.894849
\(250\) 0 0
\(251\) 990330. 0.992192 0.496096 0.868268i \(-0.334766\pi\)
0.496096 + 0.868268i \(0.334766\pi\)
\(252\) −127008. −0.125988
\(253\) 555390. 0.545503
\(254\) −120208. −0.116909
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.81643e6 1.71548 0.857740 0.514083i \(-0.171868\pi\)
0.857740 + 0.514083i \(0.171868\pi\)
\(258\) −114408. −0.107006
\(259\) −322322. −0.298566
\(260\) 0 0
\(261\) −210438. −0.191215
\(262\) −480200. −0.432184
\(263\) 1.95847e6 1.74594 0.872968 0.487777i \(-0.162192\pi\)
0.872968 + 0.487777i \(0.162192\pi\)
\(264\) −107712. −0.0951162
\(265\) 0 0
\(266\) 50568.0 0.0438199
\(267\) 410040. 0.352004
\(268\) 717312. 0.610058
\(269\) 218034. 0.183715 0.0918573 0.995772i \(-0.470720\pi\)
0.0918573 + 0.995772i \(0.470720\pi\)
\(270\) 0 0
\(271\) 1.26265e6 1.04438 0.522192 0.852828i \(-0.325114\pi\)
0.522192 + 0.852828i \(0.325114\pi\)
\(272\) −464128. −0.380378
\(273\) −276507. −0.224543
\(274\) −127104. −0.102278
\(275\) 0 0
\(276\) −427680. −0.337945
\(277\) 1.10264e6 0.863443 0.431721 0.902007i \(-0.357906\pi\)
0.431721 + 0.902007i \(0.357906\pi\)
\(278\) −800648. −0.621340
\(279\) −310392. −0.238726
\(280\) 0 0
\(281\) −998213. −0.754149 −0.377075 0.926183i \(-0.623070\pi\)
−0.377075 + 0.926183i \(0.623070\pi\)
\(282\) 792036. 0.593092
\(283\) 386371. 0.286773 0.143387 0.989667i \(-0.454201\pi\)
0.143387 + 0.989667i \(0.454201\pi\)
\(284\) 1.01978e6 0.750255
\(285\) 0 0
\(286\) 468996. 0.339042
\(287\) 327124. 0.234427
\(288\) −165888. −0.117851
\(289\) 1.86711e6 1.31500
\(290\) 0 0
\(291\) 515655. 0.356966
\(292\) −967520. −0.664053
\(293\) 783571. 0.533224 0.266612 0.963804i \(-0.414096\pi\)
0.266612 + 0.963804i \(0.414096\pi\)
\(294\) 86436.0 0.0583212
\(295\) 0 0
\(296\) −420992. −0.279283
\(297\) 681615. 0.448382
\(298\) 1.23857e6 0.807940
\(299\) 1.86219e6 1.20461
\(300\) 0 0
\(301\) −155722. −0.0990681
\(302\) −834628. −0.526594
\(303\) −404730. −0.253255
\(304\) 66048.0 0.0409898
\(305\) 0 0
\(306\) 1.17482e6 0.717248
\(307\) −2.81773e6 −1.70629 −0.853147 0.521670i \(-0.825309\pi\)
−0.853147 + 0.521670i \(0.825309\pi\)
\(308\) −146608. −0.0880604
\(309\) 912645. 0.543758
\(310\) 0 0
\(311\) −847398. −0.496806 −0.248403 0.968657i \(-0.579906\pi\)
−0.248403 + 0.968657i \(0.579906\pi\)
\(312\) −361152. −0.210041
\(313\) −364955. −0.210561 −0.105281 0.994443i \(-0.533574\pi\)
−0.105281 + 0.994443i \(0.533574\pi\)
\(314\) −144040. −0.0824440
\(315\) 0 0
\(316\) −699536. −0.394087
\(317\) −1.93744e6 −1.08288 −0.541439 0.840740i \(-0.682120\pi\)
−0.541439 + 0.840740i \(0.682120\pi\)
\(318\) −942048. −0.522402
\(319\) −242913. −0.133652
\(320\) 0 0
\(321\) 1.49402e6 0.809270
\(322\) −582120. −0.312876
\(323\) −467754. −0.249466
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) −702680. −0.366196
\(327\) 74601.0 0.0385812
\(328\) 427264. 0.219286
\(329\) 1.07805e6 0.549097
\(330\) 0 0
\(331\) −61460.0 −0.0308335 −0.0154167 0.999881i \(-0.504907\pi\)
−0.0154167 + 0.999881i \(0.504907\pi\)
\(332\) −1.55642e6 −0.774962
\(333\) 1.06564e6 0.526621
\(334\) 629652. 0.308841
\(335\) 0 0
\(336\) 112896. 0.0545545
\(337\) 3.74116e6 1.79445 0.897225 0.441574i \(-0.145580\pi\)
0.897225 + 0.441574i \(0.145580\pi\)
\(338\) 87344.0 0.0415854
\(339\) −2.36885e6 −1.11954
\(340\) 0 0
\(341\) −358292. −0.166860
\(342\) −167184. −0.0772911
\(343\) 117649. 0.0539949
\(344\) −203392. −0.0926697
\(345\) 0 0
\(346\) 93884.0 0.0421601
