Properties

Label 350.4.a.l
Level $350$
Weight $4$
Character orbit 350.a
Self dual yes
Analytic conductor $20.651$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,-8,4,0,-16,7,8,37,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 8 q^{3} + 4 q^{4} - 16 q^{6} + 7 q^{7} + 8 q^{8} + 37 q^{9} - 28 q^{11} - 32 q^{12} - 18 q^{13} + 14 q^{14} + 16 q^{16} - 74 q^{17} + 74 q^{18} + 80 q^{19} - 56 q^{21} - 56 q^{22} + 112 q^{23}+ \cdots - 1036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −8.00000 4.00000 0 −16.0000 7.00000 8.00000 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.a.l 1
5.b even 2 1 14.4.a.a 1
5.c odd 4 2 350.4.c.b 2
7.b odd 2 1 2450.4.a.bo 1
15.d odd 2 1 126.4.a.h 1
20.d odd 2 1 112.4.a.a 1
35.c odd 2 1 98.4.a.a 1
35.i odd 6 2 98.4.c.f 2
35.j even 6 2 98.4.c.d 2
40.e odd 2 1 448.4.a.o 1
40.f even 2 1 448.4.a.b 1
55.d odd 2 1 1694.4.a.g 1
60.h even 2 1 1008.4.a.s 1
65.d even 2 1 2366.4.a.h 1
105.g even 2 1 882.4.a.i 1
105.o odd 6 2 882.4.g.b 2
105.p even 6 2 882.4.g.k 2
140.c even 2 1 784.4.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.a 1 5.b even 2 1
98.4.a.a 1 35.c odd 2 1
98.4.c.d 2 35.j even 6 2
98.4.c.f 2 35.i odd 6 2
112.4.a.a 1 20.d odd 2 1
126.4.a.h 1 15.d odd 2 1
350.4.a.l 1 1.a even 1 1 trivial
350.4.c.b 2 5.c odd 4 2
448.4.a.b 1 40.f even 2 1
448.4.a.o 1 40.e odd 2 1
784.4.a.s 1 140.c even 2 1
882.4.a.i 1 105.g even 2 1
882.4.g.b 2 105.o odd 6 2
882.4.g.k 2 105.p even 6 2
1008.4.a.s 1 60.h even 2 1
1694.4.a.g 1 55.d odd 2 1
2366.4.a.h 1 65.d even 2 1
2450.4.a.bo 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3} + 8 \) Copy content Toggle raw display
\( T_{11} + 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 8 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 28 \) Copy content Toggle raw display
$13$ \( T + 18 \) Copy content Toggle raw display
$17$ \( T + 74 \) Copy content Toggle raw display
$19$ \( T - 80 \) Copy content Toggle raw display
$23$ \( T - 112 \) Copy content Toggle raw display
$29$ \( T - 190 \) Copy content Toggle raw display
$31$ \( T - 72 \) Copy content Toggle raw display
$37$ \( T - 346 \) Copy content Toggle raw display
$41$ \( T - 162 \) Copy content Toggle raw display
$43$ \( T - 412 \) Copy content Toggle raw display
$47$ \( T + 24 \) Copy content Toggle raw display
$53$ \( T + 318 \) Copy content Toggle raw display
$59$ \( T + 200 \) Copy content Toggle raw display
$61$ \( T + 198 \) Copy content Toggle raw display
$67$ \( T - 716 \) Copy content Toggle raw display
$71$ \( T - 392 \) Copy content Toggle raw display
$73$ \( T + 538 \) Copy content Toggle raw display
$79$ \( T - 240 \) Copy content Toggle raw display
$83$ \( T - 1072 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T + 1354 \) Copy content Toggle raw display
show more
show less