Properties

Label 350.2.g.a.307.3
Level $350$
Weight $2$
Character 350.307
Analytic conductor $2.795$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,2,Mod(293,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.3
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 350.307
Dual form 350.2.g.a.293.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(-1.30656 - 1.30656i) q^{3} +1.00000i q^{4} -1.84776i q^{6} +(0.941740 + 2.47247i) q^{7} +(-0.707107 + 0.707107i) q^{8} +0.414214i q^{9} +2.82843 q^{11} +(1.30656 - 1.30656i) q^{12} +(4.23671 + 4.23671i) q^{13} +(-1.08239 + 2.41421i) q^{14} -1.00000 q^{16} +(3.69552 - 3.69552i) q^{17} +(-0.292893 + 0.292893i) q^{18} +1.39942 q^{19} +(2.00000 - 4.46088i) q^{21} +(2.00000 + 2.00000i) q^{22} +(-0.414214 + 0.414214i) q^{23} +1.84776 q^{24} +5.99162i q^{26} +(-3.37849 + 3.37849i) q^{27} +(-2.47247 + 0.941740i) q^{28} -0.828427i q^{29} +1.53073i q^{31} +(-0.707107 - 0.707107i) q^{32} +(-3.69552 - 3.69552i) q^{33} +5.22625 q^{34} -0.414214 q^{36} +(-2.58579 - 2.58579i) q^{37} +(0.989538 + 0.989538i) q^{38} -11.0711i q^{39} +3.69552i q^{41} +(4.56854 - 1.74011i) q^{42} +(-4.00000 + 4.00000i) q^{43} +2.82843i q^{44} -0.585786 q^{46} +(-1.08239 + 1.08239i) q^{47} +(1.30656 + 1.30656i) q^{48} +(-5.22625 + 4.65685i) q^{49} -9.65685 q^{51} +(-4.23671 + 4.23671i) q^{52} +(8.24264 - 8.24264i) q^{53} -4.77791 q^{54} +(-2.41421 - 1.08239i) q^{56} +(-1.82843 - 1.82843i) q^{57} +(0.585786 - 0.585786i) q^{58} -9.23880 q^{59} -6.43996i q^{61} +(-1.08239 + 1.08239i) q^{62} +(-1.02413 + 0.390081i) q^{63} -1.00000i q^{64} -5.22625i q^{66} +(-10.4853 - 10.4853i) q^{67} +(3.69552 + 3.69552i) q^{68} +1.08239 q^{69} -0.585786 q^{71} +(-0.292893 - 0.292893i) q^{72} +(-4.14386 - 4.14386i) q^{73} -3.65685i q^{74} +1.39942i q^{76} +(2.66364 + 6.99321i) q^{77} +(7.82843 - 7.82843i) q^{78} +5.07107i q^{79} +10.0711 q^{81} +(-2.61313 + 2.61313i) q^{82} +(-5.31911 - 5.31911i) q^{83} +(4.46088 + 2.00000i) q^{84} -5.65685 q^{86} +(-1.08239 + 1.08239i) q^{87} +(-2.00000 + 2.00000i) q^{88} +11.3492 q^{89} +(-6.48528 + 14.4650i) q^{91} +(-0.414214 - 0.414214i) q^{92} +(2.00000 - 2.00000i) q^{93} -1.53073 q^{94} +1.84776i q^{96} +(4.59220 - 4.59220i) q^{97} +(-6.98841 - 0.402625i) q^{98} +1.17157i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 8 q^{16} - 8 q^{18} + 16 q^{21} + 16 q^{22} + 8 q^{23} - 8 q^{28} + 8 q^{36} - 32 q^{37} - 32 q^{43} - 16 q^{46} - 32 q^{51} + 32 q^{53} - 8 q^{56} + 8 q^{57} + 16 q^{58} - 16 q^{67} - 16 q^{71}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) −1.30656 1.30656i −0.754344 0.754344i 0.220942 0.975287i \(-0.429087\pi\)
−0.975287 + 0.220942i \(0.929087\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 1.84776i 0.754344i
\(7\) 0.941740 + 2.47247i 0.355944 + 0.934507i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0.414214i 0.138071i
\(10\) 0 0
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 1.30656 1.30656i 0.377172 0.377172i
\(13\) 4.23671 + 4.23671i 1.17505 + 1.17505i 0.980989 + 0.194064i \(0.0621670\pi\)
0.194064 + 0.980989i \(0.437833\pi\)
\(14\) −1.08239 + 2.41421i −0.289281 + 0.645226i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.69552 3.69552i 0.896295 0.896295i −0.0988114 0.995106i \(-0.531504\pi\)
0.995106 + 0.0988114i \(0.0315040\pi\)
\(18\) −0.292893 + 0.292893i −0.0690356 + 0.0690356i
\(19\) 1.39942 0.321048 0.160524 0.987032i \(-0.448682\pi\)
0.160524 + 0.987032i \(0.448682\pi\)
\(20\) 0 0
\(21\) 2.00000 4.46088i 0.436436 0.973445i
\(22\) 2.00000 + 2.00000i 0.426401 + 0.426401i
\(23\) −0.414214 + 0.414214i −0.0863695 + 0.0863695i −0.748972 0.662602i \(-0.769452\pi\)
0.662602 + 0.748972i \(0.269452\pi\)
\(24\) 1.84776 0.377172
\(25\) 0 0
\(26\) 5.99162i 1.17505i
\(27\) −3.37849 + 3.37849i −0.650191 + 0.650191i
\(28\) −2.47247 + 0.941740i −0.467254 + 0.177972i
\(29\) 0.828427i 0.153835i −0.997037 0.0769175i \(-0.975492\pi\)
0.997037 0.0769175i \(-0.0245078\pi\)
\(30\) 0 0
\(31\) 1.53073i 0.274928i 0.990507 + 0.137464i \(0.0438951\pi\)
−0.990507 + 0.137464i \(0.956105\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −3.69552 3.69552i −0.643307 0.643307i
\(34\) 5.22625 0.896295
\(35\) 0 0
\(36\) −0.414214 −0.0690356
\(37\) −2.58579 2.58579i −0.425101 0.425101i 0.461855 0.886956i \(-0.347184\pi\)
−0.886956 + 0.461855i \(0.847184\pi\)
\(38\) 0.989538 + 0.989538i 0.160524 + 0.160524i
\(39\) 11.0711i 1.77279i
\(40\) 0 0
\(41\) 3.69552i 0.577143i 0.957458 + 0.288571i \(0.0931803\pi\)
−0.957458 + 0.288571i \(0.906820\pi\)
\(42\) 4.56854 1.74011i 0.704940 0.268505i
\(43\) −4.00000 + 4.00000i −0.609994 + 0.609994i −0.942944 0.332950i \(-0.891956\pi\)
0.332950 + 0.942944i \(0.391956\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 0 0
\(46\) −0.585786 −0.0863695
\(47\) −1.08239 + 1.08239i −0.157883 + 0.157883i −0.781628 0.623745i \(-0.785610\pi\)
0.623745 + 0.781628i \(0.285610\pi\)
\(48\) 1.30656 + 1.30656i 0.188586 + 0.188586i
\(49\) −5.22625 + 4.65685i −0.746607 + 0.665265i
\(50\) 0 0
\(51\) −9.65685 −1.35223
\(52\) −4.23671 + 4.23671i −0.587527 + 0.587527i
\(53\) 8.24264 8.24264i 1.13221 1.13221i 0.142405 0.989808i \(-0.454516\pi\)
0.989808 0.142405i \(-0.0454837\pi\)
\(54\) −4.77791 −0.650191
\(55\) 0 0
\(56\) −2.41421 1.08239i −0.322613 0.144641i
\(57\) −1.82843 1.82843i −0.242181 0.242181i
\(58\) 0.585786 0.585786i 0.0769175 0.0769175i
\(59\) −9.23880 −1.20279 −0.601394 0.798952i \(-0.705388\pi\)
−0.601394 + 0.798952i \(0.705388\pi\)
\(60\) 0 0
\(61\) 6.43996i 0.824552i −0.911059 0.412276i \(-0.864734\pi\)
0.911059 0.412276i \(-0.135266\pi\)
\(62\) −1.08239 + 1.08239i −0.137464 + 0.137464i
\(63\) −1.02413 + 0.390081i −0.129029 + 0.0491456i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 5.22625i 0.643307i
\(67\) −10.4853 10.4853i −1.28098 1.28098i −0.940110 0.340871i \(-0.889278\pi\)
−0.340871 0.940110i \(-0.610722\pi\)
\(68\) 3.69552 + 3.69552i 0.448147 + 0.448147i
\(69\) 1.08239 0.130305
\(70\) 0 0
\(71\) −0.585786 −0.0695201 −0.0347600 0.999396i \(-0.511067\pi\)
−0.0347600 + 0.999396i \(0.511067\pi\)
\(72\) −0.292893 0.292893i −0.0345178 0.0345178i
\(73\) −4.14386 4.14386i −0.485002 0.485002i 0.421723 0.906725i \(-0.361426\pi\)
−0.906725 + 0.421723i \(0.861426\pi\)