\(347\) −211334. −0.0942206 −0.0471103 0.998890i \(-0.515001\pi\)
−0.0471103 + 0.998890i \(0.515001\pi\)
\(348\) 187056. 0.0827987
\(349\) 3.39558e6 1.49228 0.746140 0.665789i \(-0.231905\pi\)
0.746140 + 0.665789i \(0.231905\pi\)
\(350\) 0 0
\(351\) 2.28542e6 0.990142
\(352\) −191488. −0.0823730
\(353\) 3.88094e6 1.65768 0.828838 0.559489i \(-0.189003\pi\)
0.828838 + 0.559489i \(0.189003\pi\)
\(354\) 141552. 0.0600355
\(355\) 0 0
\(356\) 728960. 0.304845
\(357\) −799533. −0.332021
\(358\) 2.44891e6 1.00987
\(359\) 3.24210e6 1.32767 0.663836 0.747878i \(-0.268927\pi\)
0.663836 + 0.747878i \(0.268927\pi\)
\(360\) 0 0
\(361\) −2.40954e6 −0.973117
\(362\) 2.11533e6 0.848411
\(363\) −1.13474e6 −0.451990
\(364\) −491568. −0.194460
\(365\) 0 0
\(366\) −1.75464e6 −0.684676
\(367\) −1.44430e6 −0.559749 −0.279874 0.960037i \(-0.590293\pi\)
−0.279874 + 0.960037i \(0.590293\pi\)
\(368\) −760320. −0.292669
\(369\) −1.08151e6 −0.413490
\(370\) 0 0
\(371\) −1.28223e6 −0.483651
\(372\) 275904. 0.103371
\(373\) −3.43542e6 −1.27852 −0.639260 0.768991i \(-0.720759\pi\)
−0.639260 + 0.768991i \(0.720759\pi\)
\(374\) 1.35612e6 0.501326
\(375\) 0 0
\(376\) 1.40806e6 0.513633
\(377\) −814473. −0.295137
\(378\) −714420. −0.257172
\(379\) −1.68635e6 −0.603044 −0.301522 0.953459i \(-0.597495\pi\)
−0.301522 + 0.953459i \(0.597495\pi\)
\(380\) 0 0
\(381\) −270468. −0.0954560
\(382\) 2.16148e6 0.757865
\(383\) −2.64354e6 −0.920850 −0.460425 0.887699i \(-0.652303\pi\)
−0.460425 + 0.887699i \(0.652303\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) −3.84128e6 −1.31222
\(387\) 514836. 0.174740
\(388\) 916720. 0.309142
\(389\) −452099. −0.151481 −0.0757407 0.997128i \(-0.524132\pi\)
−0.0757407 + 0.997128i \(0.524132\pi\)
\(390\) 0 0
\(391\) 5.38461e6 1.78120
\(392\) 153664. 0.0505076
\(393\) −1.08045e6 −0.352877
\(394\) −3.04778e6 −0.989105
\(395\) 0 0
\(396\) 484704. 0.155324
\(397\) 1.95530e6 0.622641 0.311321 0.950305i \(-0.399229\pi\)
0.311321 + 0.950305i \(0.399229\pi\)
\(398\) 500336. 0.158327
\(399\) 113778. 0.0357788
\(400\) 0 0
\(401\) −4.76737e6 −1.48053 −0.740266 0.672314i \(-0.765300\pi\)
−0.740266 + 0.672314i \(0.765300\pi\)
\(402\) 1.61395e6 0.498110
\(403\) −1.20133e6 −0.368469
\(404\) −719520. −0.219326
\(405\) 0 0
\(406\) 254604. 0.0766567
\(407\) 1.23009e6 0.368086
\(408\) −1.04429e6 −0.310577
\(409\) −4.13199e6 −1.22138 −0.610690 0.791870i \(-0.709108\pi\)
−0.610690 + 0.791870i \(0.709108\pi\)
\(410\) 0 0
\(411\) −285984. −0.0835097
\(412\) 1.62248e6 0.470908
\(413\) 192668. 0.0555820
\(414\) 1.92456e6 0.551862
\(415\) 0 0
\(416\) −642048. −0.181901
\(417\) −1.80146e6 −0.507322
\(418\) −192984. −0.0540232
\(419\) 190512. 0.0530136 0.0265068 0.999649i \(-0.491562\pi\)
0.0265068 + 0.999649i \(0.491562\pi\)
\(420\) 0 0
\(421\) −5.19186e6 −1.42764 −0.713818 0.700332i \(-0.753035\pi\)
−0.713818 + 0.700332i \(0.753035\pi\)
\(422\) 2.51019e6 0.686160
\(423\) −3.56416e6 −0.968515
\(424\) −1.67475e6 −0.452414
\(425\) 0 0
\(426\) 2.29450e6 0.612581
\(427\) −2.38826e6 −0.633887
\(428\) 2.65603e6 0.700848
\(429\) 1.05524e6 0.276827
\(430\) 0 0
\(431\) −4.21781e6 −1.09369 −0.546845 0.837234i \(-0.684171\pi\)
−0.546845 + 0.837234i \(0.684171\pi\)
\(432\) −933120. −0.240563
\(433\) 4.86027e6 1.24578 0.622890 0.782310i \(-0.285959\pi\)
0.622890 + 0.782310i \(0.285959\pi\)
\(434\) 375536. 0.0957034
\(435\) 0 0
\(436\) 132624. 0.0334123
\(437\) −766260. −0.191943
\(438\) −2.17692e6 −0.542197
