Properties

Label 350.2.c.d.99.1
Level $350$
Weight $2$
Character 350.99
Analytic conductor $2.795$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,2,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.2.c.d.99.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.00000i q^{3} -1.00000 q^{4} +2.00000 q^{6} +1.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +2.00000i q^{3} -1.00000 q^{4} +2.00000 q^{6} +1.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} -2.00000i q^{12} +4.00000i q^{13} +1.00000 q^{14} +1.00000 q^{16} +6.00000i q^{17} +1.00000i q^{18} -2.00000 q^{19} -2.00000 q^{21} -2.00000 q^{24} +4.00000 q^{26} +4.00000i q^{27} -1.00000i q^{28} +6.00000 q^{29} -4.00000 q^{31} -1.00000i q^{32} +6.00000 q^{34} +1.00000 q^{36} +2.00000i q^{37} +2.00000i q^{38} -8.00000 q^{39} +6.00000 q^{41} +2.00000i q^{42} -8.00000i q^{43} -12.0000i q^{47} +2.00000i q^{48} -1.00000 q^{49} -12.0000 q^{51} -4.00000i q^{52} -6.00000i q^{53} +4.00000 q^{54} -1.00000 q^{56} -4.00000i q^{57} -6.00000i q^{58} +6.00000 q^{59} +8.00000 q^{61} +4.00000i q^{62} -1.00000i q^{63} -1.00000 q^{64} -4.00000i q^{67} -6.00000i q^{68} -1.00000i q^{72} -2.00000i q^{73} +2.00000 q^{74} +2.00000 q^{76} +8.00000i q^{78} -8.00000 q^{79} -11.0000 q^{81} -6.00000i q^{82} +6.00000i q^{83} +2.00000 q^{84} -8.00000 q^{86} +12.0000i q^{87} +6.00000 q^{89} -4.00000 q^{91} -8.00000i q^{93} -12.0000 q^{94} +2.00000 q^{96} -10.0000i q^{97} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 4 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 4 q^{6} - 2 q^{9} + 2 q^{14} + 2 q^{16} - 4 q^{19} - 4 q^{21} - 4 q^{24} + 8 q^{26} + 12 q^{29} - 8 q^{31} + 12 q^{34} + 2 q^{36} - 16 q^{39} + 12 q^{41} - 2 q^{49} - 24 q^{51} + 8 q^{54} - 2 q^{56} + 12 q^{59} + 16 q^{61} - 2 q^{64} + 4 q^{74} + 4 q^{76} - 16 q^{79} - 22 q^{81} + 4 q^{84} - 16 q^{86} + 12 q^{89} - 8 q^{91} - 24 q^{94} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) − 2.00000i − 0.577350i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −2.00000 −0.408248
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 4.00000i 0.769800i
\(28\) − 1.00000i − 0.188982i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 2.00000i 0.324443i
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 2.00000i 0.308607i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 12.0000i − 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) 2.00000i 0.288675i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) − 4.00000i − 0.554700i
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) − 4.00000i − 0.529813i
\(58\) − 6.00000i − 0.787839i
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 4.00000i 0.508001i
\(63\) − 1.00000i − 0.125988i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) − 6.00000i − 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 8.00000i 0.905822i
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) − 6.00000i − 0.662589i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) −12.0000 −1.23771
\(95\) 0 0
\(96\) 2.00000 0.204124
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 12.0000i 1.18818i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) − 4.00000i − 0.384900i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 1.00000i 0.0944911i
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) − 4.00000i − 0.369800i
\(118\) − 6.00000i − 0.552345i
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) − 8.00000i − 0.724286i
\(123\) 12.0000i 1.08200i
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −1.00000 −0.0890871
\(127\) − 16.0000i − 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 16.0000 1.40872
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) − 2.00000i − 0.173422i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 24.0000 2.02116