\(74\) 3.65685i 0.425101i
\(75\) 0 0
\(76\) 1.39942i 0.160524i
\(77\) 2.66364 + 6.99321i 0.303550 + 0.796950i
\(78\) 7.82843 7.82843i 0.886395 0.886395i
\(79\) 5.07107i 0.570540i 0.958447 + 0.285270i \(0.0920832\pi\)
−0.958447 + 0.285270i \(0.907917\pi\)
\(80\) 0 0
\(81\) 10.0711 1.11901
\(82\) −2.61313 + 2.61313i −0.288571 + 0.288571i
\(83\) −5.31911 5.31911i −0.583848 0.583848i 0.352111 0.935958i \(-0.385464\pi\)
−0.935958 + 0.352111i \(0.885464\pi\)
\(84\) 4.46088 + 2.00000i 0.486722 + 0.218218i
\(85\) 0 0
\(86\) −5.65685 −0.609994
\(87\) −1.08239 + 1.08239i −0.116045 + 0.116045i
\(88\) −2.00000 + 2.00000i −0.213201 + 0.213201i
\(89\) 11.3492 1.20301 0.601506 0.798869i \(-0.294568\pi\)
0.601506 + 0.798869i \(0.294568\pi\)
\(90\) 0 0
\(91\) −6.48528 + 14.4650i −0.679842 + 1.51635i
\(92\) −0.414214 0.414214i −0.0431847 0.0431847i
\(93\) 2.00000 2.00000i 0.207390 0.207390i
\(94\) −1.53073 −0.157883
\(95\) 0 0
\(96\) 1.84776i 0.188586i
\(97\) 4.59220 4.59220i 0.466267 0.466267i −0.434436 0.900703i \(-0.643052\pi\)
0.900703 + 0.434436i \(0.143052\pi\)
\(98\) −6.98841 0.402625i −0.705936 0.0406713i
\(99\) 1.17157i 0.117748i
\(100\) 0 0
\(101\) 2.74444i 0.273082i −0.990634 0.136541i \(-0.956401\pi\)
0.990634 0.136541i \(-0.0435986\pi\)
\(102\) −6.82843 6.82843i −0.676115 0.676115i
\(103\) 10.0042 + 10.0042i 0.985739 + 0.985739i 0.999900 0.0141603i \(-0.00450753\pi\)
−0.0141603 + 0.999900i \(0.504508\pi\)
\(104\) −5.99162 −0.587527
\(105\) 0 0
\(106\) 11.6569 1.13221
\(107\) 3.65685 + 3.65685i 0.353521 + 0.353521i 0.861418 0.507897i \(-0.169577\pi\)
−0.507897 + 0.861418i \(0.669577\pi\)
\(108\) −3.37849 3.37849i −0.325096 0.325096i
\(109\) 12.1421i 1.16301i −0.813544 0.581503i \(-0.802465\pi\)
0.813544 0.581503i \(-0.197535\pi\)
\(110\) 0 0
\(111\) 6.75699i 0.641345i
\(112\) −0.941740 2.47247i −0.0889861 0.233627i
\(113\) −1.17157 + 1.17157i −0.110212 + 0.110212i −0.760062 0.649850i \(-0.774832\pi\)
0.649850 + 0.760062i \(0.274832\pi\)
\(114\) 2.58579i 0.242181i
\(115\) 0 0
\(116\) 0.828427 0.0769175
\(117\) −1.75490 + 1.75490i −0.162241 + 0.162241i
\(118\) −6.53281 6.53281i −0.601394 0.601394i
\(119\) 12.6173 + 5.65685i 1.15662 + 0.518563i
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 4.55374 4.55374i 0.412276 0.412276i
\(123\) 4.82843 4.82843i 0.435365 0.435365i
\(124\) −1.53073 −0.137464
\(125\) 0 0
\(126\) −1.00000 0.448342i −0.0890871 0.0399414i
\(127\) −3.58579 3.58579i −0.318187 0.318187i 0.529883 0.848071i \(-0.322236\pi\)
−0.848071 + 0.529883i \(0.822236\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 10.4525 0.920292
\(130\) 0 0
\(131\) 14.6508i 1.28004i −0.768357 0.640021i \(-0.778926\pi\)
0.768357 0.640021i \(-0.221074\pi\)
\(132\) 3.69552 3.69552i 0.321654 0.321654i
\(133\) 1.31789 + 3.46002i 0.114275 + 0.300022i
\(134\) 14.8284i 1.28098i
\(135\) 0 0
\(136\) 5.22625i 0.448147i
\(137\) 8.17157 + 8.17157i 0.698145 + 0.698145i 0.964010 0.265866i \(-0.0856577\pi\)
−0.265866 + 0.964010i \(0.585658\pi\)
\(138\) 0.765367 + 0.765367i 0.0651524 + 0.0651524i
\(139\) −8.60474 −0.729845 −0.364922 0.931038i \(-0.618905\pi\)
−0.364922 + 0.931038i \(0.618905\pi\)
\(140\) 0 0
\(141\) 2.82843 0.238197
\(142\) −0.414214 0.414214i −0.0347600 0.0347600i
\(143\) 11.9832 + 11.9832i 1.00209 + 1.00209i
\(144\) 0.414214i 0.0345178i
\(145\) 0 0
\(146\) 5.86030i 0.485002i
\(147\) 12.9129 + 0.743954i 1.06504 + 0.0613603i
\(148\) 2.58579 2.58579i 0.212550 0.212550i
\(149\) 17.3137i 1.41839i 0.705010 + 0.709197i \(0.250942\pi\)
−0.705010 + 0.709197i \(0.749058\pi\)
\(150\) 0 0
\(151\) −8.82843 −0.718447 −0.359224 0.933252i \(-0.616958\pi\)
−0.359224 + 0.933252i \(0.616958\pi\)
\(152\) −0.989538 + 0.989538i −0.0802621 + 0.0802621i
\(153\) 1.53073 + 1.53073i 0.123752 + 0.123752i
\(154\) −3.06147 + 6.82843i −0.246700 + 0.550250i
\(155\) 0 0
\(156\) 11.0711 0.886395
\(157\) −10.2283 + 10.2283i −0.816310 + 0.816310i −0.985571 0.169261i \(-0.945862\pi\)
0.169261 + 0.985571i \(0.445862\pi\)
\(158\) −3.58579 + 3.58579i −0.285270 + 0.285270i
\(159\) −21.5391 −1.70816
\(160\) 0 0
\(161\) −1.41421 0.634051i −0.111456 0.0499702i
\(162\) 7.12132 + 7.12132i 0.559504 + 0.559504i
\(163\) −13.6569 + 13.6569i −1.06969 + 1.06969i −0.0723048 + 0.997383i \(0.523035\pi\)
−0.997383 + 0.0723048i \(0.976965\pi\)
\(164\) −3.69552 −0.288571
\(165\) 0 0
\(166\) 7.52235i 0.583848i
\(167\) 1.71644 1.71644i 0.132822 0.132822i −0.637570 0.770392i \(-0.720060\pi\)
0.770392 + 0.637570i \(0.220060\pi\)
\(168\) 1.74011 + 4.56854i 0.134252 + 0.352470i
\(169\) 22.8995i 1.76150i
\(170\) 0 0
\(171\) 0.579658i 0.0443275i
\(172\) −4.00000 4.00000i −0.304997 0.304997i
\(173\) −13.2898 13.2898i −1.01040 1.01040i −0.999945 0.0104595i \(-0.996671\pi\)
−0.0104595 0.999945i \(-0.503329\pi\)
\(174\) −1.53073 −0.116045
\(175\) 0 0
\(176\) −2.82843 −0.213201
\(177\) 12.0711 + 12.0711i 0.907317 + 0.907317i
\(178\) 8.02509 + 8.02509i 0.601506 + 0.601506i
\(179\) 13.6569i 1.02076i −0.859949 0.510381i \(-0.829505\pi\)
0.859949 0.510381i \(-0.170495\pi\)
\(180\) 0 0
\(181\) 8.79045i 0.653389i −0.945130 0.326695i \(-0.894065\pi\)
0.945130 0.326695i \(-0.105935\pi\)
\(182\) −14.8141 + 5.64255i −1.09810 + 0.418253i
\(183\) −8.41421 + 8.41421i −0.621997 + 0.621997i
\(184\) 0.585786i 0.0431847i
\(185\) 0 0
\(186\) 2.82843 0.207390
\(187\) 10.4525 10.4525i 0.764363 0.764363i
\(188\) −1.08239 1.08239i −0.0789416 0.0789416i
\(189\) −11.5349 5.17157i −0.839040 0.376177i
\(190\) 0 0
\(191\) 1.75736 0.127158 0.0635790 0.997977i \(-0.479749\pi\)
0.0635790 + 0.997977i \(0.479749\pi\)
\(192\) −1.30656 + 1.30656i −0.0942931 + 0.0942931i
\(193\) −8.24264 + 8.24264i −0.593318 + 0.593318i −0.938526 0.345208i \(-0.887808\pi\)
0.345208 + 0.938526i \(0.387808\pi\)
\(194\) 6.49435 0.466267
\(195\) 0 0
\(196\) −4.65685 5.22625i −0.332632 0.373304i
\(197\) −0.585786 0.585786i −0.0417356 0.0417356i 0.685931 0.727667i \(-0.259395\pi\)
−0.727667 + 0.685931i \(0.759395\pi\)
\(198\) −0.828427 + 0.828427i −0.0588738 + 0.0588738i
\(199\) 28.0334 1.98724 0.993618 0.112798i \(-0.0359814\pi\)
0.993618 + 0.112798i \(0.0359814\pi\)
\(200\) 0 0
\(201\) 27.3994i 1.93260i
\(202\) 1.94061 1.94061i 0.136541 0.136541i
\(203\) 2.04826 0.780163i 0.143760 0.0547567i