\(439\) −2.03113e6 −0.503011 −0.251505 0.967856i \(-0.580926\pi\)
−0.251505 + 0.967856i \(0.580926\pi\)
\(440\) 0 0
\(441\) −388962. −0.0952381
\(442\) 4.54700e6 1.10706
\(443\) −2.84199e6 −0.688038 −0.344019 0.938963i \(-0.611789\pi\)
−0.344019 + 0.938963i \(0.611789\pi\)
\(444\) −947232. −0.228034
\(445\) 0 0
\(446\) 4.88440e6 1.16272
\(447\) 2.78678e6 0.659680
\(448\) 200704. 0.0472456
\(449\) −4.59682e6 −1.07607 −0.538037 0.842921i \(-0.680834\pi\)
−0.538037 + 0.842921i \(0.680834\pi\)
\(450\) 0 0
\(451\) −1.24841e6 −0.289012
\(452\) −4.21130e6 −0.969549
\(453\) −1.87791e6 −0.429962
\(454\) −1.56219e6 −0.355708
\(455\) 0 0
\(456\) 148608. 0.0334680
\(457\) −4.93367e6 −1.10504 −0.552522 0.833498i \(-0.686335\pi\)
−0.552522 + 0.833498i \(0.686335\pi\)
\(458\) −2.84850e6 −0.634530
\(459\) 6.60838e6 1.46408
\(460\) 0 0
\(461\) −4.75667e6 −1.04244 −0.521220 0.853422i \(-0.674523\pi\)
−0.521220 + 0.853422i \(0.674523\pi\)
\(462\) −329868. −0.0719011
\(463\) −4.08619e6 −0.885862 −0.442931 0.896556i \(-0.646061\pi\)
−0.442931 + 0.896556i \(0.646061\pi\)
\(464\) 332544. 0.0717058
\(465\) 0 0
\(466\) −2.24630e6 −0.479186
\(467\) 4.15932e6 0.882531 0.441266 0.897377i \(-0.354530\pi\)
0.441266 + 0.897377i \(0.354530\pi\)
\(468\) 1.62518e6 0.342995
\(469\) 2.19677e6 0.461160
\(470\) 0 0
\(471\) −324090. −0.0673152
\(472\) 251648. 0.0519922
\(473\) 594286. 0.122136
\(474\) −1.57396e6 −0.321771
\(475\) 0 0
\(476\) −1.42139e6 −0.287539
\(477\) 4.23922e6 0.853080
\(478\) −5.44335e6 −1.08967
\(479\) −3.36040e6 −0.669195 −0.334597 0.942361i \(-0.608600\pi\)
−0.334597 + 0.942361i \(0.608600\pi\)
\(480\) 0 0
\(481\) 4.12441e6 0.812828
\(482\) 2.12020e6 0.415680
\(483\) −1.30977e6 −0.255463
\(484\) −2.01731e6 −0.391435
\(485\) 0 0
\(486\) 3.77914e6 0.725775
\(487\) −7.05243e6 −1.34746 −0.673730 0.738977i \(-0.735309\pi\)
−0.673730 + 0.738977i \(0.735309\pi\)
\(488\) −3.11936e6 −0.592947
\(489\) −1.58103e6 −0.298998
\(490\) 0 0
\(491\) −83937.0 −0.0157127 −0.00785633 0.999969i \(-0.502501\pi\)
−0.00785633 + 0.999969i \(0.502501\pi\)
\(492\) 961344. 0.179047
\(493\) −2.35509e6 −0.436405
\(494\) −647064. −0.119297
\(495\) 0 0
\(496\) 490496. 0.0895223
\(497\) 3.12306e6 0.567140
\(498\) −3.50194e6 −0.632754
\(499\) −7.10526e6 −1.27741 −0.638703 0.769454i \(-0.720529\pi\)
−0.638703 + 0.769454i \(0.720529\pi\)
\(500\) 0 0
\(501\) 1.41672e6 0.252167
\(502\) 3.96132e6 0.701586
\(503\) −2.89147e6 −0.509564 −0.254782 0.966999i \(-0.582004\pi\)
−0.254782 + 0.966999i \(0.582004\pi\)
\(504\) −508032. −0.0890871
\(505\) 0 0
\(506\) 2.22156e6 0.385729
\(507\) 196524. 0.0339544
\(508\) −480832. −0.0826674
\(509\) 1.03548e6 0.177153 0.0885764 0.996069i \(-0.471768\pi\)
0.0885764 + 0.996069i \(0.471768\pi\)
\(510\) 0 0
\(511\) −2.96303e6 −0.501977
\(512\) 262144. 0.0441942
\(513\) −940410. −0.157770
\(514\) 7.26572e6 1.21303
\(515\) 0 0
\(516\) −457632. −0.0756645
\(517\) −4.11419e6 −0.676952
\(518\) −1.28929e6 −0.211118
\(519\) 211239. 0.0344236
\(520\) 0 0
\(521\) −7.49715e6 −1.21005 −0.605023 0.796208i \(-0.706836\pi\)
−0.605023 + 0.796208i \(0.706836\pi\)
\(522\) −841752. −0.135210
\(523\) −3.53223e6 −0.564670 −0.282335 0.959316i \(-0.591109\pi\)
−0.282335 + 0.959316i \(0.591109\pi\)
\(524\) −1.92080e6 −0.305600
\(525\) 0 0
\(526\) 7.83390e6 1.23456
\(527\) −3.47371e6 −0.544837
\(528\) −430848. −0.0672573
\(529\) 2.38456e6 0.370483
\(530\) 0 0
\(531\) −636984. −0.0980375
\(532\) 202272. 0.0309854