\(142\) 0 0
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) − 2.00000i − 0.164957i
\(148\) − 2.00000i − 0.164399i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) − 2.00000i − 0.162221i
\(153\) − 6.00000i − 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 8.00000 0.640513
\(157\) − 4.00000i − 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 11.0000i 0.864242i
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) − 12.0000i − 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) − 2.00000i − 0.154303i
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 8.00000i 0.609994i
\(173\) 12.0000i 0.912343i 0.889892 + 0.456172i \(0.150780\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) − 6.00000i − 0.449719i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 4.00000i 0.296500i
\(183\) 16.0000i 1.18275i
\(184\) 0 0
\(185\) 0 0
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) 12.0000i 0.875190i
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) − 2.00000i − 0.144338i
\(193\) − 14.0000i − 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 12.0000 0.840168
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) − 4.00000i − 0.271538i
\(218\) 2.00000i 0.135457i
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 4.00000i 0.268462i
\(223\) − 8.00000i − 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 4.00000 0.264327 0.132164 0.991228i \(-0.457808\pi\)
0.132164 + 0.991228i \(0.457808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000i 0.393919i
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) − 16.0000i − 1.03931i
\(238\) 6.00000i 0.388922i
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 11.0000i 0.707107i
\(243\) − 10.0000i − 0.641500i
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 12.0000 0.765092
\(247\) − 8.00000i − 0.509028i
\(248\) − 4.00000i − 0.254000i
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 1.00000i 0.0629941i
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) − 16.0000i − 0.996116i
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) − 18.0000i − 1.11204i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.00000 −0.122628
\(267\) 12.0000i 0.734388i
\(268\) 4.00000i 0.244339i
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 6.00000i 0.363803i
\(273\) − 8.00000i − 0.484182i
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) − 24.0000i − 1.42918i
\(283\) 22.0000i 1.30776i 0.756596 + 0.653882i \(0.226861\pi\)
−0.756596 + 0.653882i \(0.773139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000i 0.354169i
\(288\) 1.00000i 0.0589256i
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 20.0000 1.17242
\(292\) 2.00000i 0.117041i
\(293\) − 24.0000i − 1.40209i −0.713115 0.701047i \(-0.752716\pi\)
0.713115 0.701047i \(-0.247284\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) − 18.0000i − 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) − 8.00000i − 0.460348i
\(303\) 0 0
\(304\) −2.00000 −0.114708
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) − 8.00000i − 0.452911i
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) − 12.0000i − 0.672927i
\(319\) 0 0
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) − 12.0000i − 0.667698i
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) 16.0000 0.886158
\(327\) − 4.00000i − 0.221201i
\(328\) 6.00000i 0.331295i
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) − 6.00000i − 0.329293i
\(333\) − 2.00000i − 0.109599i
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 0 0
\(342\) − 2.00000i − 0.108148i
\(343\) − 1.00000i − 0.0539949i
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) − 24.0000i − 1.28839i −0.764862 0.644194i \(-0.777193\pi\)