\(204\) 9.65685i 0.676115i
\(205\) 0 0
\(206\) 14.1480i 0.985739i
\(207\) −0.171573 0.171573i −0.0119251 0.0119251i
\(208\) −4.23671 4.23671i −0.293763 0.293763i
\(209\) 3.95815 0.273791
\(210\) 0 0
\(211\) −10.3431 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(212\) 8.24264 + 8.24264i 0.566107 + 0.566107i
\(213\) 0.765367 + 0.765367i 0.0524421 + 0.0524421i
\(214\) 5.17157i 0.353521i
\(215\) 0 0
\(216\) 4.77791i 0.325096i
\(217\) −3.78470 + 1.44155i −0.256922 + 0.0978590i
\(218\) 8.58579 8.58579i 0.581503 0.581503i
\(219\) 10.8284i 0.731717i
\(220\) 0 0
\(221\) 31.3137 2.10639
\(222\) −4.77791 + 4.77791i −0.320672 + 0.320672i
\(223\) −6.75699 6.75699i −0.452481 0.452481i 0.443696 0.896177i \(-0.353667\pi\)
−0.896177 + 0.443696i \(0.853667\pi\)
\(224\) 1.08239 2.41421i 0.0723204 0.161306i
\(225\) 0 0
\(226\) −1.65685 −0.110212
\(227\) 8.38057 8.38057i 0.556238 0.556238i −0.371996 0.928234i \(-0.621327\pi\)
0.928234 + 0.371996i \(0.121327\pi\)
\(228\) 1.82843 1.82843i 0.121091 0.121091i
\(229\) 7.70806 0.509363 0.254682 0.967025i \(-0.418029\pi\)
0.254682 + 0.967025i \(0.418029\pi\)
\(230\) 0 0
\(231\) 5.65685 12.6173i 0.372194 0.830157i
\(232\) 0.585786 + 0.585786i 0.0384588 + 0.0384588i
\(233\) −3.00000 + 3.00000i −0.196537 + 0.196537i −0.798513 0.601977i \(-0.794380\pi\)
0.601977 + 0.798513i \(0.294380\pi\)
\(234\) −2.48181 −0.162241
\(235\) 0 0
\(236\) 9.23880i 0.601394i
\(237\) 6.62567 6.62567i 0.430383 0.430383i
\(238\) 4.92177 + 12.9218i 0.319031 + 0.837594i
\(239\) 6.48528i 0.419498i −0.977755 0.209749i \(-0.932735\pi\)
0.977755 0.209749i \(-0.0672647\pi\)
\(240\) 0 0
\(241\) 6.75699i 0.435256i −0.976032 0.217628i \(-0.930168\pi\)
0.976032 0.217628i \(-0.0698319\pi\)
\(242\) −2.12132 2.12132i −0.136364 0.136364i
\(243\) −3.02301 3.02301i −0.193926 0.193926i
\(244\) 6.43996 0.412276
\(245\) 0 0
\(246\) 6.82843 0.435365
\(247\) 5.92893 + 5.92893i 0.377249 + 0.377249i
\(248\) −1.08239 1.08239i −0.0687320 0.0687320i
\(249\) 13.8995i 0.880845i
\(250\) 0 0
\(251\) 14.0936i 0.889582i −0.895634 0.444791i \(-0.853278\pi\)
0.895634 0.444791i \(-0.146722\pi\)
\(252\) −0.390081 1.02413i −0.0245728 0.0645143i
\(253\) −1.17157 + 1.17157i −0.0736562 + 0.0736562i
\(254\) 5.07107i 0.318187i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.83938 7.83938i 0.489007 0.489007i −0.418986 0.907993i \(-0.637614\pi\)
0.907993 + 0.418986i \(0.137614\pi\)
\(258\) 7.39104 + 7.39104i 0.460146 + 0.460146i
\(259\) 3.95815 8.82843i 0.245948 0.548572i
\(260\) 0 0
\(261\) 0.343146 0.0212402
\(262\) 10.3596 10.3596i 0.640021 0.640021i
\(263\) 19.4142 19.4142i 1.19713 1.19713i 0.222110 0.975022i \(-0.428706\pi\)
0.975022 0.222110i \(-0.0712944\pi\)
\(264\) 5.22625 0.321654
\(265\) 0 0
\(266\) −1.51472 + 3.37849i −0.0928734 + 0.207149i
\(267\) −14.8284 14.8284i −0.907485 0.907485i
\(268\) 10.4853 10.4853i 0.640490 0.640490i
\(269\) −26.8966 −1.63992 −0.819958 0.572424i \(-0.806003\pi\)
−0.819958 + 0.572424i \(0.806003\pi\)
\(270\) 0 0
\(271\) 18.7402i 1.13839i 0.822203 + 0.569194i \(0.192745\pi\)
−0.822203 + 0.569194i \(0.807255\pi\)
\(272\) −3.69552 + 3.69552i −0.224074 + 0.224074i
\(273\) 27.3729 10.4261i 1.65668 0.631014i
\(274\) 11.5563i 0.698145i
\(275\) 0 0
\(276\) 1.08239i 0.0651524i
\(277\) 1.75736 + 1.75736i 0.105589 + 0.105589i 0.757928 0.652338i \(-0.226212\pi\)
−0.652338 + 0.757928i \(0.726212\pi\)
\(278\) −6.08447 6.08447i −0.364922 0.364922i
\(279\) −0.634051 −0.0379596
\(280\) 0 0
\(281\) −5.65685 −0.337460 −0.168730 0.985662i \(-0.553967\pi\)
−0.168730 + 0.985662i \(0.553967\pi\)
\(282\) 2.00000 + 2.00000i 0.119098 + 0.119098i
\(283\) −3.15432 3.15432i −0.187505 0.187505i 0.607112 0.794617i \(-0.292328\pi\)
−0.794617 + 0.607112i \(0.792328\pi\)
\(284\) 0.585786i 0.0347600i
\(285\) 0 0
\(286\) 16.9469i 1.00209i
\(287\) −9.13707 + 3.48022i −0.539344 + 0.205431i
\(288\) 0.292893 0.292893i 0.0172589 0.0172589i
\(289\) 10.3137i 0.606689i
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 4.14386 4.14386i 0.242501 0.242501i
\(293\) 2.38896 + 2.38896i 0.139564 + 0.139564i 0.773437 0.633873i \(-0.218536\pi\)
−0.633873 + 0.773437i \(0.718536\pi\)
\(294\) 8.60474 + 9.65685i 0.501839 + 0.563199i
\(295\) 0 0
\(296\) 3.65685 0.212550
\(297\) −9.55582 + 9.55582i −0.554485 + 0.554485i
\(298\) −12.2426 + 12.2426i −0.709197 + 0.709197i
\(299\) −3.50981 −0.202977
\(300\) 0 0
\(301\) −13.6569 6.12293i −0.787168 0.352920i
\(302\) −6.24264 6.24264i −0.359224 0.359224i
\(303\) −3.58579 + 3.58579i −0.205998 + 0.205998i
\(304\) −1.39942 −0.0802621
\(305\) 0 0
\(306\) 2.16478i 0.123752i
\(307\) −23.1626 + 23.1626i −1.32196 + 1.32196i −0.409776 + 0.912186i \(0.634393\pi\)
−0.912186 + 0.409776i \(0.865607\pi\)
\(308\) −6.99321 + 2.66364i −0.398475 + 0.151775i
\(309\) 26.1421i 1.48717i
\(310\) 0 0
\(311\) 3.43289i 0.194661i 0.995252 + 0.0973305i \(0.0310304\pi\)
−0.995252 + 0.0973305i \(0.968970\pi\)
\(312\) 7.82843 + 7.82843i 0.443197 + 0.443197i
\(313\) 6.75699 + 6.75699i 0.381927 + 0.381927i 0.871796 0.489869i \(-0.162955\pi\)
−0.489869 + 0.871796i \(0.662955\pi\)
\(314\) −14.4650 −0.816310
\(315\) 0 0
\(316\) −5.07107 −0.285270
\(317\) −21.8995 21.8995i −1.23000 1.23000i −0.963963 0.266035i \(-0.914286\pi\)
−0.266035 0.963963i \(-0.585714\pi\)
\(318\) −15.2304 15.2304i −0.854079 0.854079i
\(319\) 2.34315i 0.131191i
\(320\) 0 0
\(321\) 9.55582i 0.533354i
\(322\) −0.551658 1.44834i −0.0307427 0.0807129i
\(323\) 5.17157 5.17157i 0.287754 0.287754i
\(324\) 10.0711i 0.559504i
\(325\) 0 0
\(326\) −19.3137 −1.06969
\(327\) −15.8645 + 15.8645i −0.877307 + 0.877307i
\(328\) −2.61313 2.61313i −0.144286 0.144286i
\(329\) −3.69552 1.65685i −0.203741 0.0913453i
\(330\) 0 0
\(331\) 23.3137 1.28144 0.640719 0.767776i \(-0.278637\pi\)
0.640719 + 0.767776i \(0.278637\pi\)
\(332\) 5.31911 5.31911i 0.291924 0.291924i
\(333\) 1.07107 1.07107i 0.0586942 0.0586942i
\(334\) 2.42742 0.132822
\(335\) 0 0
\(336\) −2.00000 + 4.46088i −0.109109 + 0.243361i
\(337\) −3.75736 3.75736i −0.204676 0.204676i 0.597324 0.802000i \(-0.296231\pi\)
−0.802000 + 0.597324i \(0.796231\pi\)
\(338\) −16.1924 + 16.1924i −0.880750 + 0.880750i
\(339\) 3.06147 0.166276
\(340\) 0 0
\(341\) 4.32957i 0.234459i
\(342\) −0.409880 + 0.409880i −0.0221638 + 0.0221638i