\(533\) −4.18585e6 −0.638213
\(534\) 1.64016e6 0.248905
\(535\) 0 0
\(536\) 2.86925e6 0.431376
\(537\) 5.51005e6 0.824556
\(538\) 872136. 0.129906
\(539\) −448987. −0.0665674
\(540\) 0 0
\(541\) −4.99188e6 −0.733281 −0.366641 0.930363i \(-0.619492\pi\)
−0.366641 + 0.930363i \(0.619492\pi\)
\(542\) 5.05061e6 0.738491
\(543\) 4.75949e6 0.692725
\(544\) −1.85651e6 −0.268968
\(545\) 0 0
\(546\) −1.10603e6 −0.158776
\(547\) −5.12634e6 −0.732553 −0.366277 0.930506i \(-0.619368\pi\)
−0.366277 + 0.930506i \(0.619368\pi\)
\(548\) −508416. −0.0723216
\(549\) 7.89588e6 1.11807
\(550\) 0 0
\(551\) 335142. 0.0470273
\(552\) −1.71072e6 −0.238963
\(553\) −2.14233e6 −0.297902
\(554\) 4.41055e6 0.610546
\(555\) 0 0
\(556\) −3.20259e6 −0.439354
\(557\) −8.86866e6 −1.21121 −0.605606 0.795765i \(-0.707069\pi\)
−0.605606 + 0.795765i \(0.707069\pi\)
\(558\) −1.24157e6 −0.168805
\(559\) 1.99261e6 0.269707
\(560\) 0 0
\(561\) 3.05128e6 0.409331
\(562\) −3.99285e6 −0.533264
\(563\) −9.07277e6 −1.20634 −0.603169 0.797613i \(-0.706096\pi\)
−0.603169 + 0.797613i \(0.706096\pi\)
\(564\) 3.16814e6 0.419379
\(565\) 0 0
\(566\) 1.54548e6 0.202779
\(567\) 321489. 0.0419961
\(568\) 4.07910e6 0.530510
\(569\) 2.08310e6 0.269730 0.134865 0.990864i \(-0.456940\pi\)
0.134865 + 0.990864i \(0.456940\pi\)
\(570\) 0 0
\(571\) −5.46368e6 −0.701286 −0.350643 0.936509i \(-0.614037\pi\)
−0.350643 + 0.936509i \(0.614037\pi\)
\(572\) 1.87598e6 0.239739
\(573\) 4.86332e6 0.618794
\(574\) 1.30850e6 0.165765
\(575\) 0 0
\(576\) −663552. −0.0833333
\(577\) −7.66246e6 −0.958140 −0.479070 0.877777i \(-0.659026\pi\)
−0.479070 + 0.877777i \(0.659026\pi\)
\(578\) 7.46845e6 0.929845
\(579\) −8.64288e6 −1.07143
\(580\) 0 0
\(581\) −4.76652e6 −0.585816
\(582\) 2.06262e6 0.252413
\(583\) 4.89342e6 0.596267
\(584\) −3.87008e6 −0.469556
\(585\) 0 0
\(586\) 3.13428e6 0.377046
\(587\) 1.57465e7 1.88620 0.943100 0.332510i \(-0.107896\pi\)
0.943100 + 0.332510i \(0.107896\pi\)
\(588\) 345744. 0.0412393
\(589\) 494328. 0.0587120
\(590\) 0 0
\(591\) −6.85750e6 −0.807601
\(592\) −1.68397e6 −0.197483
\(593\) 1.62409e7 1.89658 0.948292 0.317398i \(-0.102809\pi\)
0.948292 + 0.317398i \(0.102809\pi\)
\(594\) 2.72646e6 0.317054
\(595\) 0 0
\(596\) 4.95427e6 0.571300
\(597\) 1.12576e6 0.129273
\(598\) 7.44876e6 0.851787
\(599\) −1.90793e6 −0.217268 −0.108634 0.994082i \(-0.534648\pi\)
−0.108634 + 0.994082i \(0.534648\pi\)
\(600\) 0 0
\(601\) 3.52970e6 0.398613 0.199306 0.979937i \(-0.436131\pi\)
0.199306 + 0.979937i \(0.436131\pi\)
\(602\) −622888. −0.0700517
\(603\) −7.26278e6 −0.813411
\(604\) −3.33851e6 −0.372358
\(605\) 0 0
\(606\) −1.61892e6 −0.179079
\(607\) −3.37799e6 −0.372123 −0.186061 0.982538i \(-0.559572\pi\)
−0.186061 + 0.982538i \(0.559572\pi\)
\(608\) 264192. 0.0289842
\(609\) 572859. 0.0625899
\(610\) 0 0
\(611\) −1.37946e7 −1.49488
\(612\) 4.69930e6 0.507171
\(613\) −1.20412e6 −0.129425 −0.0647127 0.997904i \(-0.520613\pi\)
−0.0647127 + 0.997904i \(0.520613\pi\)
\(614\) −1.12709e7 −1.20653
\(615\) 0 0
\(616\) −586432. −0.0622681
\(617\) 5.47330e6 0.578810 0.289405 0.957207i \(-0.406543\pi\)
0.289405 + 0.957207i \(0.406543\pi\)
\(618\) 3.65058e6 0.384495
\(619\) 3.22662e6 0.338471 0.169236 0.985576i \(-0.445870\pi\)
0.169236 + 0.985576i \(0.445870\pi\)
\(620\) 0 0
\(621\) 1.08256e7 1.12648
\(622\) −3.38959e6 −0.351295
\(623\) 2.23244e6 0.230441
\(624\) −1.44461e6 −0.148521
\(625\) 0 0
\(626\) −1.45982e6 −0.148889