0.764862 0.644194i \(-0.222807\pi\)
\(348\) − 12.0000i − 0.643268i
\(349\) 28.0000 1.49881 0.749403 0.662114i \(-0.230341\pi\)
0.749403 + 0.662114i \(0.230341\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) − 18.0000i − 0.958043i −0.877803 0.479022i \(-0.840992\pi\)
0.877803 0.479022i \(-0.159008\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) − 12.0000i − 0.635107i
\(358\) − 12.0000i − 0.634220i
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) − 20.0000i − 1.05118i
\(363\) − 22.0000i − 1.15470i
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) 16.0000 0.836333
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 6.00000 0.311504
\(372\) 8.00000i 0.414781i
\(373\) − 14.0000i − 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 24.0000i 1.23606i
\(378\) 4.00000i 0.205738i
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 32.0000 1.63941
\(382\) − 24.0000i − 1.22795i
\(383\) − 36.0000i − 1.83951i −0.392488 0.919757i \(-0.628386\pi\)
0.392488 0.919757i \(-0.371614\pi\)
\(384\) −2.00000 −0.102062
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 8.00000i 0.406663i
\(388\) 10.0000i 0.507673i
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 1.00000i − 0.0505076i
\(393\) 36.0000i 1.81596i
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) 20.0000i 1.00377i 0.864934 + 0.501886i \(0.167360\pi\)
−0.864934 + 0.501886i \(0.832640\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) − 8.00000i − 0.399004i
\(403\) − 16.0000i − 0.797017i
\(404\) 0 0
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 0 0
\(408\) − 12.0000i − 0.594089i
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) −36.0000 −1.77575
\(412\) − 4.00000i − 0.197066i
\(413\) 6.00000i 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) − 28.0000i − 1.37117i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 12.0000i 0.583460i
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 8.00000i 0.387147i
\(428\) − 12.0000i − 0.580042i
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) − 4.00000i − 0.191127i
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 24.0000i 1.14156i
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) −8.00000 −0.378811
\(447\) 36.0000i 1.70274i
\(448\) − 1.00000i − 0.0472456i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.00000i 0.282216i
\(453\) 16.0000i 0.751746i
\(454\) 18.0000 0.844782
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) − 10.0000i − 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) − 4.00000i − 0.186908i
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) − 32.0000i − 1.48717i −0.668644 0.743583i \(-0.733125\pi\)
0.668644 0.743583i \(-0.266875\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 8.00000 0.368621
\(472\) 6.00000i 0.276172i
\(473\) 0 0
\(474\) −16.0000 −0.734904
\(475\) 0 0
\(476\) 6.00000 0.275010
\(477\) 6.00000i 0.274721i
\(478\) 24.0000i 1.09773i
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 10.0000i 0.455488i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) − 16.0000i − 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 8.00000i 0.362143i
\(489\) −32.0000 −1.44709
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) − 12.0000i − 0.541002i
\(493\) 36.0000i 1.62136i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 12.0000i 0.537733i
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 18.0000i 0.803379i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 0.0445435
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.00000i − 0.266469i
\(508\) 16.0000i 0.709885i
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) − 1.00000i − 0.0441942i
\(513\) − 8.00000i − 0.353209i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) −16.0000 −0.704361