\(343\) −16.4357 8.53622i −0.887445 0.460913i
\(344\) 5.65685i 0.304997i
\(345\) 0 0
\(346\) 18.7946i 1.01040i
\(347\) 5.31371 + 5.31371i 0.285255 + 0.285255i 0.835200 0.549946i \(-0.185352\pi\)
−0.549946 + 0.835200i \(0.685352\pi\)
\(348\) −1.08239 1.08239i −0.0580223 0.0580223i
\(349\) 2.66752 0.142789 0.0713945 0.997448i \(-0.477255\pi\)
0.0713945 + 0.997448i \(0.477255\pi\)
\(350\) 0 0
\(351\) −28.6274 −1.52802
\(352\) −2.00000 2.00000i −0.106600 0.106600i
\(353\) −8.47343 8.47343i −0.450995 0.450995i 0.444690 0.895685i \(-0.353314\pi\)
−0.895685 + 0.444690i \(0.853314\pi\)
\(354\) 17.0711i 0.907317i
\(355\) 0 0
\(356\) 11.3492i 0.601506i
\(357\) −9.09425 23.8763i −0.481318 1.26367i
\(358\) 9.65685 9.65685i 0.510381 0.510381i
\(359\) 16.9706i 0.895672i −0.894116 0.447836i \(-0.852195\pi\)
0.894116 0.447836i \(-0.147805\pi\)
\(360\) 0 0
\(361\) −17.0416 −0.896928
\(362\) 6.21579 6.21579i 0.326695 0.326695i
\(363\) 3.91969 + 3.91969i 0.205730 + 0.205730i
\(364\) −14.4650 6.48528i −0.758174 0.339921i
\(365\) 0 0
\(366\) −11.8995 −0.621997
\(367\) −3.06147 + 3.06147i −0.159807 + 0.159807i −0.782481 0.622674i \(-0.786046\pi\)
0.622674 + 0.782481i \(0.286046\pi\)
\(368\) 0.414214 0.414214i 0.0215924 0.0215924i
\(369\) −1.53073 −0.0796868
\(370\) 0 0
\(371\) 28.1421 + 12.6173i 1.46107 + 0.655057i
\(372\) 2.00000 + 2.00000i 0.103695 + 0.103695i
\(373\) 15.0711 15.0711i 0.780350 0.780350i −0.199539 0.979890i \(-0.563945\pi\)
0.979890 + 0.199539i \(0.0639446\pi\)
\(374\) 14.7821 0.764363
\(375\) 0 0
\(376\) 1.53073i 0.0789416i
\(377\) 3.50981 3.50981i 0.180764 0.180764i
\(378\) −4.49955 11.8133i −0.231432 0.607608i
\(379\) 6.14214i 0.315500i 0.987479 + 0.157750i \(0.0504241\pi\)
−0.987479 + 0.157750i \(0.949576\pi\)
\(380\) 0 0
\(381\) 9.37011i 0.480045i
\(382\) 1.24264 + 1.24264i 0.0635790 + 0.0635790i
\(383\) 10.6382 + 10.6382i 0.543587 + 0.543587i 0.924579 0.380991i \(-0.124417\pi\)
−0.380991 + 0.924579i \(0.624417\pi\)
\(384\) −1.84776 −0.0942931
\(385\) 0 0
\(386\) −11.6569 −0.593318
\(387\) −1.65685 1.65685i −0.0842226 0.0842226i
\(388\) 4.59220 + 4.59220i 0.233134 + 0.233134i
\(389\) 0.142136i 0.00720656i 0.999994 + 0.00360328i \(0.00114696\pi\)
−0.999994 + 0.00360328i \(0.998853\pi\)
\(390\) 0 0
\(391\) 3.06147i 0.154825i
\(392\) 0.402625 6.98841i 0.0203356 0.352968i
\(393\) −19.1421 + 19.1421i −0.965593 + 0.965593i
\(394\) 0.828427i 0.0417356i
\(395\) 0 0
\(396\) −1.17157 −0.0588738
\(397\) −1.12085 + 1.12085i −0.0562540 + 0.0562540i −0.734674 0.678420i \(-0.762665\pi\)
0.678420 + 0.734674i \(0.262665\pi\)
\(398\) 19.8226 + 19.8226i 0.993618 + 0.993618i
\(399\) 2.79884 6.24264i 0.140117 0.312523i
\(400\) 0 0
\(401\) −19.7574 −0.986635 −0.493318 0.869849i \(-0.664216\pi\)
−0.493318 + 0.869849i \(0.664216\pi\)
\(402\) −19.3743 + 19.3743i −0.966301 + 0.966301i
\(403\) −6.48528 + 6.48528i −0.323055 + 0.323055i
\(404\) 2.74444 0.136541
\(405\) 0 0
\(406\) 2.00000 + 0.896683i 0.0992583 + 0.0445016i
\(407\) −7.31371 7.31371i −0.362527 0.362527i
\(408\) 6.82843 6.82843i 0.338058 0.338058i
\(409\) −24.9719 −1.23478 −0.617392 0.786656i \(-0.711811\pi\)
−0.617392 + 0.786656i \(0.711811\pi\)
\(410\) 0 0
\(411\) 21.3533i 1.05328i
\(412\) −10.0042 + 10.0042i −0.492870 + 0.492870i
\(413\) −8.70054 22.8427i −0.428126 1.12401i
\(414\) 0.242641i 0.0119251i
\(415\) 0 0
\(416\) 5.99162i 0.293763i
\(417\) 11.2426 + 11.2426i 0.550554 + 0.550554i
\(418\) 2.79884 + 2.79884i 0.136895 + 0.136895i
\(419\) 11.5893 0.566174 0.283087 0.959094i \(-0.408642\pi\)
0.283087 + 0.959094i \(0.408642\pi\)
\(420\) 0 0
\(421\) 17.7990 0.867470 0.433735 0.901041i \(-0.357195\pi\)
0.433735 + 0.901041i \(0.357195\pi\)
\(422\) −7.31371 7.31371i −0.356026 0.356026i
\(423\) −0.448342 0.448342i −0.0217991 0.0217991i
\(424\) 11.6569i 0.566107i
\(425\) 0 0
\(426\) 1.08239i 0.0524421i
\(427\) 15.9226 6.06477i 0.770550 0.293495i
\(428\) −3.65685 + 3.65685i −0.176761 + 0.176761i
\(429\) 31.3137i 1.51184i
\(430\) 0 0
\(431\) 5.65685 0.272481 0.136241 0.990676i \(-0.456498\pi\)
0.136241 + 0.990676i \(0.456498\pi\)
\(432\) 3.37849 3.37849i 0.162548 0.162548i
\(433\) 10.4525 + 10.4525i 0.502315 + 0.502315i 0.912157 0.409841i \(-0.134416\pi\)
−0.409841 + 0.912157i \(0.634416\pi\)
\(434\) −3.69552 1.65685i −0.177391 0.0795315i
\(435\) 0 0
\(436\) 12.1421 0.581503
\(437\) −0.579658 + 0.579658i −0.0277288 + 0.0277288i
\(438\) −7.65685 + 7.65685i −0.365859 + 0.365859i
\(439\) −13.8854 −0.662713 −0.331357 0.943506i \(-0.607506\pi\)
−0.331357 + 0.943506i \(0.607506\pi\)
\(440\) 0 0
\(441\) −1.92893 2.16478i −0.0918539 0.103085i
\(442\) 22.1421 + 22.1421i 1.05319 + 1.05319i
\(443\) 4.14214 4.14214i 0.196799 0.196799i −0.601827 0.798626i \(-0.705560\pi\)
0.798626 + 0.601827i \(0.205560\pi\)
\(444\) −6.75699 −0.320672
\(445\) 0 0
\(446\) 9.55582i 0.452481i
\(447\) 22.6215 22.6215i 1.06996 1.06996i
\(448\) 2.47247 0.941740i 0.116813 0.0444930i
\(449\) 25.6569i 1.21082i 0.795913 + 0.605411i \(0.206991\pi\)
−0.795913 + 0.605411i \(0.793009\pi\)
\(450\) 0 0
\(451\) 10.4525i 0.492189i
\(452\) −1.17157 1.17157i −0.0551062 0.0551062i
\(453\) 11.5349 + 11.5349i 0.541957 + 0.541957i
\(454\) 11.8519 0.556238
\(455\) 0 0
\(456\) 2.58579 0.121091
\(457\) 1.65685 + 1.65685i 0.0775044 + 0.0775044i 0.744796 0.667292i \(-0.232547\pi\)
−0.667292 + 0.744796i \(0.732547\pi\)
\(458\) 5.45042 + 5.45042i 0.254682 + 0.254682i
\(459\) 24.9706i 1.16553i
\(460\) 0 0
\(461\) 34.0250i 1.58470i 0.610064 + 0.792352i \(0.291144\pi\)
−0.610064 + 0.792352i \(0.708856\pi\)
\(462\) 12.9218 4.92177i 0.601175 0.228981i
\(463\) 12.9706 12.9706i 0.602793 0.602793i −0.338260 0.941053i \(-0.609838\pi\)
0.941053 + 0.338260i \(0.109838\pi\)
\(464\) 0.828427i 0.0384588i
\(465\) 0 0
\(466\) −4.24264 −0.196537
\(467\) −17.4337 + 17.4337i −0.806734 + 0.806734i −0.984138 0.177404i \(-0.943230\pi\)
0.177404 + 0.984138i \(0.443230\pi\)
\(468\) −1.75490 1.75490i −0.0811205 0.0811205i
\(469\) 16.0502 35.7990i 0.741128 1.65304i
\(470\) 0 0
\(471\) 26.7279 1.23156
\(472\) 6.53281 6.53281i 0.300697 0.300697i
\(473\) −11.3137 + 11.3137i −0.520205 + 0.520205i
\(474\) 9.37011 0.430383
\(475\) 0 0
\(476\) −5.65685 + 12.6173i −0.259281 + 0.578312i