\(627\) −434214. −0.0441098
\(628\) −576160. −0.0582967
\(629\) 1.19259e7 1.20189
\(630\) 0 0
\(631\) 1.36282e7 1.36259 0.681297 0.732007i \(-0.261416\pi\)
0.681297 + 0.732007i \(0.261416\pi\)
\(632\) −2.79814e6 −0.278662
\(633\) 5.64792e6 0.560247
\(634\) −7.74975e6 −0.765711
\(635\) 0 0
\(636\) −3.76819e6 −0.369394
\(637\) −1.50543e6 −0.146998
\(638\) −971652. −0.0945059
\(639\) −1.03252e7 −1.00034
\(640\) 0 0
\(641\) −1.92472e7 −1.85021 −0.925106 0.379710i \(-0.876024\pi\)
−0.925106 + 0.379710i \(0.876024\pi\)
\(642\) 5.97607e6 0.572240
\(643\) 1.28399e7 1.22472 0.612358 0.790580i \(-0.290221\pi\)
0.612358 + 0.790580i \(0.290221\pi\)
\(644\) −2.32848e6 −0.221237
\(645\) 0 0
\(646\) −1.87102e6 −0.176399
\(647\) −2.00233e7 −1.88050 −0.940251 0.340481i \(-0.889410\pi\)
−0.940251 + 0.340481i \(0.889410\pi\)
\(648\) 419904. 0.0392837
\(649\) −735284. −0.0685241
\(650\) 0 0
\(651\) 844956. 0.0781415
\(652\) −2.81072e6 −0.258940
\(653\) 7.23655e6 0.664124 0.332062 0.943258i \(-0.392256\pi\)
0.332062 + 0.943258i \(0.392256\pi\)
\(654\) 298404. 0.0272810
\(655\) 0 0
\(656\) 1.70906e6 0.155059
\(657\) 9.79614e6 0.885404
\(658\) 4.31220e6 0.388270
\(659\) 1.42474e7 1.27798 0.638989 0.769216i \(-0.279353\pi\)
0.638989 + 0.769216i \(0.279353\pi\)
\(660\) 0 0
\(661\) 1.49265e7 1.32878 0.664391 0.747385i \(-0.268691\pi\)
0.664391 + 0.747385i \(0.268691\pi\)
\(662\) −245840. −0.0218026
\(663\) 1.02308e7 0.903908
\(664\) −6.22566e6 −0.547981
\(665\) 0 0
\(666\) 4.26254e6 0.372377
\(667\) −3.85803e6 −0.335777
\(668\) 2.51861e6 0.218383
\(669\) 1.09899e7 0.949355
\(670\) 0 0
\(671\) 9.11438e6 0.781485
\(672\) 451584. 0.0385758
\(673\) 1.55062e7 1.31967 0.659837 0.751409i \(-0.270625\pi\)
0.659837 + 0.751409i \(0.270625\pi\)
\(674\) 1.49646e7 1.26887
\(675\) 0 0
\(676\) 349376. 0.0294053
\(677\) 7.80065e6 0.654122 0.327061 0.945003i \(-0.393942\pi\)
0.327061 + 0.945003i \(0.393942\pi\)
\(678\) −9.47542e6 −0.791633
\(679\) 2.80745e6 0.233689
\(680\) 0 0
\(681\) −3.51492e6 −0.290434
\(682\) −1.43317e6 −0.117988
\(683\) −1.58547e7 −1.30049 −0.650243 0.759727i \(-0.725333\pi\)
−0.650243 + 0.759727i \(0.725333\pi\)
\(684\) −668736. −0.0546531
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) −6.40912e6 −0.518091
\(688\) −813568. −0.0655274
\(689\) 1.64073e7 1.31671
\(690\) 0 0
\(691\) 2.03656e7 1.62257 0.811284 0.584652i \(-0.198769\pi\)
0.811284 + 0.584652i \(0.198769\pi\)
\(692\) 375536. 0.0298117
\(693\) 1.48441e6 0.117414
\(694\) −845336. −0.0666240
\(695\) 0 0
\(696\) 748224. 0.0585475
\(697\) −1.21036e7 −0.943696
\(698\) 1.35823e7 1.05520
\(699\) −5.05418e6 −0.391253
\(700\) 0 0
\(701\) 2.48036e7 1.90643 0.953213 0.302300i \(-0.0977543\pi\)
0.953213 + 0.302300i \(0.0977543\pi\)
\(702\) 9.14166e6 0.700136
\(703\) −1.69712e6 −0.129517
\(704\) −765952. −0.0582465
\(705\) 0 0
\(706\) 1.55237e7 1.17215
\(707\) −2.20353e6 −0.165795
\(708\) 566208. 0.0424515
\(709\) 1.81917e7 1.35912 0.679560 0.733620i \(-0.262171\pi\)
0.679560 + 0.733620i \(0.262171\pi\)
\(710\) 0 0
\(711\) 7.08280e6 0.525450
\(712\) 2.91584e6 0.215558
\(713\) −5.69052e6 −0.419207
\(714\) −3.19813e6 −0.234774
\(715\) 0 0
\(716\) 9.79565e6 0.714086
\(717\) −1.22475e7 −0.889715
\(718\) 1.29684e7 0.938806
\(719\) −1.66202e7 −1.19899 −0.599493 0.800380i \(-0.704631\pi\)
−0.599493 + 0.800380i \(0.704631\pi\)
\(720\) 0 0
\(721\) 4.96884e6 0.355973
\(722\) −9.63814e6 −0.688098
\(723\) 4.77045e6 0.339401
\(724\) 8.46131e6 0.599917
