Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{320} + 20 T_{3}^{318} - 48 T_{3}^{317} + 2550 T_{3}^{316} + 16 T_{3}^{315} + 27952 T_{3}^{314} - 5574 T_{3}^{313} + 1794867 T_{3}^{312} + 3167608 T_{3}^{311} - 18490260 T_{3}^{310} + 184626824 T_{3}^{309} + \cdots + 26\!\cdots\!25 \)
acting on \(S_{3}^{\mathrm{new}}(350, [\chi])\).