\(477\) 3.41421 + 3.41421i 0.156326 + 0.156326i
\(478\) 4.58579 4.58579i 0.209749 0.209749i
\(479\) −11.0866 −0.506558 −0.253279 0.967393i \(-0.581509\pi\)
−0.253279 + 0.967393i \(0.581509\pi\)
\(480\) 0 0
\(481\) 21.9105i 0.999032i
\(482\) 4.77791 4.77791i 0.217628 0.217628i
\(483\) 1.01933 + 2.67619i 0.0463812 + 0.121771i
\(484\) 3.00000i 0.136364i
\(485\) 0 0
\(486\) 4.27518i 0.193926i
\(487\) −1.10051 1.10051i −0.0498686 0.0498686i 0.681733 0.731601i \(-0.261227\pi\)
−0.731601 + 0.681733i \(0.761227\pi\)
\(488\) 4.55374 + 4.55374i 0.206138 + 0.206138i
\(489\) 35.6871 1.61383
\(490\) 0 0
\(491\) 25.1716 1.13598 0.567989 0.823036i \(-0.307722\pi\)
0.567989 + 0.823036i \(0.307722\pi\)
\(492\) 4.82843 + 4.82843i 0.217682 + 0.217682i
\(493\) −3.06147 3.06147i −0.137882 0.137882i
\(494\) 8.38478i 0.377249i
\(495\) 0 0
\(496\) 1.53073i 0.0687320i
\(497\) −0.551658 1.44834i −0.0247453 0.0649670i
\(498\) −9.82843 + 9.82843i −0.440422 + 0.440422i
\(499\) 7.51472i 0.336405i 0.985752 + 0.168203i \(0.0537963\pi\)
−0.985752 + 0.168203i \(0.946204\pi\)
\(500\) 0 0
\(501\) −4.48528 −0.200388
\(502\) 9.96570 9.96570i 0.444791 0.444791i
\(503\) −18.1062 18.1062i −0.807314 0.807314i 0.176912 0.984227i \(-0.443389\pi\)
−0.984227 + 0.176912i \(0.943389\pi\)
\(504\) 0.448342 1.00000i 0.0199707 0.0445435i
\(505\) 0 0
\(506\) −1.65685 −0.0736562
\(507\) 29.9196 29.9196i 1.32878 1.32878i
\(508\) 3.58579 3.58579i 0.159094 0.159094i
\(509\) 14.4650 0.641152 0.320576 0.947223i \(-0.396124\pi\)
0.320576 + 0.947223i \(0.396124\pi\)
\(510\) 0 0
\(511\) 6.34315 14.1480i 0.280604 0.625872i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −4.72792 + 4.72792i −0.208743 + 0.208743i
\(514\) 11.0866 0.489007
\(515\) 0 0
\(516\) 10.4525i 0.460146i
\(517\) −3.06147 + 3.06147i −0.134643 + 0.134643i
\(518\) 9.04148 3.44381i 0.397260 0.151312i
\(519\) 34.7279i 1.52439i
\(520\) 0 0
\(521\) 36.6925i 1.60753i −0.594947 0.803765i \(-0.702827\pi\)
0.594947 0.803765i \(-0.297173\pi\)
\(522\) 0.242641 + 0.242641i 0.0106201 + 0.0106201i
\(523\) −1.75490 1.75490i −0.0767366 0.0767366i 0.667697 0.744433i \(-0.267280\pi\)
−0.744433 + 0.667697i \(0.767280\pi\)
\(524\) 14.6508 0.640021
\(525\) 0 0
\(526\) 27.4558 1.19713
\(527\) 5.65685 + 5.65685i 0.246416 + 0.246416i
\(528\) 3.69552 + 3.69552i 0.160827 + 0.160827i
\(529\) 22.6569i 0.985081i
\(530\) 0 0
\(531\) 3.82683i 0.166070i
\(532\) −3.46002 + 1.31789i −0.150011 + 0.0571377i
\(533\) −15.6569 + 15.6569i −0.678174 + 0.678174i
\(534\) 20.9706i 0.907485i
\(535\) 0 0
\(536\) 14.8284 0.640490
\(537\) −17.8435 + 17.8435i −0.770006 + 0.770006i
\(538\) −19.0188 19.0188i −0.819958 0.819958i
\(539\) −14.7821 + 13.1716i −0.636709 + 0.567340i
\(540\) 0 0
\(541\) 10.9706 0.471661 0.235831 0.971794i \(-0.424219\pi\)
0.235831 + 0.971794i \(0.424219\pi\)
\(542\) −13.2513 + 13.2513i −0.569194 + 0.569194i
\(543\) −11.4853 + 11.4853i −0.492881 + 0.492881i
\(544\) −5.22625 −0.224074
\(545\) 0 0
\(546\) 26.7279 + 11.9832i 1.14385 + 0.512835i
\(547\) 30.6274 + 30.6274i 1.30953 + 1.30953i 0.921751 + 0.387783i \(0.126759\pi\)
0.387783 + 0.921751i \(0.373241\pi\)
\(548\) −8.17157 + 8.17157i −0.349072 + 0.349072i
\(549\) 2.66752 0.113847
\(550\) 0 0
\(551\) 1.15932i 0.0493885i
\(552\) −0.765367 + 0.765367i −0.0325762 + 0.0325762i
\(553\) −12.5381 + 4.77563i −0.533173 + 0.203080i
\(554\) 2.48528i 0.105589i
\(555\) 0 0
\(556\) 8.60474i 0.364922i
\(557\) 26.7279 + 26.7279i 1.13250 + 1.13250i 0.989761 + 0.142738i \(0.0455906\pi\)
0.142738 + 0.989761i \(0.454409\pi\)
\(558\) −0.448342 0.448342i −0.0189798 0.0189798i
\(559\) −33.8937 −1.43355
\(560\) 0 0
\(561\) −27.3137 −1.15319
\(562\) −4.00000 4.00000i −0.168730 0.168730i
\(563\) −3.54827 3.54827i −0.149542 0.149542i 0.628372 0.777913i \(-0.283722\pi\)
−0.777913 + 0.628372i \(0.783722\pi\)
\(564\) 2.82843i 0.119098i
\(565\) 0 0
\(566\) 4.46088i 0.187505i
\(567\) 9.48433 + 24.9004i 0.398304 + 1.04572i
\(568\) 0.414214 0.414214i 0.0173800 0.0173800i
\(569\) 1.41421i 0.0592869i 0.999561 + 0.0296435i \(0.00943719\pi\)
−0.999561 + 0.0296435i \(0.990563\pi\)
\(570\) 0 0
\(571\) −25.4558 −1.06529 −0.532647 0.846338i \(-0.678803\pi\)
−0.532647 + 0.846338i \(0.678803\pi\)
\(572\) −11.9832 + 11.9832i −0.501044 + 0.501044i
\(573\) −2.29610 2.29610i −0.0959210 0.0959210i
\(574\) −8.92177 4.00000i −0.372387 0.166957i
\(575\) 0 0
\(576\) 0.414214 0.0172589
\(577\) 26.3170 26.3170i 1.09559 1.09559i 0.100670 0.994920i \(-0.467901\pi\)
0.994920 0.100670i \(-0.0320986\pi\)
\(578\) 7.29289 7.29289i 0.303344 0.303344i
\(579\) 21.5391 0.895133
\(580\) 0 0
\(581\) 8.14214 18.1606i 0.337793 0.753427i
\(582\) −8.48528 8.48528i −0.351726 0.351726i
\(583\) 23.3137 23.3137i 0.965555 0.965555i
\(584\) 5.86030 0.242501
\(585\) 0 0
\(586\) 3.37849i 0.139564i
\(587\) −16.0886 + 16.0886i −0.664049 + 0.664049i −0.956332 0.292283i \(-0.905585\pi\)
0.292283 + 0.956332i \(0.405585\pi\)
\(588\) −0.743954 + 12.9129i −0.0306801 + 0.532519i
\(589\) 2.14214i 0.0882652i
\(590\) 0 0
\(591\) 1.53073i 0.0629660i
\(592\) 2.58579 + 2.58579i 0.106275 + 0.106275i
\(593\) 22.8841 + 22.8841i 0.939737 + 0.939737i 0.998285 0.0585480i \(-0.0186471\pi\)
−0.0585480 + 0.998285i \(0.518647\pi\)
\(594\) −13.5140 −0.554485
\(595\) 0 0
\(596\) −17.3137 −0.709197
\(597\) −36.6274 36.6274i −1.49906 1.49906i
\(598\) −2.48181 2.48181i −0.101489 0.101489i
\(599\) 18.5269i 0.756989i 0.925604 + 0.378495i \(0.123558\pi\)
−0.925604 + 0.378495i \(0.876442\pi\)
\(600\) 0 0
\(601\) 16.5754i 0.676126i 0.941123 + 0.338063i \(0.109772\pi\)
−0.941123 + 0.338063i \(0.890228\pi\)
\(602\) −5.32729 13.9864i −0.217124 0.570044i
\(603\) 4.34315 4.34315i 0.176867 0.176867i
\(604\) 8.82843i 0.359224i
\(605\) 0 0
\(606\) −5.07107 −0.205998
\(607\) 21.5391 21.5391i 0.874243 0.874243i −0.118688 0.992932i \(-0.537869\pi\)
0.992932 + 0.118688i \(0.0378689\pi\)
\(608\) −0.989538 0.989538i −0.0401311 0.0401311i
\(609\) −3.69552 1.65685i −0.149750 0.0671391i
\(610\) 0 0
\(611\) −9.17157 −0.371042
\(612\) −1.53073 + 1.53073i −0.0618762 + 0.0618762i
\(613\) −19.8995 + 19.8995i −0.803733 + 0.803733i −0.983677 0.179944i \(-0.942408\pi\)
0.179944 + 0.983677i \(0.442408\pi\)
\(614\) −32.7569 −1.32196
\(615\) 0 0
\(616\) −6.82843 3.06147i −0.275125 0.123350i