\(725\) 0 0
\(726\) −4.53895e6 −0.319605
\(727\) 1.57591e7 1.10585 0.552925 0.833231i \(-0.313511\pi\)
0.552925 + 0.833231i \(0.313511\pi\)
\(728\) −1.96627e6 −0.137504
\(729\) 6.90873e6 0.481481
\(730\) 0 0
\(731\) 5.76171e6 0.398803
\(732\) −7.01856e6 −0.484139
\(733\) 2.15238e6 0.147965 0.0739827 0.997260i \(-0.476429\pi\)
0.0739827 + 0.997260i \(0.476429\pi\)
\(734\) −5.77721e6 −0.395802
\(735\) 0 0
\(736\) −3.04128e6 −0.206948
\(737\) −8.38358e6 −0.568540
\(738\) −4.32605e6 −0.292382
\(739\) −2.27267e7 −1.53083 −0.765413 0.643540i \(-0.777465\pi\)
−0.765413 + 0.643540i \(0.777465\pi\)
\(740\) 0 0
\(741\) −1.45589e6 −0.0974057
\(742\) −5.12893e6 −0.341993
\(743\) −1.21153e7 −0.805123 −0.402561 0.915393i \(-0.631880\pi\)
−0.402561 + 0.915393i \(0.631880\pi\)
\(744\) 1.10362e6 0.0730947
\(745\) 0 0
\(746\) −1.37417e7 −0.904050
\(747\) 1.57587e7 1.03328
\(748\) 5.42450e6 0.354491
\(749\) 8.13410e6 0.529791
\(750\) 0 0
\(751\) −2.07590e7 −1.34310 −0.671549 0.740961i \(-0.734371\pi\)
−0.671549 + 0.740961i \(0.734371\pi\)
\(752\) 5.63226e6 0.363193
\(753\) 8.91297e6 0.572842
\(754\) −3.25789e6 −0.208693
\(755\) 0 0
\(756\) −2.85768e6 −0.181848
\(757\) 1.86222e7 1.18111 0.590556 0.806997i \(-0.298909\pi\)
0.590556 + 0.806997i \(0.298909\pi\)
\(758\) −6.74539e6 −0.426417
\(759\) 4.99851e6 0.314946
\(760\) 0 0
\(761\) 2.65336e7 1.66087 0.830434 0.557117i \(-0.188093\pi\)
0.830434 + 0.557117i \(0.188093\pi\)
\(762\) −1.08187e6 −0.0674976
\(763\) 406161. 0.0252573
\(764\) 8.64590e6 0.535892
\(765\) 0 0
\(766\) −1.05742e7 −0.651139
\(767\) −2.46536e6 −0.151319
\(768\) 589824. 0.0360844
\(769\) −2.01595e7 −1.22931 −0.614657 0.788794i \(-0.710706\pi\)
−0.614657 + 0.788794i \(0.710706\pi\)
\(770\) 0 0
\(771\) 1.63479e7 0.990433
\(772\) −1.53651e7 −0.927882
\(773\) 5.86488e6 0.353029 0.176514 0.984298i \(-0.443518\pi\)
0.176514 + 0.984298i \(0.443518\pi\)
\(774\) 2.05934e6 0.123560
\(775\) 0 0
\(776\) 3.66688e6 0.218596
\(777\) −2.90090e6 −0.172377
\(778\) −1.80840e6 −0.107114
\(779\) 1.72241e6 0.101693
\(780\) 0 0
\(781\) −1.19186e7 −0.699196
\(782\) 2.15384e7 1.25950
\(783\) −4.73486e6 −0.275996
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) −4.32180e6 −0.249522
\(787\) 1.63347e6 0.0940100 0.0470050 0.998895i \(-0.485032\pi\)
0.0470050 + 0.998895i \(0.485032\pi\)
\(788\) −1.21911e7 −0.699403
\(789\) 1.76263e7 1.00802
\(790\) 0 0
\(791\) −1.28971e7 −0.732910
\(792\) 1.93882e6 0.109831
\(793\) 3.05600e7 1.72572
\(794\) 7.82121e6 0.440274
\(795\) 0 0
\(796\) 2.00134e6 0.111954
\(797\) −2.07673e7 −1.15807 −0.579034 0.815303i \(-0.696570\pi\)
−0.579034 + 0.815303i \(0.696570\pi\)
\(798\) 455112. 0.0252994
\(799\) −3.98878e7 −2.21041
\(800\) 0 0
\(801\) −7.38072e6 −0.406460
\(802\) −1.90695e7 −1.04689
\(803\) 1.13079e7 0.618860
\(804\) 6.45581e6 0.352217
\(805\) 0 0
\(806\) −4.80533e6 −0.260547
\(807\) 1.96231e6 0.106068
\(808\) −2.87808e6 −0.155087
\(809\) 3.53936e6 0.190131 0.0950656 0.995471i \(-0.469694\pi\)
0.0950656 + 0.995471i \(0.469694\pi\)
\(810\) 0 0
\(811\) −2.11480e7 −1.12906 −0.564530 0.825412i \(-0.690943\pi\)
−0.564530 + 0.825412i \(0.690943\pi\)
\(812\) 1.01842e6 0.0542045
\(813\) 1.13639e7 0.602976
\(814\) 4.92034e6 0.260276
\(815\) 0 0
\(816\) −4.17715e6 −0.219611
\(817\) −819924. −0.0429753
\(818\) −1.65280e7 −0.863646
\(819\) 4.97713e6 0.259280
\(820\) 0 0
\(821\) 265389. 0.0137412 0.00687061 0.999976i \(-0.497813\pi\)
0.00687061 + 0.999976i \(0.497813\pi\)
