# Properties

 Label 350.2.e.h Level $350$ Weight $2$ Character orbit 350.e Analytic conductor $2.795$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [350,2,Mod(51,350)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(350, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("350.51");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$350 = 2 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 350.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$2.79476407074$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + (\zeta_{6} - 1) q^{4} - 2 q^{6} + (2 \zeta_{6} + 1) q^{7} - q^{8} - \zeta_{6} q^{9} +O(q^{10})$$ q + z * q^2 + (2*z - 2) * q^3 + (z - 1) * q^4 - 2 * q^6 + (2*z + 1) * q^7 - q^8 - z * q^9 $$q + \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + (\zeta_{6} - 1) q^{4} - 2 q^{6} + (2 \zeta_{6} + 1) q^{7} - q^{8} - \zeta_{6} q^{9} + (3 \zeta_{6} - 3) q^{11} - 2 \zeta_{6} q^{12} - 5 q^{13} + (3 \zeta_{6} - 2) q^{14} - \zeta_{6} q^{16} + ( - 6 \zeta_{6} + 6) q^{17} + ( - \zeta_{6} + 1) q^{18} + \zeta_{6} q^{19} + (2 \zeta_{6} - 6) q^{21} - 3 q^{22} + 3 \zeta_{6} q^{23} + ( - 2 \zeta_{6} + 2) q^{24} - 5 \zeta_{6} q^{26} - 4 q^{27} + (\zeta_{6} - 3) q^{28} - 6 q^{29} + ( - 4 \zeta_{6} + 4) q^{31} + ( - \zeta_{6} + 1) q^{32} - 6 \zeta_{6} q^{33} + 6 q^{34} + q^{36} + 11 \zeta_{6} q^{37} + (\zeta_{6} - 1) q^{38} + ( - 10 \zeta_{6} + 10) q^{39} + 3 q^{41} + ( - 4 \zeta_{6} - 2) q^{42} + 10 q^{43} - 3 \zeta_{6} q^{44} + (3 \zeta_{6} - 3) q^{46} + 3 \zeta_{6} q^{47} + 2 q^{48} + (8 \zeta_{6} - 3) q^{49} + 12 \zeta_{6} q^{51} + ( - 5 \zeta_{6} + 5) q^{52} + ( - 3 \zeta_{6} + 3) q^{53} - 4 \zeta_{6} q^{54} + ( - 2 \zeta_{6} - 1) q^{56} - 2 q^{57} - 6 \zeta_{6} q^{58} + 4 \zeta_{6} q^{61} + 4 q^{62} + ( - 3 \zeta_{6} + 2) q^{63} + q^{64} + ( - 6 \zeta_{6} + 6) q^{66} + (4 \zeta_{6} - 4) q^{67} + 6 \zeta_{6} q^{68} - 6 q^{69} + 12 q^{71} + \zeta_{6} q^{72} + (4 \zeta_{6} - 4) q^{73} + (11 \zeta_{6} - 11) q^{74} - q^{76} + (3 \zeta_{6} - 9) q^{77} + 10 q^{78} + 10 \zeta_{6} q^{79} + ( - 11 \zeta_{6} + 11) q^{81} + 3 \zeta_{6} q^{82} + 12 q^{83} + ( - 6 \zeta_{6} + 4) q^{84} + 10 \zeta_{6} q^{86} + ( - 12 \zeta_{6} + 12) q^{87} + ( - 3 \zeta_{6} + 3) q^{88} - 6 \zeta_{6} q^{89} + ( - 10 \zeta_{6} - 5) q^{91} - 3 q^{92} + 8 \zeta_{6} q^{93} + (3 \zeta_{6} - 3) q^{94} + 2 \zeta_{6} q^{96} - 14 q^{97} + (5 \zeta_{6} - 8) q^{98} + 3 q^{99} +O(q^{100})$$ q + z * q^2 + (2*z - 2) * q^3 + (z - 1) * q^4 - 2 * q^6 + (2*z + 1) * q^7 - q^8 - z * q^9 + (3*z - 3) * q^11 - 2*z * q^12 - 5 * q^13 + (3*z - 2) * q^14 - z * q^16 + (-6*z + 6) * q^17 + (-z + 1) * q^18 + z * q^19 + (2*z - 6) * q^21 - 