\(617\) 28.4853 + 28.4853i 1.14677 + 1.14677i 0.987183 + 0.159591i \(0.0510176\pi\)
0.159591 + 0.987183i \(0.448982\pi\)
\(618\) 18.4853 18.4853i 0.743587 0.743587i
\(619\) −0.688444 −0.0276709 −0.0138354 0.999904i \(-0.504404\pi\)
−0.0138354 + 0.999904i \(0.504404\pi\)
\(620\) 0 0
\(621\) 2.79884i 0.112313i
\(622\) −2.42742 + 2.42742i −0.0973305 + 0.0973305i
\(623\) 10.6880 + 28.0606i 0.428205 + 1.12422i
\(624\) 11.0711i 0.443197i
\(625\) 0 0
\(626\) 9.55582i 0.381927i
\(627\) −5.17157 5.17157i −0.206533 0.206533i
\(628\) −10.2283 10.2283i −0.408155 0.408155i
\(629\) −19.1116 −0.762031
\(630\) 0 0
\(631\) 41.3553 1.64633 0.823165 0.567802i \(-0.192206\pi\)
0.823165 + 0.567802i \(0.192206\pi\)
\(632\) −3.58579 3.58579i −0.142635 0.142635i
\(633\) 13.5140 + 13.5140i 0.537132 + 0.537132i
\(634\) 30.9706i 1.23000i
\(635\) 0 0
\(636\) 21.5391i 0.854079i
\(637\) −41.8719 2.41237i −1.65902 0.0955818i
\(638\) 1.65685 1.65685i 0.0655955 0.0655955i
\(639\) 0.242641i 0.00959872i
\(640\) 0 0
\(641\) −37.2132 −1.46983 −0.734917 0.678158i \(-0.762779\pi\)
−0.734917 + 0.678158i \(0.762779\pi\)
\(642\) 6.75699 6.75699i 0.266677 0.266677i
\(643\) 20.9435 + 20.9435i 0.825930 + 0.825930i 0.986951 0.161021i \(-0.0514787\pi\)
−0.161021 + 0.986951i \(0.551479\pi\)
\(644\) 0.634051 1.41421i 0.0249851 0.0557278i
\(645\) 0 0
\(646\) 7.31371 0.287754
\(647\) −23.8896 + 23.8896i −0.939195 + 0.939195i −0.998254 0.0590593i \(-0.981190\pi\)
0.0590593 + 0.998254i \(0.481190\pi\)
\(648\) −7.12132 + 7.12132i −0.279752 + 0.279752i
\(649\) −26.1313 −1.02574
\(650\) 0 0
\(651\) 6.82843 + 3.06147i 0.267627 + 0.119988i
\(652\) −13.6569 13.6569i −0.534844 0.534844i
\(653\) −8.72792 + 8.72792i −0.341550 + 0.341550i −0.856950 0.515400i \(-0.827643\pi\)
0.515400 + 0.856950i \(0.327643\pi\)
\(654\) −22.4357 −0.877307
\(655\) 0 0
\(656\) 3.69552i 0.144286i
\(657\) 1.71644 1.71644i 0.0669648 0.0669648i
\(658\) −1.44155 3.78470i −0.0561976 0.147543i
\(659\) 29.6569i 1.15527i −0.816296 0.577634i \(-0.803976\pi\)
0.816296 0.577634i \(-0.196024\pi\)
\(660\) 0 0
\(661\) 47.5390i 1.84905i 0.381118 + 0.924526i \(0.375539\pi\)
−0.381118 + 0.924526i \(0.624461\pi\)
\(662\) 16.4853 + 16.4853i 0.640719 + 0.640719i
\(663\) −40.9133 40.9133i −1.58894 1.58894i
\(664\) 7.52235 0.291924
\(665\) 0 0
\(666\) 1.51472 0.0586942
\(667\) 0.343146 + 0.343146i 0.0132867 + 0.0132867i
\(668\) 1.71644 + 1.71644i 0.0664112 + 0.0664112i
\(669\) 17.6569i 0.682653i
\(670\) 0 0
\(671\) 18.2150i 0.703181i
\(672\) −4.56854 + 1.74011i −0.176235 + 0.0671261i
\(673\) 22.7990 22.7990i 0.878836 0.878836i −0.114578 0.993414i \(-0.536552\pi\)
0.993414 + 0.114578i \(0.0365515\pi\)
\(674\) 5.31371i 0.204676i
\(675\) 0 0
\(676\) −22.8995 −0.880750
\(677\) 22.4742 22.4742i 0.863754 0.863754i −0.128018 0.991772i \(-0.540862\pi\)
0.991772 + 0.128018i \(0.0408615\pi\)
\(678\) 2.16478 + 2.16478i 0.0831380 + 0.0831380i
\(679\) 15.6788 + 7.02944i 0.601695 + 0.269765i
\(680\) 0 0
\(681\) −21.8995 −0.839190
\(682\) −3.06147 + 3.06147i −0.117230 + 0.117230i
\(683\) 25.3137 25.3137i 0.968602 0.968602i −0.0309197 0.999522i \(-0.509844\pi\)
0.999522 + 0.0309197i \(0.00984363\pi\)
\(684\) −0.579658 −0.0221638
\(685\) 0 0
\(686\) −5.58579 17.6578i −0.213266 0.674179i
\(687\) −10.0711 10.0711i −0.384235 0.384235i
\(688\) 4.00000 4.00000i 0.152499 0.152499i
\(689\) 69.8434 2.66082
\(690\) 0 0
\(691\) 25.1033i 0.954973i 0.878639 + 0.477487i \(0.158452\pi\)
−0.878639 + 0.477487i \(0.841548\pi\)
\(692\) 13.2898 13.2898i 0.505202 0.505202i
\(693\) −2.89668 + 1.10332i −0.110036 + 0.0419115i
\(694\) 7.51472i 0.285255i
\(695\) 0 0
\(696\) 1.53073i 0.0580223i
\(697\) 13.6569 + 13.6569i 0.517290 + 0.517290i
\(698\) 1.88622 + 1.88622i 0.0713945 + 0.0713945i
\(699\) 7.83938 0.296512
\(700\) 0 0
\(701\) −13.1127 −0.495260 −0.247630 0.968855i \(-0.579652\pi\)
−0.247630 + 0.968855i \(0.579652\pi\)
\(702\) −20.2426 20.2426i −0.764009 0.764009i
\(703\) −3.61859 3.61859i −0.136478 0.136478i
\(704\) 2.82843i 0.106600i
\(705\) 0 0
\(706\) 11.9832i 0.450995i
\(707\) 6.78556 2.58455i 0.255197 0.0972020i
\(708\) −12.0711 + 12.0711i −0.453659 + 0.453659i
\(709\) 41.3137i 1.55157i −0.630998 0.775784i \(-0.717354\pi\)
0.630998 0.775784i \(-0.282646\pi\)
\(710\) 0 0
\(711\) −2.10051 −0.0787751
\(712\) −8.02509 + 8.02509i −0.300753 + 0.300753i
\(713\) −0.634051 0.634051i −0.0237454 0.0237454i
\(714\) 10.4525 23.3137i 0.391175 0.872494i
\(715\) 0 0
\(716\) 13.6569 0.510381
\(717\) −8.47343 + 8.47343i −0.316446 + 0.316446i
\(718\) 12.0000 12.0000i 0.447836 0.447836i
\(719\) 43.7122 1.63019 0.815094 0.579328i \(-0.196685\pi\)
0.815094 + 0.579328i \(0.196685\pi\)
\(720\) 0 0
\(721\) −15.3137 + 34.1563i −0.570312 + 1.27205i
\(722\) −12.0503 12.0503i −0.448464 0.448464i
\(723\) −8.82843 + 8.82843i −0.328333 + 0.328333i
\(724\) 8.79045 0.326695
\(725\) 0 0
\(726\) 5.54328i 0.205730i
\(727\) 22.8841 22.8841i 0.848724 0.848724i −0.141250 0.989974i \(-0.545112\pi\)
0.989974 + 0.141250i \(0.0451122\pi\)
\(728\) −5.64255 14.8141i −0.209127 0.549048i
\(729\) 22.3137i 0.826434i
\(730\) 0 0
\(731\) 29.5641i 1.09347i
\(732\) −8.41421 8.41421i −0.310998 0.310998i
\(733\) −21.9489 21.9489i −0.810703 0.810703i 0.174037 0.984739i \(-0.444319\pi\)
−0.984739 + 0.174037i \(0.944319\pi\)
\(734\) −4.32957 −0.159807
\(735\) 0 0
\(736\) 0.585786 0.0215924
\(737\) −29.6569 29.6569i −1.09242 1.09242i
\(738\) −1.08239 1.08239i −0.0398434 0.0398434i
\(739\) 9.65685i 0.355233i −0.984100 0.177617i \(-0.943161\pi\)
0.984100 0.177617i \(-0.0568387\pi\)
\(740\) 0 0
\(741\) 15.4930i 0.569151i
\(742\) 10.9777 + 28.8213i 0.403005 + 1.05806i
\(743\) −27.0416 + 27.0416i −0.992061 + 0.992061i −0.999969 0.00790753i \(-0.997483\pi\)
0.00790753 + 0.999969i \(0.497483\pi\)
\(744\) 2.82843i 0.103695i
\(745\) 0 0
\(746\) 21.3137 0.780350
\(747\) 2.20325 2.20325i 0.0806126 0.0806126i
\(748\) 10.4525 + 10.4525i 0.382181 + 0.382181i
\(749\) −5.59767 + 12.4853i −0.204534 + 0.456202i
\(750\) 0 0
\(751\) −2.48528 −0.0906892 −0.0453446 0.998971i \(-0.514439\pi\)
−0.0453446 + 0.998971i \(0.514439\pi\)
\(752\) 1.08239 1.08239i 0.0394708 0.0394708i
\(753\) −18.4142 + 18.4142i −0.671051 + 0.671051i
\(754\) 4.96362 0.180764
\(755\) 0 0