\(822\) −1.14394e6 −0.0590503
\(823\) −3.09261e7 −1.59157 −0.795785 0.605579i \(-0.792942\pi\)
−0.795785 + 0.605579i \(0.792942\pi\)
\(824\) 6.48992e6 0.332982
\(825\) 0 0
\(826\) 770672. 0.0393024
\(827\) 2.84152e7 1.44473 0.722367 0.691510i \(-0.243054\pi\)
0.722367 + 0.691510i \(0.243054\pi\)
\(828\) 7.69824e6 0.390225
\(829\) −3.33547e7 −1.68566 −0.842832 0.538177i \(-0.819113\pi\)
−0.842832 + 0.538177i \(0.819113\pi\)
\(830\) 0 0
\(831\) 9.92374e6 0.498509
\(832\) −2.56819e6 −0.128623
\(833\) −4.35301e6 −0.217359
\(834\) −7.20583e6 −0.358731
\(835\) 0 0
\(836\) −771936. −0.0382002
\(837\) −6.98382e6 −0.344572
\(838\) 762048. 0.0374863
\(839\) −5.66205e6 −0.277695 −0.138848 0.990314i \(-0.544340\pi\)
−0.138848 + 0.990314i \(0.544340\pi\)
\(840\) 0 0
\(841\) −1.88237e7 −0.917732
\(842\) −2.07674e7 −1.00949
\(843\) −8.98392e6 −0.435408
\(844\) 1.00408e7 0.485188
\(845\) 0 0
\(846\) −1.42566e7 −0.684844
\(847\) −6.17802e6 −0.295897
\(848\) −6.69901e6 −0.319905
\(849\) 3.47734e6 0.165569
\(850\) 0 0
\(851\) 1.95367e7 0.924754
\(852\) 9.17798e6 0.433160
\(853\) −2.19983e7 −1.03518 −0.517592 0.855628i \(-0.673171\pi\)
−0.517592 + 0.855628i \(0.673171\pi\)
\(854\) −9.55304e6 −0.448226
\(855\) 0 0
\(856\) 1.06241e7 0.495574
\(857\) 2.17568e7 1.01191 0.505956 0.862559i \(-0.331140\pi\)
0.505956 + 0.862559i \(0.331140\pi\)
\(858\) 4.22096e6 0.195746
\(859\) −4.09384e7 −1.89299 −0.946494 0.322721i \(-0.895402\pi\)
−0.946494 + 0.322721i \(0.895402\pi\)
\(860\) 0 0
\(861\) 2.94412e6 0.135347
\(862\) −1.68712e7 −0.773355
\(863\) −5.65597e6 −0.258512 −0.129256 0.991611i \(-0.541259\pi\)
−0.129256 + 0.991611i \(0.541259\pi\)
\(864\) −3.73248e6 −0.170103
\(865\) 0 0
\(866\) 1.94411e7 0.880899
\(867\) 1.68040e7 0.759216
\(868\) 1.50214e6 0.0676725
\(869\) 8.17583e6 0.367267
\(870\) 0 0
\(871\) −2.81097e7 −1.25548
\(872\) 530496. 0.0236260
\(873\) −9.28179e6 −0.412189
\(874\) −3.06504e6 −0.135724
\(875\) 0 0
\(876\) −8.70768e6 −0.383391
\(877\) −2.61067e7 −1.14618 −0.573089 0.819493i \(-0.694255\pi\)
−0.573089 + 0.819493i \(0.694255\pi\)
\(878\) −8.12454e6 −0.355682
\(879\) 7.05214e6 0.307857
\(880\) 0 0
\(881\) 1.44294e6 0.0626339 0.0313170 0.999510i \(-0.490030\pi\)
0.0313170 + 0.999510i \(0.490030\pi\)
\(882\) −1.55585e6 −0.0673435
\(883\) 1.52432e7 0.657921 0.328960 0.944344i \(-0.393302\pi\)
0.328960 + 0.944344i \(0.393302\pi\)
\(884\) 1.81880e7 0.782807
\(885\) 0 0
\(886\) −1.13679e7 −0.486517
\(887\) 3.31500e7 1.41473 0.707366 0.706847i \(-0.249883\pi\)
0.707366 + 0.706847i \(0.249883\pi\)
\(888\) −3.78893e6 −0.161244
\(889\) −1.47255e6 −0.0624907
\(890\) 0 0
\(891\) −1.22691e6 −0.0517747
\(892\) 1.95376e7 0.822166
\(893\) 5.67626e6 0.238195
\(894\) 1.11471e7 0.466464
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) 1.67597e7 0.695481
\(898\) −1.83873e7 −0.760899
\(899\) 2.48888e6 0.102708
\(900\) 0 0
\(901\) 4.74426e7 1.94696
\(902\) −4.99365e6 −0.204363
\(903\) −1.40150e6 −0.0571970
\(904\) −1.68452e7 −0.685575
\(905\) 0 0
\(906\) −7.51165e6 −0.304029
\(907\) −1.16963e7 −0.472096 −0.236048 0.971741i \(-0.575852\pi\)
−0.236048 + 0.971741i \(0.575852\pi\)
\(908\) −6.24875e6 −0.251524
\(909\) 7.28514e6 0.292434
\(910\) 0 0
\(911\) 2.89321e7 1.15501 0.577503 0.816389i \(-0.304027\pi\)
0.577503 + 0.816389i \(0.304027\pi\)
\(912\) 594432. 0.0236655
\(913\) 1.81906e7 0.722221
\(914\) −1.97347e7 −0.781384
\(915\) 0 0
\(916\) −1.13940e7 −0.448680
