# Properties

 Label 350.2.e.e Level $350$ Weight $2$ Character orbit 350.e Analytic conductor $2.795$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$350 = 2 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 350.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.79476407074$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + ( -1 + 3 \zeta_{6} ) q^{7} + q^{8} + 2 \zeta_{6} q^{9} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + ( -1 + 3 \zeta_{6} ) q^{7} + q^{8} + 2 \zeta_{6} q^{9} + ( 6 - 6 \zeta_{6} ) q^{11} + \zeta_{6} q^{12} + 4 q^{13} + ( 3 - 2 \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( 2 - 2 \zeta_{6} ) q^{18} -2 \zeta_{6} q^{19} + ( 2 + \zeta_{6} ) q^{21} -6 q^{22} -3 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{24} -4 \zeta_{6} q^{26} + 5 q^{27} + ( -2 - \zeta_{6} ) q^{28} -3 q^{29} + ( -8 + 8 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -6 \zeta_{6} q^{33} -2 q^{36} -4 \zeta_{6} q^{37} + ( -2 + 2 \zeta_{6} ) q^{38} + ( 4 - 4 \zeta_{6} ) q^{39} + 9 q^{41} + ( 1 - 3 \zeta_{6} ) q^{42} + 7 q^{43} + 6 \zeta_{6} q^{44} + ( -3 + 3 \zeta_{6} ) q^{46} - q^{48} + ( -8 + 3 \zeta_{6} ) q^{49} + ( -4 + 4 \zeta_{6} ) q^{52} + ( -6 + 6 \zeta_{6} ) q^{53} -5 \zeta_{6} q^{54} + ( -1 + 3 \zeta_{6} ) q^{56} -2 q^{57} + 3 \zeta_{6} q^{58} + ( 6 - 6 \zeta_{6} ) q^{59} -5 \zeta_{6} q^{61} + 8 q^{62} + ( -6 + 4 \zeta_{6} ) q^{63} + q^{64} + ( -6 + 6 \zeta_{6} ) q^{66} + ( 5 - 5 \zeta_{6} ) q^{67} -3 q^{69} -6 q^{71} + 2 \zeta_{6} q^{72} + ( -16 + 16 \zeta_{6} ) q^{73} + ( -4 + 4 \zeta_{6} ) q^{74} + 2 q^{76} + ( 12 + 6 \zeta_{6} ) q^{77} -4 q^{78} -2 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -9 \zeta_{6} q^{82} -3 q^{83} + ( -3 + 2 \zeta_{6} ) q^{84} -7 \zeta_{6} q^{86} + ( -3 + 3 \zeta_{6} ) q^{87} + ( 6 - 6 \zeta_{6} ) q^{88} + 15 \zeta_{6} q^{89} + ( -4 + 12 \zeta_{6} ) q^{91} + 3 q^{92} + 8 \zeta_{6} q^{93} + \zeta_{6} q^{96} -14 q^{97} + ( 3 + 5 \zeta_{6} ) q^{98} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} + q^{3} - q^{4} - 2q^{6} + q^{7} + 2q^{8} + 2q^{9} + O(q^{10})$$ $$2q - q^{2} + q^{3} - q^{4} - 2q^{6} + q^{7} + 2q^{8} + 2q^{9} + 6q^{11} + q^{12} + 8q^{13} + 4q^{14} - q^{16} + 2q^{18} - 2q^{19} + 5q^{21} - 12q^{22} - 3q^{23} + q^{24} - 4q^{26} + 10q^{27} - 5q^{28} - 6q^{29} - 8q^{31} - q^{32} - 6q^{33} - 4q^{36} - 4q^{37} - 2q^{38} + 4q^{39} + 18q^{41} - q^{42} + 14q^{43} + 6q^{44} - 3q^{46} - 2q^{48} - 13q^{49} - 4q^{52} - 6q^{53} - 5q^{54} + q^{56} - 4q^{57} + 3q^{58} + 6q^{59} - 5q^{61} + 16q^{62} - 8q^{63} + 2q^{64} - 6q^{66} + 5q^{67} - 6q^{69} - 12q^{71} + 2q^{72} - 16q^{73} - 4q^{74} + 4q^{76} + 30q^{77} - 8q^{78} - 2q^{79} - q^{81} - 9q^{82} - 6q^{83} - 4q^{84} - 7q^{86} - 3q^{87} + 6q^{88} + 15q^{89} + 4q^{91} + 6q^{92} + 8q^{93} + q^{96} - 28q^{97} + 11q^{98} + 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/350\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