\(756\) 5.17157 11.5349i 0.188088 0.419520i
\(757\) −7.89949 7.89949i −0.287112 0.287112i 0.548825 0.835937i \(-0.315075\pi\)
−0.835937 + 0.548825i \(0.815075\pi\)
\(758\) −4.34315 + 4.34315i −0.157750 + 0.157750i
\(759\) 3.06147 0.111124
\(760\) 0 0
\(761\) 26.3939i 0.956778i 0.878148 + 0.478389i \(0.158779\pi\)
−0.878148 + 0.478389i \(0.841221\pi\)
\(762\) −6.62567 + 6.62567i −0.240023 + 0.240023i
\(763\) 30.0211 11.4347i 1.08684 0.413965i
\(764\) 1.75736i 0.0635790i
\(765\) 0 0
\(766\) 15.0447i 0.543587i
\(767\) −39.1421 39.1421i −1.41334 1.41334i
\(768\) −1.30656 1.30656i −0.0471465 0.0471465i
\(769\) −17.5809 −0.633984 −0.316992 0.948428i \(-0.602673\pi\)
−0.316992 + 0.948428i \(0.602673\pi\)
\(770\) 0 0
\(771\) −20.4853 −0.737759
\(772\) −8.24264 8.24264i −0.296659 0.296659i
\(773\) 14.6892 + 14.6892i 0.528334 + 0.528334i 0.920076 0.391741i \(-0.128127\pi\)
−0.391741 + 0.920076i \(0.628127\pi\)
\(774\) 2.34315i 0.0842226i
\(775\) 0 0
\(776\) 6.49435i 0.233134i
\(777\) −16.7065 + 6.36332i −0.599341 + 0.228283i
\(778\) −0.100505 + 0.100505i −0.00360328 + 0.00360328i
\(779\) 5.17157i 0.185291i
\(780\) 0 0
\(781\) −1.65685 −0.0592869
\(782\) −2.16478 + 2.16478i −0.0774125 + 0.0774125i
\(783\) 2.79884 + 2.79884i 0.100022 + 0.100022i
\(784\) 5.22625 4.65685i 0.186652 0.166316i
\(785\) 0 0
\(786\) −27.0711 −0.965593
\(787\) −24.3764 + 24.3764i −0.868923 + 0.868923i −0.992353 0.123430i \(-0.960611\pi\)
0.123430 + 0.992353i \(0.460611\pi\)
\(788\) 0.585786 0.585786i 0.0208678 0.0208678i
\(789\) −50.7318 −1.80610
\(790\) 0 0
\(791\) −4.00000 1.79337i −0.142224 0.0637648i
\(792\) −0.828427 0.828427i −0.0294369 0.0294369i
\(793\) 27.2843 27.2843i 0.968893 0.968893i
\(794\) −1.58513 −0.0562540
\(795\) 0 0
\(796\) 28.0334i 0.993618i
\(797\) −16.6683 + 16.6683i −0.590421 + 0.590421i −0.937745 0.347324i \(-0.887090\pi\)
0.347324 + 0.937745i \(0.387090\pi\)
\(798\) 6.39329 2.43514i 0.226320 0.0862030i
\(799\) 8.00000i 0.283020i
\(800\) 0 0
\(801\) 4.70099i 0.166101i
\(802\) −13.9706 13.9706i −0.493318 0.493318i
\(803\) −11.7206 11.7206i −0.413611 0.413611i
\(804\) −27.3994 −0.966301
\(805\) 0 0
\(806\) −9.17157 −0.323055
\(807\) 35.1421 + 35.1421i 1.23706 + 1.23706i
\(808\) 1.94061 + 1.94061i 0.0682705 + 0.0682705i
\(809\) 33.8995i 1.19184i 0.803043 + 0.595921i \(0.203213\pi\)
−0.803043 + 0.595921i \(0.796787\pi\)
\(810\) 0 0
\(811\) 50.6005i 1.77682i −0.459048 0.888411i \(-0.651809\pi\)
0.459048 0.888411i \(-0.348191\pi\)
\(812\) 0.780163 + 2.04826i 0.0273784 + 0.0718800i
\(813\) 24.4853 24.4853i 0.858736 0.858736i
\(814\) 10.3431i 0.362527i
\(815\) 0 0
\(816\) 9.65685 0.338058
\(817\) −5.59767 + 5.59767i −0.195838 + 0.195838i
\(818\) −17.6578 17.6578i −0.617392 0.617392i
\(819\) −5.99162 2.68629i −0.209364 0.0938666i
\(820\) 0 0
\(821\) −34.4853 −1.20354 −0.601772 0.798668i \(-0.705539\pi\)
−0.601772 + 0.798668i \(0.705539\pi\)
\(822\) 15.0991 15.0991i 0.526642 0.526642i
\(823\) 2.34315 2.34315i 0.0816769 0.0816769i −0.665088 0.746765i \(-0.731606\pi\)
0.746765 + 0.665088i \(0.231606\pi\)
\(824\) −14.1480 −0.492870
\(825\) 0 0
\(826\) 10.0000 22.3044i 0.347945 0.776070i
\(827\) 7.51472 + 7.51472i 0.261312 + 0.261312i 0.825587 0.564275i \(-0.190844\pi\)
−0.564275 + 0.825587i \(0.690844\pi\)
\(828\) 0.171573 0.171573i 0.00596257 0.00596257i
\(829\) −40.8589 −1.41909 −0.709545 0.704660i \(-0.751099\pi\)
−0.709545 + 0.704660i \(0.751099\pi\)
\(830\) 0 0
\(831\) 4.59220i 0.159302i
\(832\) 4.23671 4.23671i 0.146882 0.146882i
\(833\) −2.10422 + 36.5232i −0.0729069 + 1.26545i
\(834\) 15.8995i 0.550554i
\(835\) 0 0
\(836\) 3.95815i 0.136895i
\(837\) −5.17157 5.17157i −0.178756 0.178756i
\(838\) 8.19486 + 8.19486i 0.283087 + 0.283087i
\(839\) −20.6424 −0.712654 −0.356327 0.934361i \(-0.615971\pi\)
−0.356327 + 0.934361i \(0.615971\pi\)
\(840\) 0 0
\(841\) 28.3137 0.976335
\(842\) 12.5858 + 12.5858i 0.433735 + 0.433735i
\(843\) 7.39104 + 7.39104i 0.254561 + 0.254561i
\(844\) 10.3431i 0.356026i
\(845\) 0 0
\(846\) 0.634051i 0.0217991i
\(847\) −2.82522 7.41742i −0.0970757 0.254866i
\(848\) −8.24264 + 8.24264i −0.283053 + 0.283053i
\(849\) 8.24264i 0.282887i
\(850\) 0 0
\(851\) 2.14214 0.0734315
\(852\) −0.765367 + 0.765367i −0.0262210 + 0.0262210i
\(853\) −26.7268 26.7268i −0.915110 0.915110i 0.0815587 0.996669i \(-0.474010\pi\)
−0.996669 + 0.0815587i \(0.974010\pi\)
\(854\) 15.5474 + 6.97056i 0.532022 + 0.238528i
\(855\) 0 0
\(856\) −5.17157 −0.176761
\(857\) −11.4580 + 11.4580i −0.391397 + 0.391397i −0.875185 0.483788i \(-0.839261\pi\)
0.483788 + 0.875185i \(0.339261\pi\)
\(858\) 22.1421 22.1421i 0.755920 0.755920i
\(859\) 40.6732 1.38775 0.693876 0.720094i \(-0.255901\pi\)
0.693876 + 0.720094i \(0.255901\pi\)
\(860\) 0 0
\(861\) 16.4853 + 7.39104i 0.561817 + 0.251886i
\(862\) 4.00000 + 4.00000i 0.136241 + 0.136241i
\(863\) 2.44365 2.44365i 0.0831828 0.0831828i −0.664291 0.747474i \(-0.731266\pi\)
0.747474 + 0.664291i \(0.231266\pi\)
\(864\) 4.77791 0.162548
\(865\) 0 0
\(866\) 14.7821i 0.502315i
\(867\) −13.4755 + 13.4755i −0.457652 + 0.457652i
\(868\) −1.44155 3.78470i −0.0489295 0.128461i
\(869\) 14.3431i 0.486558i
\(870\) 0 0
\(871\) 88.8463i 3.01044i
\(872\) 8.58579 + 8.58579i 0.290751 + 0.290751i
\(873\) 1.90215 + 1.90215i 0.0643781 + 0.0643781i
\(874\) −0.819760 −0.0277288
\(875\) 0 0
\(876\) −10.8284 −0.365859
\(877\) 21.5563 + 21.5563i 0.727906 + 0.727906i 0.970202 0.242296i \(-0.0779006\pi\)
−0.242296 + 0.970202i \(0.577901\pi\)
\(878\) −9.81845 9.81845i −0.331357 0.331357i
\(879\) 6.24264i 0.210559i
\(880\) 0 0
\(881\) 13.5140i 0.455297i 0.973743 + 0.227649i \(0.0731038\pi\)
−0.973743 + 0.227649i \(0.926896\pi\)
\(882\) 0.166773 2.89469i 0.00561553 0.0974694i
\(883\) 28.8284 28.8284i 0.970154 0.970154i −0.0294135 0.999567i \(-0.509364\pi\)
0.999567 + 0.0294135i \(0.00936396\pi\)
\(884\) 31.3137i 1.05319i
\(885\) 0 0
\(886\) 5.85786 0.196799
\(887\) 32.5487 32.5487i 1.09288 1.09288i 0.0976580 0.995220i \(-0.468865\pi\)
0.995220 0.0976580i \(-0.0311351\pi\)
\(888\) −4.77791 4.77791i −0.160336 0.160336i
\(889\) 5.48888 12.2426i 0.184091 0.410605i
\(890\) 0 0
\(891\) 28.4853 0.954293
\(892\) 6.75699 6.75699i 0.226241 0.226241i
\(893\) −1.51472 + 1.51472i −0.0506881 + 0.0506881i
