# Properties

 Label 350.2.e.b Level $350$ Weight $2$ Character orbit 350.e Analytic conductor $2.795$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$350 = 2 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 350.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.79476407074$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( -2 + 2 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + 2 q^{6} + ( 3 - 2 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( -2 + 2 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + 2 q^{6} + ( 3 - 2 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{11} -2 \zeta_{6} q^{12} + q^{13} + ( -2 - \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( -6 + 6 \zeta_{6} ) q^{17} + ( -1 + \zeta_{6} ) q^{18} + \zeta_{6} q^{19} + ( -2 + 6 \zeta_{6} ) q^{21} + 3 q^{22} + 9 \zeta_{6} q^{23} + ( -2 + 2 \zeta_{6} ) q^{24} -\zeta_{6} q^{26} -4 q^{27} + ( -1 + 3 \zeta_{6} ) q^{28} + 6 q^{29} + ( -8 + 8 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -6 \zeta_{6} q^{33} + 6 q^{34} + q^{36} -7 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{38} + ( -2 + 2 \zeta_{6} ) q^{39} + 3 q^{41} + ( 6 - 4 \zeta_{6} ) q^{42} -2 q^{43} -3 \zeta_{6} q^{44} + ( 9 - 9 \zeta_{6} ) q^{46} + 9 \zeta_{6} q^{47} + 2 q^{48} + ( 5 - 8 \zeta_{6} ) q^{49} -12 \zeta_{6} q^{51} + ( -1 + \zeta_{6} ) q^{52} + ( 9 - 9 \zeta_{6} ) q^{53} + 4 \zeta_{6} q^{54} + ( 3 - 2 \zeta_{6} ) q^{56} -2 q^{57} -6 \zeta_{6} q^{58} -8 \zeta_{6} q^{61} + 8 q^{62} + ( -2 - \zeta_{6} ) q^{63} + q^{64} + ( -6 + 6 \zeta_{6} ) q^{66} + ( 8 - 8 \zeta_{6} ) q^{67} -6 \zeta_{6} q^{68} -18 q^{69} -\zeta_{6} q^{72} + ( -4 + 4 \zeta_{6} ) q^{73} + ( -7 + 7 \zeta_{6} ) q^{74} - q^{76} + ( -3 + 9 \zeta_{6} ) q^{77} + 2 q^{78} + 10 \zeta_{6} q^{79} + ( 11 - 11 \zeta_{6} ) q^{81} -3 \zeta_{6} q^{82} + ( -4 - 2 \zeta_{6} ) q^{84} + 2 \zeta_{6} q^{86} + ( -12 + 12 \zeta_{6} ) q^{87} + ( -3 + 3 \zeta_{6} ) q^{88} -6 \zeta_{6} q^{89} + ( 3 - 2 \zeta_{6} ) q^{91} -9 q^{92} -16 \zeta_{6} q^{93} + ( 9 - 9 \zeta_{6} ) q^{94} -2 \zeta_{6} q^{96} + 10 q^{97} + ( -8 + 3 \zeta_{6} ) q^{98} + 3 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} - 2q^{3} - q^{4} + 4q^{6} + 4q^{7} + 2q^{8} - q^{9} + O(q^{10})$$ $$2q - q^{2} - 2q^{3} - q^{4} + 4q^{6} + 4q^{7} + 2q^{8} - q^{9} - 3q^{11} - 2q^{12} + 2q^{13} - 5q^{14} - q^{16} - 6q^{17} - q^{18} + q^{19} + 2q^{21} + 6q^{22} + 9q^{23} - 2q^{24} - q^{26} - 8q^{27} + q^{28} + 12q^{29} - 8q^{31} - q^{32} - 6q^{33} + 12q^{34} + 2q^{36} - 7q^{37} + q^{38} - 2q^{39} + 6q^{41} + 8q^{42} - 4q^{43} - 3q^{44} + 9q^{46} + 9q^{47} + 4q^{48} + 2q^{49} - 12q^{51} - q^{52} + 9q^{53} + 4q^{54} + 4q^{56} - 4q^{57} - 6q^{58} - 8q^{61} + 16q^{62} - 5q^{63} + 2q^{64} - 6q^{66} + 8q^{67} - 6q^{68} - 36q^{69} - q^{72} - 4q^{73} - 7q^{74} - 2q^{76} + 3q^{77} + 4q^{78} + 10q^{79} + 11q^{81} - 3q^{82} - 10q^{84} + 2q^{86} - 12q^{87} - 3q^{88} - 6q^{89} + 4q^{91} - 18q^{92} - 16q^{93} + 9q^{94} - 2q^{96} + 20q^{97} - 13q^{98} + 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/350\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