3 * q^22 + 3*z * q^23 + (-2*z + 2) * q^24 - 5*z * q^26 - 4 * q^27 + (z - 3) * q^28 - 6 * q^29 + (-4*z + 4) * q^31 + (-z + 1) * q^32 - 6*z * q^33 + 6 * q^34 + q^36 + 11*z * q^37 + (z - 1) * q^38 + (-10*z + 10) * q^39 + 3 * q^41 + (-4*z - 2) * q^42 + 10 * q^43 - 3*z * q^44 + (3*z - 3) * q^46 + 3*z * q^47 + 2 * q^48 + (8*z - 3) * q^49 + 12*z * q^51 + (-5*z + 5) * q^52 + (-3*z + 3) * q^53 - 4*z * q^54 + (-2*z - 1) * q^56 - 2 * q^57 - 6*z * q^58 + 4*z * q^61 + 4 * q^62 + (-3*z + 2) * q^63 + q^64 + (-6*z + 6) * q^66 + (4*z - 4) * q^67 + 6*z * q^68 - 6 * q^69 + 12 * q^71 + z * q^72 + (4*z - 4) * q^73 + (11*z - 11) * q^74 - q^76 + (3*z - 9) * q^77 + 10 * q^78 + 10*z * q^79 + (-11*z + 11) * q^81 + 3*z * q^82 + 12 * q^83 + (-6*z + 4) * q^84 + 10*z * q^86 + (-12*z + 12) * q^87 + (-3*z + 3) * q^88 - 6*z * q^89 + (-10*z - 5) * q^91 - 3 * q^92 + 8*z * q^93 + (3*z - 3) * q^94 + 2*z * q^96 - 14 * q^97 + (5*z - 8) * q^98 + 3 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} - 2 q^{3} - q^{4} - 4 q^{6} + 4 q^{7} - 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q + q^2 - 2 * q^3 - q^4 - 4 * q^6 + 4 * q^7 - 2 * q^8 - q^9 $$2 q + q^{2} - 2 q^{3} - q^{4} - 4 q^{6} + 4 q^{7} - 2 q^{8} - q^{9} - 3 q^{11} - 2 q^{12} - 10 q^{13} - q^{14} - q^{16} + 6 q^{17} + q^{18} + q^{19} - 10 q^{21} - 6 q^{22} + 3 q^{23} + 2 q^{24} - 5 q^{26} - 8 q^{27} - 5 q^{28} - 12 q^{29} + 4 q^{31} + q^{32} - 6 q^{33} + 12 q^{34} + 2 q^{36} + 11 q^{37} - q^{38} + 10 q^{39} + 6 q^{41} - 8 q^{42} + 20 q^{43} - 3 q^{44} - 3 q^{46} + 3 q^{47} + 4 q^{48} + 2 q^{49} + 12 q^{51} + 5 q^{52} + 3 q^{53} - 4 q^{54} - 4 q^{56} - 4 q^{57} - 6 q^{58} + 4 q^{61} + 8 q^{62} + q^{63} + 2 q^{64} + 6 q^{66} - 4 q^{67} + 6 q^{68} - 12 q^{69} + 24 q^{71} + q^{72} - 4 q^{73} - 11 q^{74} - 2 q^{76} - 15 q^{77} + 20 q^{78} + 10 q^{79} + 11 q^{81} + 3 q^{82} + 24 q^{83} + 2 q^{84} + 10 q^{86} + 12 q^{87} + 3 q^{88} - 6 q^{89} - 20 q^{91} - 6 q^{92} + 8 q^{93} - 3 q^{94} + 2 q^{96} - 28 q^{97} - 11 q^{98} + 6 q^{99}+O(q^{100})$$ 2 * q + q^2 - 2 * q^3 - q^4 - 4 * q^6 + 4 * q^7 - 2 * q^8 - q^9 - 3 * q^11 - 2 * q^12 - 10 * q^13 - q^14 - q^16 + 6 * q^17 + q^18 + q^19 - 10 * q^21 - 6 * q^22 + 3 * q^23 + 2 * q^24 - 5 * q^26 - 8 * q^27 - 5 * q^28 - 12 * q^29 + 4 * q^31 + q^32 - 6 * q^33 + 12 * q^34 + 2 * q^36 + 11 * q^37 - q^38 + 10 * q^39 + 6 * q^41 - 8 * q^42 + 20 * q^43 - 3 * q^44 - 3 * q^46 + 3 * q^47 + 4 * q^48 + 2 * q^49 + 12 * q^51 + 5 * q^52 + 3 * q^53 - 4 * q^54 - 4 * q^56 - 4 * q^57 - 6 * q^58 + 4 * q^61 + 8 * q^62 + q^63 + 2 * q^64 + 6 * q^66 - 4 * q^67 + 6 * q^68 - 12 * q^69 + 24 * q^71 + q^72 - 4 * q^73 - 11 * q^74 - 2 * q^76 - 15 * q^77 + 20 * q^78 + 10 * q^79 + 11 * q^81 + 3 * q^82 + 24 * q^83 + 2 * q^84 + 10 * q^86 + 12 * q^87 + 3 * q^88 - 6 * q^89 - 20 * q^91 - 6 * q^92 + 8 * q^93 - 3 * q^94 + 2 * q^96 - 28 * q^97 - 11 * q^98 + 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/350\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