\(894\) 31.9916 1.06996
\(895\) 0 0
\(896\) 2.41421 + 1.08239i 0.0806532 + 0.0361602i
\(897\) 4.58579 + 4.58579i 0.153115 + 0.153115i
\(898\) −18.1421 + 18.1421i −0.605411 + 0.605411i
\(899\) 1.26810 0.0422935
\(900\) 0 0
\(901\) 60.9217i 2.02959i
\(902\) −7.39104 + 7.39104i −0.246095 + 0.246095i
\(903\) 9.84354 + 25.8435i 0.327572 + 0.860019i
\(904\) 1.65685i 0.0551062i
\(905\) 0 0
\(906\) 16.3128i 0.541957i
\(907\) −11.1716 11.1716i −0.370946 0.370946i 0.496876 0.867822i \(-0.334480\pi\)
−0.867822 + 0.496876i \(0.834480\pi\)
\(908\) 8.38057 + 8.38057i 0.278119 + 0.278119i
\(909\) 1.13679 0.0377048
\(910\) 0 0
\(911\) −28.1421 −0.932391 −0.466195 0.884682i \(-0.654376\pi\)
−0.466195 + 0.884682i \(0.654376\pi\)
\(912\) 1.82843 + 1.82843i 0.0605453 + 0.0605453i
\(913\) −15.0447 15.0447i −0.497907 0.497907i
\(914\) 2.34315i 0.0775044i
\(915\) 0 0
\(916\) 7.70806i 0.254682i
\(917\) 36.2236 13.7972i 1.19621 0.455624i
\(918\) −17.6569 + 17.6569i −0.582763 + 0.582763i
\(919\) 8.38478i 0.276588i 0.990391 + 0.138294i \(0.0441619\pi\)
−0.990391 + 0.138294i \(0.955838\pi\)
\(920\) 0 0
\(921\) 60.5269 1.99443
\(922\) −24.0593 + 24.0593i −0.792352 + 0.792352i
\(923\) −2.48181 2.48181i −0.0816898 0.0816898i
\(924\) 12.6173 + 5.65685i 0.415078 + 0.186097i
\(925\) 0 0
\(926\) 18.3431 0.602793
\(927\) −4.14386 + 4.14386i −0.136102 + 0.136102i
\(928\) −0.585786 + 0.585786i −0.0192294 + 0.0192294i
\(929\) −33.2597 −1.09121 −0.545607 0.838041i \(-0.683701\pi\)
−0.545607 + 0.838041i \(0.683701\pi\)
\(930\) 0 0
\(931\) −7.31371 + 6.51688i −0.239697 + 0.213582i
\(932\) −3.00000 3.00000i −0.0982683 0.0982683i
\(933\) 4.48528 4.48528i 0.146842 0.146842i
\(934\) −24.6549 −0.806734
\(935\) 0 0
\(936\) 2.48181i 0.0811205i
\(937\) 17.7666 17.7666i 0.580410 0.580410i −0.354606 0.935016i \(-0.615385\pi\)
0.935016 + 0.354606i \(0.115385\pi\)
\(938\) 36.6629 13.9645i 1.19709 0.455958i
\(939\) 17.6569i 0.576210i
\(940\) 0 0
\(941\) 23.3099i 0.759881i −0.925011 0.379940i \(-0.875944\pi\)
0.925011 0.379940i \(-0.124056\pi\)
\(942\) 18.8995 + 18.8995i 0.615779 + 0.615779i
\(943\) −1.53073 1.53073i −0.0498475 0.0498475i
\(944\) 9.23880 0.300697
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −22.9706 22.9706i −0.746443 0.746443i 0.227366 0.973809i \(-0.426989\pi\)
−0.973809 + 0.227366i \(0.926989\pi\)
\(948\) 6.62567 + 6.62567i 0.215192 + 0.215192i
\(949\) 35.1127i 1.13981i
\(950\) 0 0
\(951\) 57.2261i 1.85568i
\(952\) −12.9218 + 4.92177i −0.418797 + 0.159515i
\(953\) −23.1421 + 23.1421i −0.749647 + 0.749647i −0.974413 0.224766i \(-0.927838\pi\)
0.224766 + 0.974413i \(0.427838\pi\)
\(954\) 4.82843i 0.156326i
\(955\) 0 0
\(956\) 6.48528 0.209749
\(957\) −3.06147 + 3.06147i −0.0989632 + 0.0989632i
\(958\) −7.83938 7.83938i −0.253279 0.253279i
\(959\) −12.5085 + 27.8995i −0.403921 + 0.900922i
\(960\) 0 0
\(961\) 28.6569 0.924415
\(962\) 15.4930 15.4930i 0.499516 0.499516i
\(963\) −1.51472 + 1.51472i −0.0488111 + 0.0488111i
\(964\) 6.75699 0.217628
\(965\) 0 0
\(966\) −1.17157 + 2.61313i −0.0376947 + 0.0840759i
\(967\) 2.21320 + 2.21320i 0.0711718 + 0.0711718i 0.741797 0.670625i \(-0.233974\pi\)
−0.670625 + 0.741797i \(0.733974\pi\)
\(968\) 2.12132 2.12132i 0.0681818 0.0681818i
\(969\) −13.5140 −0.434131
\(970\) 0 0
\(971\) 18.5320i 0.594720i 0.954765 + 0.297360i \(0.0961061\pi\)
−0.954765 + 0.297360i \(0.903894\pi\)
\(972\) 3.02301 3.02301i 0.0969630 0.0969630i
\(973\) −8.10343 21.2750i −0.259784 0.682045i
\(974\) 1.55635i 0.0498686i
\(975\) 0 0
\(976\) 6.43996i 0.206138i
\(977\) 25.8284 + 25.8284i 0.826325 + 0.826325i 0.987006 0.160682i \(-0.0513693\pi\)
−0.160682 + 0.987006i \(0.551369\pi\)
\(978\) 25.2346 + 25.2346i 0.806913 + 0.806913i
\(979\) 32.1003 1.02593
\(980\) 0 0
\(981\) 5.02944 0.160578
\(982\) 17.7990 + 17.7990i 0.567989 + 0.567989i
\(983\) −28.7444 28.7444i −0.916804 0.916804i 0.0799920 0.996796i \(-0.474511\pi\)
−0.996796 + 0.0799920i \(0.974511\pi\)
\(984\) 6.82843i 0.217682i
\(985\) 0 0
\(986\) 4.32957i 0.137882i
\(987\) 2.66364 + 6.99321i 0.0847847 + 0.222596i
\(988\) −5.92893 + 5.92893i −0.188624 + 0.188624i
\(989\) 3.31371i 0.105370i
\(990\) 0 0
\(991\) −32.5858 −1.03512 −0.517561 0.855646i \(-0.673160\pi\)
−0.517561 + 0.855646i \(0.673160\pi\)
\(992\) 1.08239 1.08239i 0.0343660 0.0343660i
\(993\) −30.4608 30.4608i −0.966645 0.966645i
\(994\) 0.634051 1.41421i 0.0201109 0.0448561i
\(995\) 0 0
\(996\) −13.8995 −0.440422
\(997\) 0.464273 0.464273i 0.0147037 0.0147037i −0.699717 0.714420i \(-0.746690\pi\)
0.714420 + 0.699717i \(0.246690\pi\)
\(998\) −5.31371 + 5.31371i −0.168203 + 0.168203i
\(999\) 17.4721 0.552793
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.g.a.307.3 8
5.2 odd 4 70.2.g.a.13.1 8
5.3 odd 4 inner 350.2.g.a.293.4 8
5.4 even 2 70.2.g.a.27.2 yes 8
7.6 odd 2 inner 350.2.g.a.307.4 8
15.2 even 4 630.2.p.a.433.4 8
15.14 odd 2 630.2.p.a.307.3 8
20.7 even 4 560.2.bj.c.433.4 8
20.19 odd 2 560.2.bj.c.97.1 8
35.2 odd 12 490.2.l.a.423.3 16
35.4 even 6 490.2.l.a.117.4 16
35.9 even 6 490.2.l.a.227.1 16
35.12 even 12 490.2.l.a.423.4 16
35.13 even 4 inner 350.2.g.a.293.3 8
35.17 even 12 490.2.l.a.313.1 16
35.19 odd 6 490.2.l.a.227.2 16
35.24 odd 6 490.2.l.a.117.3 16
35.27 even 4 70.2.g.a.13.2 yes 8
35.32 odd 12 490.2.l.a.313.2 16
35.34 odd 2 70.2.g.a.27.1 yes 8
105.62 odd 4 630.2.p.a.433.3 8
105.104 even 2 630.2.p.a.307.4 8
140.27 odd 4 560.2.bj.c.433.1 8
140.139 even 2 560.2.bj.c.97.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.g.a.13.1 8 5.2 odd 4
70.2.g.a.13.2 yes 8 35.27 even 4
70.2.g.a.27.1 yes 8 35.34 odd 2
70.2.g.a.27.2 yes 8 5.4 even 2
350.2.g.a.293.3 8 35.13 even 4 inner
350.2.g.a.293.4 8 5.3 odd 4 inner
350.2.g.a.307.3 8 1.1 even 1 trivial
350.2.g.a.307.4 8 7.6 odd 2 inner
490.2.l.a.117.3 16 35.24 odd 6
490.2.l.a.117.4 16 35.4 even 6
490.2.l.a.227.1 16 35.9 even 6
490.2.l.a.227.2 16 35.19 odd 6
490.2.l.a.313.1 16 35.17 even 12
490.2.l.a.313.2 16 35.32 odd 12
490.2.l.a.423.3 16 35.2 odd 12
490.2.l.a.423.4 16 35.12 even 12
560.2.bj.c.97.1 8 20.19 odd 2
560.2.bj.c.97.4 8 140.139 even 2
560.2.bj.c.433.1 8 140.27 odd 4
560.2.bj.c.433.4 8 20.7 even 4
630.2.p.a.307.3 8 15.14 odd 2
630.2.p.a.307.4 8 105.104 even 2
630.2.p.a.433.3 8 105.62 odd 4
630.2.p.a.433.4 8 15.2 even 4