51.1
 0.5 − 0.866025i 0.5 + 0.866025i
−0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0 −1.00000 0.500000 2.59808i 1.00000 1.00000 1.73205i 0
151.1 −0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0 −1.00000 0.500000 + 2.59808i 1.00000 1.00000 + 1.73205i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.2.e.e 2
5.b even 2 1 70.2.e.c 2
5.c odd 4 2 350.2.j.b 4
7.c even 3 1 inner 350.2.e.e 2
7.c even 3 1 2450.2.a.w 1
7.d odd 6 1 2450.2.a.bc 1
15.d odd 2 1 630.2.k.b 2
20.d odd 2 1 560.2.q.g 2
35.c odd 2 1 490.2.e.h 2
35.i odd 6 1 490.2.a.b 1
35.i odd 6 1 490.2.e.h 2
35.j even 6 1 70.2.e.c 2
35.j even 6 1 490.2.a.c 1
35.k even 12 2 2450.2.c.l 2
35.l odd 12 2 350.2.j.b 4
35.l odd 12 2 2450.2.c.g 2
105.o odd 6 1 630.2.k.b 2
105.o odd 6 1 4410.2.a.bm 1
105.p even 6 1 4410.2.a.bd 1
140.p odd 6 1 560.2.q.g 2
140.p odd 6 1 3920.2.a.p 1
140.s even 6 1 3920.2.a.bc 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.c 2 5.b even 2 1
70.2.e.c 2 35.j even 6 1
350.2.e.e 2 1.a even 1 1 trivial
350.2.e.e 2 7.c even 3 1 inner
350.2.j.b 4 5.c odd 4 2
350.2.j.b 4 35.l odd 12 2
490.2.a.b 1 35.i odd 6 1
490.2.a.c 1 35.j even 6 1
490.2.e.h 2 35.c odd 2 1
490.2.e.h 2 35.i odd 6 1
560.2.q.g 2 20.d odd 2 1
560.2.q.g 2 140.p odd 6 1
630.2.k.b 2 15.d odd 2 1
630.2.k.b 2 105.o odd 6 1
2450.2.a.w 1 7.c even 3 1
2450.2.a.bc 1 7.d odd 6 1
2450.2.c.g 2 35.l odd 12 2
2450.2.c.l 2 35.k even 12 2
3920.2.a.p 1 140.p odd 6 1
3920.2.a.bc 1 140.s even 6 1
4410.2.a.bd 1 105.p even 6 1
4410.2.a.bm 1 105.o odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(350, [\chi])$$:

 $$T_{3}^{2} - T_{3} + 1$$ $$T_{11}^{2} - 6 T_{11} + 36$$ $$T_{13} - 4$$ $$T_{17}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 - T + T^{2}$$
$11$ $$36 - 6 T + T^{2}$$
$13$ $$( -4 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$4 + 2 T + T^{2}$$
$23$ $$9 + 3 T + T^{2}$$
$29$ $$( 3 + T )^{2}$$
$31$ $$64 + 8 T + T^{2}$$
$37$ $$16 + 4 T + T^{2}$$
$41$ $$( -9 + T )^{2}$$
$43$ $$( -7 + T )^{2}$$
$47$ $$T^{2}$$
$53$ $$36 + 6 T + T^{2}$$
$59$ $$36 - 6 T + T^{2}$$
$61$ $$25 + 5 T + T^{2}$$
$67$ $$25 - 5 T + T^{2}$$
$71$ $$( 6 + T )^{2}$$
$73$ $$256 + 16 T + T^{2}$$
$79$ $$4 + 2 T + T^{2}$$
$83$ $$( 3 + T )^{2}$$
$89$ $$225 - 15 T + T^{2}$$
$97$ $$( 14 + T )^{2}$$