Properties

Label 350.6.a.e
Level $350$
Weight $6$
Character orbit 350.a
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,6,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} + 17 q^{3} + 16 q^{4} - 68 q^{6} + 49 q^{7} - 64 q^{8} + 46 q^{9} - 715 q^{11} + 272 q^{12} - 331 q^{13} - 196 q^{14} + 256 q^{16} + 1699 q^{17} - 184 q^{18} - 1718 q^{19} + 833 q^{21} + 2860 q^{22}+ \cdots - 32890 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 17.0000 16.0000 0 −68.0000 49.0000 −64.0000 46.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.a.e 1
5.b even 2 1 70.6.a.e 1
5.c odd 4 2 350.6.c.a 2
15.d odd 2 1 630.6.a.b 1
20.d odd 2 1 560.6.a.h 1
35.c odd 2 1 490.6.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.e 1 5.b even 2 1
350.6.a.e 1 1.a even 1 1 trivial
350.6.c.a 2 5.c odd 4 2
490.6.a.m 1 35.c odd 2 1
560.6.a.h 1 20.d odd 2 1
630.6.a.b 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3} - 17 \) Copy content Toggle raw display
\( T_{13} + 331 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T - 17 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 715 \) Copy content Toggle raw display
$13$ \( T + 331 \) Copy content Toggle raw display
$17$ \( T - 1699 \) Copy content Toggle raw display
$19$ \( T + 1718 \) Copy content Toggle raw display
$23$ \( T - 3950 \) Copy content Toggle raw display
$29$ \( T - 4579 \) Copy content Toggle raw display
$31$ \( T - 6756 \) Copy content Toggle raw display
$37$ \( T - 16518 \) Copy content Toggle raw display
$41$ \( T - 18876 \) Copy content Toggle raw display
$43$ \( T + 2258 \) Copy content Toggle raw display
$47$ \( T - 537 \) Copy content Toggle raw display
$53$ \( T - 10984 \) Copy content Toggle raw display
$59$ \( T + 25956 \) Copy content Toggle raw display
$61$ \( T - 39188 \) Copy content Toggle raw display
$67$ \( T + 4416 \) Copy content Toggle raw display
$71$ \( T + 31880 \) Copy content Toggle raw display
$73$ \( T - 5018 \) Copy content Toggle raw display
$79$ \( T + 27977 \) Copy content Toggle raw display
$83$ \( T + 37644 \) Copy content Toggle raw display
$89$ \( T + 17216 \) Copy content Toggle raw display
$97$ \( T - 63175 \) Copy content Toggle raw display
show more
show less