51.1
 0.5 − 0.866025i 0.5 + 0.866025i
−0.500000 + 0.866025i −1.00000 1.73205i −0.500000 0.866025i 0 2.00000 2.00000 + 1.73205i 1.00000 −0.500000 + 0.866025i 0
151.1 −0.500000 0.866025i −1.00000 + 1.73205i −0.500000 + 0.866025i 0 2.00000 2.00000 1.73205i 1.00000 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.2.e.b 2
5.b even 2 1 70.2.e.d 2
5.c odd 4 2 350.2.j.d 4
7.c even 3 1 inner 350.2.e.b 2
7.c even 3 1 2450.2.a.bf 1
7.d odd 6 1 2450.2.a.v 1
15.d odd 2 1 630.2.k.d 2
20.d odd 2 1 560.2.q.b 2
35.c odd 2 1 490.2.e.g 2
35.i odd 6 1 490.2.a.d 1
35.i odd 6 1 490.2.e.g 2
35.j even 6 1 70.2.e.d 2
35.j even 6 1 490.2.a.a 1
35.k even 12 2 2450.2.c.e 2
35.l odd 12 2 350.2.j.d 4
35.l odd 12 2 2450.2.c.q 2
105.o odd 6 1 630.2.k.d 2
105.o odd 6 1 4410.2.a.x 1
105.p even 6 1 4410.2.a.bg 1
140.p odd 6 1 560.2.q.b 2
140.p odd 6 1 3920.2.a.bh 1
140.s even 6 1 3920.2.a.e 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.d 2 5.b even 2 1
70.2.e.d 2 35.j even 6 1
350.2.e.b 2 1.a even 1 1 trivial
350.2.e.b 2 7.c even 3 1 inner
350.2.j.d 4 5.c odd 4 2
350.2.j.d 4 35.l odd 12 2
490.2.a.a 1 35.j even 6 1
490.2.a.d 1 35.i odd 6 1
490.2.e.g 2 35.c odd 2 1
490.2.e.g 2 35.i odd 6 1
560.2.q.b 2 20.d odd 2 1
560.2.q.b 2 140.p odd 6 1
630.2.k.d 2 15.d odd 2 1
630.2.k.d 2 105.o odd 6 1
2450.2.a.v 1 7.d odd 6 1
2450.2.a.bf 1 7.c even 3 1
2450.2.c.e 2 35.k even 12 2
2450.2.c.q 2 35.l odd 12 2
3920.2.a.e 1 140.s even 6 1
3920.2.a.bh 1 140.p odd 6 1
4410.2.a.x 1 105.o odd 6 1
4410.2.a.bg 1 105.p even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(350, [\chi])$$:

 $$T_{3}^{2} + 2 T_{3} + 4$$ $$T_{11}^{2} + 3 T_{11} + 9$$ $$T_{13} - 1$$ $$T_{17}^{2} + 6 T_{17} + 36$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$4 + 2 T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 - 4 T + T^{2}$$
$11$ $$9 + 3 T + T^{2}$$
$13$ $$( -1 + T )^{2}$$
$17$ $$36 + 6 T + T^{2}$$
$19$ $$1 - T + T^{2}$$
$23$ $$81 - 9 T + T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$64 + 8 T + T^{2}$$
$37$ $$49 + 7 T + T^{2}$$
$41$ $$( -3 + T )^{2}$$
$43$ $$( 2 + T )^{2}$$
$47$ $$81 - 9 T + T^{2}$$
$53$ $$81 - 9 T + T^{2}$$
$59$ $$T^{2}$$
$61$ $$64 + 8 T + T^{2}$$
$67$ $$64 - 8 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$16 + 4 T + T^{2}$$
$79$ $$100 - 10 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$( -10 + T )^{2}$$