51.1
 0.5 − 0.866025i 0.5 + 0.866025i
0.500000 0.866025i −1.00000 1.73205i −0.500000 0.866025i 0 −2.00000 2.00000 1.73205i −1.00000 −0.500000 + 0.866025i 0
151.1 0.500000 + 0.866025i −1.00000 + 1.73205i −0.500000 + 0.866025i 0 −2.00000 2.00000 + 1.73205i −1.00000 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.2.e.h 2
5.b even 2 1 70.2.e.b 2
5.c odd 4 2 350.2.j.a 4
7.c even 3 1 inner 350.2.e.h 2
7.c even 3 1 2450.2.a.p 1
7.d odd 6 1 2450.2.a.f 1
15.d odd 2 1 630.2.k.e 2
20.d odd 2 1 560.2.q.d 2
35.c odd 2 1 490.2.e.a 2
35.i odd 6 1 490.2.a.j 1
35.i odd 6 1 490.2.e.a 2
35.j even 6 1 70.2.e.b 2
35.j even 6 1 490.2.a.g 1
35.k even 12 2 2450.2.c.p 2
35.l odd 12 2 350.2.j.a 4
35.l odd 12 2 2450.2.c.f 2
105.o odd 6 1 630.2.k.e 2
105.o odd 6 1 4410.2.a.m 1
105.p even 6 1 4410.2.a.c 1
140.p odd 6 1 560.2.q.d 2
140.p odd 6 1 3920.2.a.be 1
140.s even 6 1 3920.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.b 2 5.b even 2 1
70.2.e.b 2 35.j even 6 1
350.2.e.h 2 1.a even 1 1 trivial
350.2.e.h 2 7.c even 3 1 inner
350.2.j.a 4 5.c odd 4 2
350.2.j.a 4 35.l odd 12 2
490.2.a.g 1 35.j even 6 1
490.2.a.j 1 35.i odd 6 1
490.2.e.a 2 35.c odd 2 1
490.2.e.a 2 35.i odd 6 1
560.2.q.d 2 20.d odd 2 1
560.2.q.d 2 140.p odd 6 1
630.2.k.e 2 15.d odd 2 1
630.2.k.e 2 105.o odd 6 1
2450.2.a.f 1 7.d odd 6 1
2450.2.a.p 1 7.c even 3 1
2450.2.c.f 2 35.l odd 12 2
2450.2.c.p 2 35.k even 12 2
3920.2.a.g 1 140.s even 6 1
3920.2.a.be 1 140.p odd 6 1
4410.2.a.c 1 105.p even 6 1
4410.2.a.m 1 105.o odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(350, [\chi])$$:

 $$T_{3}^{2} + 2T_{3} + 4$$ T3^2 + 2*T3 + 4 $$T_{11}^{2} + 3T_{11} + 9$$ T11^2 + 3*T11 + 9 $$T_{13} + 5$$ T13 + 5 $$T_{17}^{2} - 6T_{17} + 36$$ T17^2 - 6*T17 + 36

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - T + 1$$
$3$ $$T^{2} + 2T + 4$$
$5$ $$T^{2}$$
$7$ $$T^{2} - 4T + 7$$
$11$ $$T^{2} + 3T + 9$$
$13$ $$(T + 5)^{2}$$
$17$ $$T^{2} - 6T + 36$$
$19$ $$T^{2} - T + 1$$
$23$ $$T^{2} - 3T + 9$$
$29$ $$(T + 6)^{2}$$
$31$ $$T^{2} - 4T + 16$$
$37$ $$T^{2} - 11T + 121$$
$41$ $$(T - 3)^{2}$$
$43$ $$(T - 10)^{2}$$
$47$ $$T^{2} - 3T + 9$$
$53$ $$T^{2} - 3T + 9$$
$59$ $$T^{2}$$
$61$ $$T^{2} - 4T + 16$$
$67$ $$T^{2} + 4T + 16$$
$71$ $$(T - 12)^{2}$$
$73$ $$T^{2} + 4T + 16$$
$79$ $$T^{2} - 10T + 100$$
$83$ $$(T - 12)^{2}$$
$89$ $$T^{2} + 6T + 36$$
$97$ $$(T + 14)^{2}$$