\(517\) 0 0
\(518\) 2.00000i 0.0878750i
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 6.00000i 0.262613i
\(523\) − 2.00000i − 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) −18.0000 −0.786334
\(525\) 0 0
\(526\) 0 0
\(527\) − 24.0000i − 1.04546i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 2.00000i 0.0867110i
\(533\) 24.0000i 1.03956i
\(534\) 12.0000 0.519291
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 24.0000i 1.03568i
\(538\) − 12.0000i − 0.517357i
\(539\) 0 0
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 40.0000i 1.71656i
\(544\) 6.00000 0.257248
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) − 18.0000i − 0.768922i
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) − 8.00000i − 0.340195i
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) − 4.00000i − 0.169334i
\(559\) 32.0000 1.35346
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000i 0.253095i
\(563\) − 30.0000i − 1.26435i −0.774826 0.632175i \(-0.782163\pi\)
0.774826 0.632175i \(-0.217837\pi\)
\(564\) −24.0000 −1.01058
\(565\) 0 0
\(566\) 22.0000 0.924729
\(567\) − 11.0000i − 0.461957i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 48.0000i 2.00523i
\(574\) 6.00000 0.250435
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 19.0000i 0.790296i
\(579\) 28.0000 1.16364
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) − 20.0000i − 0.829027i
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) −24.0000 −0.991431
\(587\) − 42.0000i − 1.73353i −0.498721 0.866763i \(-0.666197\pi\)
0.498721 0.866763i \(-0.333803\pi\)
\(588\) 2.00000i 0.0824786i
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 36.0000 1.48084
\(592\) 2.00000i 0.0821995i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) − 40.0000i − 1.63709i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) − 8.00000i − 0.326056i
\(603\) 4.00000i 0.162893i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 2.00000i 0.0811107i
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 6.00000i 0.242536i
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) 2.00000 0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 8.00000i 0.321807i
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.0000i 0.962312i
\(623\) 6.00000i 0.240385i
\(624\) −8.00000 −0.320256
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) − 8.00000i − 0.318223i
\(633\) − 8.00000i − 0.317971i
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) −12.0000 −0.475831
\(637\) − 4.00000i − 0.158486i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 24.0000i 0.947204i
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) − 12.0000i − 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) − 11.0000i − 0.432121i
\(649\) 0 0
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) − 16.0000i − 0.626608i
\(653\) − 18.0000i − 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 2.00000i 0.0780274i
\(658\) − 12.0000i − 0.467809i
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) − 8.00000i − 0.310929i
\(663\) − 48.0000i − 1.86417i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 12.0000i 0.464294i
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 2.00000i 0.0771517i
\(673\) − 26.0000i − 1.00223i −0.865382 0.501113i \(-0.832924\pi\)
0.865382 0.501113i \(-0.167076\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) − 12.0000i − 0.461197i −0.973049 0.230599i \(-0.925932\pi\)
0.973049 0.230599i \(-0.0740685\pi\)
\(678\) − 12.0000i − 0.460857i
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) −36.0000 −1.37952
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) −2.00000 −0.0764719
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 8.00000i 0.305219i
