Properties

Label 350.6.a
Level $350$
Weight $6$
Character orbit 350.a
Rep. character $\chi_{350}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $26$
Sturm bound $360$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 26 \)
Sturm bound: \(360\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(350))\).

Total New Old
Modular forms 312 48 264
Cusp forms 288 48 240
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(7\)
\(+\)\(-\)\(+\)\(-\)\(7\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(8\)
Plus space\(+\)\(21\)
Minus space\(-\)\(27\)

Trace form

\( 48 q - 8 q^{2} + 26 q^{3} + 768 q^{4} - 8 q^{6} - 128 q^{8} + 4416 q^{9} - 952 q^{11} + 416 q^{12} + 518 q^{13} + 392 q^{14} + 12288 q^{16} + 2212 q^{17} - 5656 q^{18} - 4122 q^{19} - 98 q^{21} + 1872 q^{22}+ \cdots + 579332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(350))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
350.6.a.a 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.c \(-4\) \(-13\) \(0\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-13q^{3}+2^{4}q^{4}+52q^{6}+7^{2}q^{7}+\cdots\)
350.6.a.b 350.a 1.a $1$ $56.134$ \(\Q\) None 14.6.a.b \(-4\) \(-8\) \(0\) \(49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-8q^{3}+2^{4}q^{4}+2^{5}q^{6}+7^{2}q^{7}+\cdots\)
350.6.a.c 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.a \(-4\) \(0\) \(0\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+7^{2}q^{7}-2^{6}q^{8}-3^{5}q^{9}+\cdots\)
350.6.a.d 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.f \(-4\) \(11\) \(0\) \(-49\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+11q^{3}+2^{4}q^{4}-44q^{6}-7^{2}q^{7}+\cdots\)
350.6.a.e 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.e \(-4\) \(17\) \(0\) \(49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+17q^{3}+2^{4}q^{4}-68q^{6}+7^{2}q^{7}+\cdots\)
350.6.a.f 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.b \(-4\) \(27\) \(0\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+3^{3}q^{3}+2^{4}q^{4}-108q^{6}+\cdots\)
350.6.a.g 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.b \(4\) \(-27\) \(0\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}-3^{3}q^{3}+2^{4}q^{4}-108q^{6}+\cdots\)
350.6.a.h 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.d \(4\) \(-11\) \(0\) \(49\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}-11q^{3}+2^{4}q^{4}-44q^{6}+7^{2}q^{7}+\cdots\)
350.6.a.i 350.a 1.a $1$ $56.134$ \(\Q\) None 14.6.a.a \(4\) \(-10\) \(0\) \(-49\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}-10q^{3}+2^{4}q^{4}-40q^{6}-7^{2}q^{7}+\cdots\)
350.6.a.j 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.a \(4\) \(0\) \(0\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-7^{2}q^{7}+2^{6}q^{8}-3^{5}q^{9}+\cdots\)
350.6.a.k 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.c \(4\) \(3\) \(0\) \(-49\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+3q^{3}+2^{4}q^{4}+12q^{6}-7^{2}q^{7}+\cdots\)
350.6.a.l 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.b \(4\) \(9\) \(0\) \(49\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+9q^{3}+2^{4}q^{4}+6^{2}q^{6}+7^{2}q^{7}+\cdots\)
350.6.a.m 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.c.c \(4\) \(13\) \(0\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+13q^{3}+2^{4}q^{4}+52q^{6}-7^{2}q^{7}+\cdots\)
350.6.a.n 350.a 1.a $1$ $56.134$ \(\Q\) None 70.6.a.a \(4\) \(23\) \(0\) \(-49\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+23q^{3}+2^{4}q^{4}+92q^{6}-7^{2}q^{7}+\cdots\)
350.6.a.o 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{79}) \) None 350.6.a.o \(-8\) \(-8\) \(0\) \(98\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-4+\beta )q^{3}+2^{4}q^{4}+(2^{4}+\cdots)q^{6}+\cdots\)
350.6.a.p 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{1129}) \) None 70.6.a.h \(-8\) \(-5\) \(0\) \(-98\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-2-\beta )q^{3}+2^{4}q^{4}+(8+4\beta )q^{6}+\cdots\)
350.6.a.q 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{3369}) \) None 70.6.a.g \(-8\) \(-3\) \(0\) \(98\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-1-\beta )q^{3}+2^{4}q^{4}+(4+4\beta )q^{6}+\cdots\)
350.6.a.r 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{79}) \) None 350.6.a.r \(-8\) \(20\) \(0\) \(-98\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(10+\beta )q^{3}+2^{4}q^{4}+(-40+\cdots)q^{6}+\cdots\)
350.6.a.s 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{79}) \) None 350.6.a.r \(8\) \(-20\) \(0\) \(98\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(-10+\beta )q^{3}+2^{4}q^{4}+(-40+\cdots)q^{6}+\cdots\)
350.6.a.t 350.a 1.a $2$ $56.134$ \(\Q(\sqrt{79}) \) None 350.6.a.o \(8\) \(8\) \(0\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(4+\beta )q^{3}+2^{4}q^{4}+(2^{4}+4\beta )q^{6}+\cdots\)
350.6.a.u 350.a 1.a $3$ $56.134$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 350.6.a.u \(-12\) \(-9\) \(0\) \(-147\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-3+\beta _{1})q^{3}+2^{4}q^{4}+(12+\cdots)q^{6}+\cdots\)
350.6.a.v 350.a 1.a $3$ $56.134$ 3.3.1378776.1 None 350.6.a.v \(-12\) \(-1\) \(0\) \(147\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-\beta _{1}q^{3}+2^{4}q^{4}+4\beta _{1}q^{6}+\cdots\)
350.6.a.w 350.a 1.a $3$ $56.134$ 3.3.1378776.1 None 350.6.a.v \(12\) \(1\) \(0\) \(-147\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+\beta _{1}q^{3}+2^{4}q^{4}+4\beta _{1}q^{6}+\cdots\)
350.6.a.x 350.a 1.a $3$ $56.134$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 350.6.a.u \(12\) \(9\) \(0\) \(147\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(3-\beta _{1})q^{3}+2^{4}q^{4}+(12-4\beta _{1}+\cdots)q^{6}+\cdots\)
350.6.a.y 350.a 1.a $5$ $56.134$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 70.6.c.d \(-20\) \(-14\) \(0\) \(-245\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-3+\beta _{1})q^{3}+2^{4}q^{4}+(12+\cdots)q^{6}+\cdots\)
350.6.a.z 350.a 1.a $5$ $56.134$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 70.6.c.d \(20\) \(14\) \(0\) \(245\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(3-\beta _{1})q^{3}+2^{4}q^{4}+(12-4\beta _{1}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(350))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(350)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)