\(917\) −5.88245e6 −0.231012
\(918\) 2.64335e7 1.03526
\(919\) −4.57838e7 −1.78823 −0.894115 0.447838i \(-0.852194\pi\)
−0.894115 + 0.447838i \(0.852194\pi\)
\(920\) 0 0
\(921\) −2.53596e7 −0.985129
\(922\) −1.90267e7 −0.737116
\(923\) −3.99625e7 −1.54400
\(924\) −1.31947e6 −0.0508417
\(925\) 0 0
\(926\) −1.63448e7 −0.626399
\(927\) −1.64276e7 −0.627878
\(928\) 1.33018e6 0.0507036
\(929\) 2.46947e7 0.938782 0.469391 0.882990i \(-0.344474\pi\)
0.469391 + 0.882990i \(0.344474\pi\)
\(930\) 0 0
\(931\) 619458. 0.0234227
\(932\) −8.98522e6 −0.338835
\(933\) −7.62658e6 −0.286831
\(934\) 1.66373e7 0.624044
\(935\) 0 0
\(936\) 6.50074e6 0.242534
\(937\) 1.98926e7 0.740187 0.370094 0.928994i \(-0.379326\pi\)
0.370094 + 0.928994i \(0.379326\pi\)
\(938\) 8.78707e6 0.326090
\(939\) −3.28460e6 −0.121568
\(940\) 0 0
\(941\) −3.73454e7 −1.37488 −0.687438 0.726243i \(-0.741265\pi\)
−0.687438 + 0.726243i \(0.741265\pi\)
\(942\) −1.29636e6 −0.0475991
\(943\) −1.98277e7 −0.726095
\(944\) 1.00659e6 0.0367641
\(945\) 0 0
\(946\) 2.37714e6 0.0863630
\(947\) −5.10396e7 −1.84941 −0.924703 0.380689i \(-0.875687\pi\)
−0.924703 + 0.380689i \(0.875687\pi\)
\(948\) −6.29582e6 −0.227526
\(949\) 3.79147e7 1.36660
\(950\) 0 0
\(951\) −1.74369e7 −0.625200
\(952\) −5.68557e6 −0.203321
\(953\) −254832. −0.00908912 −0.00454456 0.999990i \(-0.501447\pi\)
−0.00454456 + 0.999990i \(0.501447\pi\)
\(954\) 1.69569e7 0.603218
\(955\) 0 0
\(956\) −2.17734e7 −0.770515
\(957\) −2.18622e6 −0.0771638
\(958\) −1.34416e7 −0.473192
\(959\) −1.55702e6 −0.0546700
\(960\) 0 0
\(961\) −2.49581e7 −0.871772
\(962\) 1.64976e7 0.574756
\(963\) −2.68923e7 −0.934464
\(964\) 8.48080e6 0.293930
\(965\) 0 0
\(966\) −5.23908e6 −0.180639
\(967\) −1.17012e7 −0.402405 −0.201203 0.979550i \(-0.564485\pi\)
−0.201203 + 0.979550i \(0.564485\pi\)
\(968\) −8.06925e6 −0.276786
\(969\) −4.20979e6 −0.144029
\(970\) 0 0
\(971\) 3.59080e7 1.22220 0.611101 0.791553i \(-0.290727\pi\)
0.611101 + 0.791553i \(0.290727\pi\)
\(972\) 1.51165e7 0.513200
\(973\) −9.80794e6 −0.332120
\(974\) −2.82097e7 −0.952799
\(975\) 0 0
\(976\) −1.24774e7 −0.419277
\(977\) 5.50592e7 1.84541 0.922706 0.385504i \(-0.125972\pi\)
0.922706 + 0.385504i \(0.125972\pi\)
\(978\) −6.32412e6 −0.211423
\(979\) −8.51972e6 −0.284098
\(980\) 0 0
\(981\) −1.34282e6 −0.0445497
\(982\) −335748. −0.0111105
\(983\) 1.81317e7 0.598488 0.299244 0.954177i \(-0.403266\pi\)
0.299244 + 0.954177i \(0.403266\pi\)
\(984\) 3.84538e6 0.126605
\(985\) 0 0
\(986\) −9.42035e6 −0.308585
\(987\) 9.70244e6 0.317021
\(988\) −2.58826e6 −0.0843558
\(989\) 9.43866e6 0.306845
\(990\) 0 0
\(991\) −2.02908e7 −0.656318 −0.328159 0.944623i \(-0.606428\pi\)
−0.328159 + 0.944623i \(0.606428\pi\)
\(992\) 1.96198e6 0.0633018
\(993\) −553140. −0.0178017
\(994\) 1.24923e7 0.401028
\(995\) 0 0
\(996\) −1.40077e7 −0.447425
\(997\) −4.75390e7 −1.51465 −0.757325 0.653038i \(-0.773494\pi\)
−0.757325 + 0.653038i \(0.773494\pi\)
\(998\) −2.84211e7 −0.903262
\(999\) 2.39768e7 0.760112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.l.1.1 1
5.2 odd 4 350.6.c.g.99.2 2
5.3 odd 4 350.6.c.g.99.1 2
5.4 even 2 70.6.a.b.1.1 1
15.14 odd 2 630.6.a.i.1.1 1
20.19 odd 2 560.6.a.e.1.1 1
35.34 odd 2 490.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.b.1.1 1 5.4 even 2
350.6.a.l.1.1 1 1.1 even 1 trivial
350.6.c.g.99.1 2 5.3 odd 4
350.6.c.g.99.2 2 5.2 odd 4
490.6.a.g.1.1 1 35.34 odd 2
560.6.a.e.1.1 1 20.19 odd 2
630.6.a.i.1.1 1 15.14 odd 2