\(688\) − 8.00000i − 0.304997i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) − 12.0000i − 0.456172i
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) −12.0000 −0.454859
\(697\) 36.0000i 1.36360i
\(698\) − 28.0000i − 1.05982i
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 16.0000i 0.603881i
\(703\) − 4.00000i − 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) − 12.0000i − 0.450988i
\(709\) 46.0000 1.72757 0.863783 0.503864i \(-0.168089\pi\)
0.863783 + 0.503864i \(0.168089\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 6.00000i 0.224860i
\(713\) 0 0
\(714\) −12.0000 −0.449089
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) − 48.0000i − 1.79259i
\(718\) − 24.0000i − 0.895672i
\(719\) −12.0000 −0.447524 −0.223762 0.974644i \(-0.571834\pi\)
−0.223762 + 0.974644i \(0.571834\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 15.0000i 0.558242i
\(723\) − 20.0000i − 0.743808i
\(724\) −20.0000 −0.743294
\(725\) 0 0
\(726\) −22.0000 −0.816497
\(727\) 44.0000i 1.63187i 0.578144 + 0.815935i \(0.303777\pi\)
−0.578144 + 0.815935i \(0.696223\pi\)
\(728\) − 4.00000i − 0.148250i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 48.0000 1.77534
\(732\) − 16.0000i − 0.591377i
\(733\) 40.0000i 1.47743i 0.674016 + 0.738717i \(0.264568\pi\)
−0.674016 + 0.738717i \(0.735432\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 6.00000i 0.220863i
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) − 6.00000i − 0.220267i
\(743\) − 24.0000i − 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 8.00000 0.293294
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) − 6.00000i − 0.219529i
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) − 12.0000i − 0.437595i
\(753\) − 36.0000i − 1.31191i
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) − 16.0000i − 0.581146i
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) − 32.0000i − 1.15924i
\(763\) − 2.00000i − 0.0724049i
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) 24.0000i 0.866590i
\(768\) 2.00000i 0.0721688i
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) 14.0000i 0.503871i
\(773\) − 24.0000i − 0.863220i −0.902060 0.431610i \(-0.857946\pi\)
0.902060 0.431610i \(-0.142054\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 10.0000 0.358979
\(777\) − 4.00000i − 0.143499i
\(778\) 18.0000i 0.645331i
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 24.0000i 0.857690i
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) 36.0000 1.28408
\(787\) − 22.0000i − 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 32.0000i 1.13635i
\(794\) 20.0000 0.709773
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) − 12.0000i − 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) − 4.00000i − 0.141598i
\(799\) 72.0000 2.54718
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 18.0000i 0.635602i
\(803\) 0 0
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) 24.0000i 0.844840i
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) − 6.00000i − 0.210559i
\(813\) − 32.0000i − 1.12229i
\(814\) 0 0
\(815\) 0 0
\(816\) −12.0000 −0.420084
\(817\) 16.0000i 0.559769i
\(818\) 14.0000i 0.489499i
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 36.0000i 1.25564i
\(823\) 40.0000i 1.39431i 0.716919 + 0.697156i \(0.245552\pi\)
−0.716919 + 0.697156i \(0.754448\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) − 36.0000i − 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) −56.0000 −1.94496 −0.972480 0.232986i \(-0.925151\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) 0 0
\(831\) 20.0000 0.693792
\(832\) − 4.00000i − 0.138675i
\(833\) − 6.00000i − 0.207888i
\(834\) −28.0000 −0.969561
\(835\) 0 0
\(836\) 0 0
