Properties

Label 350.6
Level 350
Weight 6
Dimension 5300
Nonzero newspaces 12
Sturm bound 43200
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(43200\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(350))\).

Total New Old
Modular forms 18336 5300 13036
Cusp forms 17664 5300 12364
Eisenstein series 672 0 672

Trace form

\( 5300 q - 16 q^{2} + 34 q^{3} + 32 q^{4} + 170 q^{5} - 104 q^{6} - 392 q^{7} - 256 q^{8} + 1394 q^{9} - 360 q^{10} - 3404 q^{11} + 544 q^{12} + 4106 q^{13} + 3016 q^{14} + 1640 q^{15} + 4608 q^{16} - 7196 q^{17}+ \cdots - 3029740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(350))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
350.6.a \(\chi_{350}(1, \cdot)\) 350.6.a.a 1 1
350.6.a.b 1
350.6.a.c 1
350.6.a.d 1
350.6.a.e 1
350.6.a.f 1
350.6.a.g 1
350.6.a.h 1
350.6.a.i 1
350.6.a.j 1
350.6.a.k 1
350.6.a.l 1
350.6.a.m 1
350.6.a.n 1
350.6.a.o 2
350.6.a.p 2
350.6.a.q 2
350.6.a.r 2
350.6.a.s 2
350.6.a.t 2
350.6.a.u 3
350.6.a.v 3
350.6.a.w 3
350.6.a.x 3
350.6.a.y 5
350.6.a.z 5
350.6.c \(\chi_{350}(99, \cdot)\) 350.6.c.a 2 1
350.6.c.b 2
350.6.c.c 2
350.6.c.d 2
350.6.c.e 2
350.6.c.f 2
350.6.c.g 2
350.6.c.h 2
350.6.c.i 4
350.6.c.j 4
350.6.c.k 4
350.6.c.l 4
350.6.c.m 6
350.6.c.n 6
350.6.e \(\chi_{350}(51, \cdot)\) n/a 128 2
350.6.g \(\chi_{350}(293, \cdot)\) n/a 120 2
350.6.h \(\chi_{350}(71, \cdot)\) n/a 296 4
350.6.j \(\chi_{350}(149, \cdot)\) n/a 120 2
350.6.m \(\chi_{350}(29, \cdot)\) n/a 304 4
350.6.o \(\chi_{350}(143, \cdot)\) n/a 240 4
350.6.q \(\chi_{350}(11, \cdot)\) n/a 800 8
350.6.r \(\chi_{350}(13, \cdot)\) n/a 800 8
350.6.u \(\chi_{350}(9, \cdot)\) n/a 800 8
350.6.x \(\chi_{350}(3, \cdot)\) n/a 1600 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(350))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(350)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 2}\)