\(837\) − 16.0000i − 0.553041i
\(838\) 6.00000i 0.207267i
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000i 0.344623i
\(843\) − 12.0000i − 0.413302i
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) − 11.0000i − 0.377964i
\(848\) − 6.00000i − 0.206041i
\(849\) −44.0000 −1.51008
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 44.0000i − 1.50653i −0.657716 0.753266i \(-0.728477\pi\)
0.657716 0.753266i \(-0.271523\pi\)
\(854\) 8.00000 0.273754
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) − 18.0000i − 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) − 24.0000i − 0.817443i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 4.00000 0.136083
\(865\) 0 0
\(866\) 34.0000 1.15537
\(867\) − 38.0000i − 1.29055i
\(868\) 4.00000i 0.135769i
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) − 2.00000i − 0.0677285i
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) −4.00000 −0.135147
\(877\) − 22.0000i − 0.742887i −0.928456 0.371444i \(-0.878863\pi\)
0.928456 0.371444i \(-0.121137\pi\)
\(878\) 8.00000i 0.269987i
\(879\) 48.0000 1.61900
\(880\) 0 0
\(881\) −54.0000 −1.81931 −0.909653 0.415369i \(-0.863653\pi\)
−0.909653 + 0.415369i \(0.863653\pi\)
\(882\) − 1.00000i − 0.0336718i
\(883\) − 20.0000i − 0.673054i −0.941674 0.336527i \(-0.890748\pi\)
0.941674 0.336527i \(-0.109252\pi\)
\(884\) 24.0000 0.807207
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) − 36.0000i − 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) − 4.00000i − 0.134231i
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000i 0.267860i
\(893\) 24.0000i 0.803129i
\(894\) 36.0000 1.20402
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 18.0000i 0.600668i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 16.0000 0.531564
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) − 18.0000i − 0.597351i
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) − 4.00000i − 0.132453i
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 18.0000i 0.594412i
\(918\) 24.0000i 0.792118i
\(919\) −56.0000 −1.84727 −0.923635 0.383274i \(-0.874797\pi\)
−0.923635 + 0.383274i \(0.874797\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) − 12.0000i − 0.395199i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −32.0000 −1.05159
\(927\) − 4.00000i − 0.131377i
\(928\) − 6.00000i − 0.196960i
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) − 6.00000i − 0.196537i
\(933\) − 48.0000i − 1.57145i
\(934\) −6.00000 −0.196326
\(935\) 0 0
\(936\) 4.00000 0.130744
\(937\) 2.00000i 0.0653372i 0.999466 + 0.0326686i \(0.0104006\pi\)
−0.999466 + 0.0326686i \(0.989599\pi\)
\(938\) − 4.00000i − 0.130605i
\(939\) −20.0000 −0.652675
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) − 8.00000i − 0.260654i
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000i 0.779895i 0.920837 + 0.389948i \(0.127507\pi\)
−0.920837 + 0.389948i \(0.872493\pi\)
\(948\) 16.0000i 0.519656i
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) − 6.00000i − 0.194461i
\(953\) 54.0000i 1.74923i 0.484817 + 0.874616i \(0.338886\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) − 36.0000i − 1.16311i
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 8.00000i 0.257930i
\(963\) − 12.0000i − 0.386695i
\(964\) 10.0000 0.322078
\(965\) 0 0
\(966\) 0 0
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 10.0000i 0.320750i
\(973\) − 14.0000i − 0.448819i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) − 6.00000i − 0.191957i −0.995383 0.0959785i \(-0.969402\pi\)
0.995383 0.0959785i \(-0.0305980\pi\)
\(978\) 32.0000i 1.02325i
\(979\) 0 0
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 12.0000i 0.382935i
\(983\) 36.0000i 1.14822i 0.818778 + 0.574111i \(0.194652\pi\)
−0.818778 + 0.574111i \(0.805348\pi\)
\(984\) −12.0000 −0.382546
\(985\) 0 0
\(986\) 36.0000 1.14647
\(987\) 24.0000i 0.763928i
\(988\) 8.00000i 0.254514i
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 16.0000i 0.507745i
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) 8.00000i 0.253363i 0.991943 + 0.126681i \(0.0404325\pi\)
−0.991943 + 0.126681i \(0.959567\pi\)
\(998\) − 4.00000i − 0.126618i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.c.d.99.1 2
3.2 odd 2 3150.2.g.j.2899.2 2
4.3 odd 2 2800.2.g.h.449.1 2
5.2 odd 4 350.2.a.f.1.1 1
5.3 odd 4 14.2.a.a.1.1 1
5.4 even 2 inner 350.2.c.d.99.2 2
7.6 odd 2 2450.2.c.c.99.1 2
15.2 even 4 3150.2.a.i.1.1 1
15.8 even 4 126.2.a.b.1.1 1
15.14 odd 2 3150.2.g.j.2899.1 2
20.3 even 4 112.2.a.c.1.1 1
20.7 even 4 2800.2.a.g.1.1 1
20.19 odd 2 2800.2.g.h.449.2 2
35.3 even 12 98.2.c.a.79.1 2
35.13 even 4 98.2.a.a.1.1 1
35.18 odd 12 98.2.c.b.79.1 2
35.23 odd 12 98.2.c.b.67.1 2
35.27 even 4 2450.2.a.t.1.1 1
35.33 even 12 98.2.c.a.67.1 2
35.34 odd 2 2450.2.c.c.99.2 2
40.3 even 4 448.2.a.a.1.1 1
40.13 odd 4 448.2.a.g.1.1 1
45.13 odd 12 1134.2.f.l.379.1 2
45.23 even 12 1134.2.f.f.379.1 2
45.38 even 12 1134.2.f.f.757.1 2
45.43 odd 12 1134.2.f.l.757.1 2
55.43 even 4 1694.2.a.e.1.1 1
60.23 odd 4 1008.2.a.h.1.1 1
65.8 even 4 2366.2.d.b.337.1 2
65.18 even 4 2366.2.d.b.337.2 2
65.38 odd 4 2366.2.a.j.1.1 1
80.3 even 4 1792.2.b.g.897.2 2
80.13 odd 4 1792.2.b.c.897.1 2
80.43 even 4 1792.2.b.g.897.1 2
80.53 odd 4 1792.2.b.c.897.2 2
85.33 odd 4 4046.2.a.f.1.1 1
95.18 even 4 5054.2.a.c.1.1 1
105.23 even 12 882.2.g.c.361.1 2
105.38 odd 12 882.2.g.d.667.1 2
105.53 even 12 882.2.g.c.667.1 2
105.68 odd 12 882.2.g.d.361.1 2
105.83 odd 4 882.2.a.i.1.1 1
115.68 even 4 7406.2.a.a.1.1 1
120.53 even 4 4032.2.a.w.1.1 1
120.83 odd 4 4032.2.a.r.1.1 1
140.3 odd 12 784.2.i.i.177.1 2
140.23 even 12 784.2.i.c.753.1 2
140.83 odd 4 784.2.a.b.1.1 1
140.103 odd 12 784.2.i.i.753.1 2
140.123 even 12 784.2.i.c.177.1 2
280.13 even 4 3136.2.a.e.1.1 1
280.83 odd 4 3136.2.a.z.1.1 1
420.83 even 4 7056.2.a.bd.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.2.a.a.1.1 1 5.3 odd 4
98.2.a.a.1.1 1 35.13 even 4
98.2.c.a.67.1 2 35.33 even 12
98.2.c.a.79.1 2 35.3 even 12
98.2.c.b.67.1 2 35.23 odd 12
98.2.c.b.79.1 2 35.18 odd 12
112.2.a.c.1.1 1 20.3 even 4
126.2.a.b.1.1 1 15.8 even 4
350.2.a.f.1.1 1 5.2 odd 4
350.2.c.d.99.1 2 1.1 even 1 trivial
350.2.c.d.99.2 2 5.4 even 2 inner
448.2.a.a.1.1 1 40.3 even 4
448.2.a.g.1.1 1 40.13 odd 4
784.2.a.b.1.1 1 140.83 odd 4
784.2.i.c.177.1 2 140.123 even 12
784.2.i.c.753.1 2 140.23 even 12
784.2.i.i.177.1 2 140.3 odd 12
784.2.i.i.753.1 2 140.103 odd 12
882.2.a.i.1.1 1 105.83 odd 4
882.2.g.c.361.1 2 105.23 even 12
882.2.g.c.667.1 2 105.53 even 12
882.2.g.d.361.1 2 105.68 odd 12
882.2.g.d.667.1 2 105.38 odd 12
1008.2.a.h.1.1 1 60.23 odd 4
1134.2.f.f.379.1 2 45.23 even 12
1134.2.f.f.757.1 2 45.38 even 12
1134.2.f.l.379.1 2 45.13 odd 12
1134.2.f.l.757.1 2 45.43 odd 12
1694.2.a.e.1.1 1 55.43 even 4
1792.2.b.c.897.1 2 80.13 odd 4
1792.2.b.c.897.2 2 80.53 odd 4
1792.2.b.g.897.1 2 80.43 even 4
1792.2.b.g.897.2 2 80.3 even 4
2366.2.a.j.1.1 1 65.38 odd 4
2366.2.d.b.337.1 2 65.8 even 4
2366.2.d.b.337.2 2 65.18 even 4
2450.2.a.t.1.1 1 35.27 even 4
2450.2.c.c.99.1 2 7.6 odd 2
2450.2.c.c.99.2 2 35.34 odd 2
2800.2.a.g.1.1 1 20.7 even 4
2800.2.g.h.449.1 2 4.3 odd 2
2800.2.g.h.449.2 2 20.19 odd 2
3136.2.a.e.1.1 1 280.13 even 4
3136.2.a.z.1.1 1 280.83 odd 4
3150.2.a.i.1.1 1 15.2 even 4
3150.2.g.j.2899.1 2 15.14 odd 2
3150.2.g.j.2899.2 2 3.2 odd 2
4032.2.a.r.1.1 1 120.83 odd 4
4032.2.a.w.1.1 1 120.53 even 4
4046.2.a.f.1.1 1 85.33 odd 4
5054.2.a.c.1.1 1 95.18 even 4
7056.2.a.bd.1.1 1 420.83 even 4
7406.2.a.a.1.1 1 115.68 even 4