Properties

Label 350.2.c.c.99.2
Level $350$
Weight $2$
Character 350.99
Analytic conductor $2.795$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,2,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.2.c.c.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} +1.00000i q^{7} -1.00000i q^{8} +2.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} +1.00000i q^{7} -1.00000i q^{8} +2.00000 q^{9} +3.00000 q^{11} +1.00000i q^{12} -2.00000i q^{13} -1.00000 q^{14} +1.00000 q^{16} +3.00000i q^{17} +2.00000i q^{18} +7.00000 q^{19} +1.00000 q^{21} +3.00000i q^{22} -1.00000 q^{24} +2.00000 q^{26} -5.00000i q^{27} -1.00000i q^{28} +6.00000 q^{29} -4.00000 q^{31} +1.00000i q^{32} -3.00000i q^{33} -3.00000 q^{34} -2.00000 q^{36} +8.00000i q^{37} +7.00000i q^{38} -2.00000 q^{39} -9.00000 q^{41} +1.00000i q^{42} -8.00000i q^{43} -3.00000 q^{44} -6.00000i q^{47} -1.00000i q^{48} -1.00000 q^{49} +3.00000 q^{51} +2.00000i q^{52} +12.0000i q^{53} +5.00000 q^{54} +1.00000 q^{56} -7.00000i q^{57} +6.00000i q^{58} -12.0000 q^{59} -10.0000 q^{61} -4.00000i q^{62} +2.00000i q^{63} -1.00000 q^{64} +3.00000 q^{66} -7.00000i q^{67} -3.00000i q^{68} +6.00000 q^{71} -2.00000i q^{72} -5.00000i q^{73} -8.00000 q^{74} -7.00000 q^{76} +3.00000i q^{77} -2.00000i q^{78} -14.0000 q^{79} +1.00000 q^{81} -9.00000i q^{82} +9.00000i q^{83} -1.00000 q^{84} +8.00000 q^{86} -6.00000i q^{87} -3.00000i q^{88} +15.0000 q^{89} +2.00000 q^{91} +4.00000i q^{93} +6.00000 q^{94} +1.00000 q^{96} -10.0000i q^{97} -1.00000i q^{98} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{6} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 2 q^{6} + 4 q^{9} + 6 q^{11} - 2 q^{14} + 2 q^{16} + 14 q^{19} + 2 q^{21} - 2 q^{24} + 4 q^{26} + 12 q^{29} - 8 q^{31} - 6 q^{34} - 4 q^{36} - 4 q^{39} - 18 q^{41} - 6 q^{44} - 2 q^{49} + 6 q^{51} + 10 q^{54} + 2 q^{56} - 24 q^{59} - 20 q^{61} - 2 q^{64} + 6 q^{66} + 12 q^{71} - 16 q^{74} - 14 q^{76} - 28 q^{79} + 2 q^{81} - 2 q^{84} + 16 q^{86} + 30 q^{89} + 4 q^{91} + 12 q^{94} + 2 q^{96} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 1.00000i 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 2.00000i 0.471405i
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 3.00000i 0.639602i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) − 5.00000i − 0.962250i
\(28\) − 1.00000i − 0.188982i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 3.00000i − 0.522233i
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 7.00000i 1.13555i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 1.00000i 0.154303i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.00000i − 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 2.00000i 0.277350i
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 5.00000 0.680414
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) − 7.00000i − 0.927173i
\(58\) 6.00000i 0.787839i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) − 4.00000i − 0.508001i
\(63\) 2.00000i 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) − 7.00000i − 0.855186i −0.903971 0.427593i \(-0.859362\pi\)
0.903971 0.427593i \(-0.140638\pi\)
\(68\) − 3.00000i − 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) − 2.00000i − 0.235702i
\(73\) − 5.00000i − 0.585206i −0.956234 0.292603i \(-0.905479\pi\)
0.956234 0.292603i \(-0.0945214\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 3.00000i 0.341882i
\(78\) − 2.00000i − 0.226455i
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 9.00000i − 0.993884i
\(83\) 9.00000i 0.987878i 0.869496 + 0.493939i \(0.164443\pi\)
−0.869496 + 0.493939i \(0.835557\pi\)
\(84\) −1.00000 −0.109109
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) − 6.00000i − 0.643268i
\(88\) − 3.00000i − 0.319801i
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 3.00000i 0.297044i
\(103\) − 20.0000i − 1.97066i −0.170664 0.985329i \(-0.554591\pi\)
0.170664 0.985329i \(-0.445409\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 5.00000i 0.481125i
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 1.00000i 0.0944911i
\(113\) 9.00000i 0.846649i 0.905978 + 0.423324i \(0.139137\pi\)
−0.905978 + 0.423324i \(0.860863\pi\)
\(114\) 7.00000 0.655610
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) − 4.00000i − 0.369800i
\(118\) − 12.0000i − 1.10469i
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) − 10.0000i − 0.905357i
\(123\) 9.00000i 0.811503i
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 3.00000i 0.261116i
\(133\) 7.00000i 0.606977i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 21.0000i 1.79415i 0.441877 + 0.897076i \(0.354313\pi\)
−0.441877 + 0.897076i \(0.645687\pi\)
\(138\) 0 0
\(139\) 7.00000 0.593732 0.296866 0.954919i \(-0.404058\pi\)
0.296866 + 0.954919i \(0.404058\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 6.00000i 0.503509i
\(143\) − 6.00000i − 0.501745i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) 5.00000 0.413803
\(147\) 1.00000i 0.0824786i
\(148\) − 8.00000i − 0.657596i
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) − 7.00000i − 0.567775i
\(153\) 6.00000i 0.485071i
\(154\) −3.00000 −0.241747
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 20.0000i 1.59617i 0.602542 + 0.798087i \(0.294154\pi\)
−0.602542 + 0.798087i \(0.705846\pi\)
\(158\) − 14.0000i − 1.11378i
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) − 5.00000i − 0.391630i −0.980641 0.195815i \(-0.937265\pi\)
0.980641 0.195815i \(-0.0627352\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) − 1.00000i − 0.0771517i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 14.0000 1.07061
\(172\) 8.00000i 0.609994i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 12.0000i 0.901975i
\(178\) 15.0000i 1.12430i
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) −4.00000 −0.293294
\(187\) 9.00000i 0.658145i
\(188\) 6.00000i 0.437595i
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 5.00000i − 0.359908i −0.983675 0.179954i \(-0.942405\pi\)
0.983675 0.179954i \(-0.0575949\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 6.00000i 0.426401i
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) −7.00000 −0.493742
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) −3.00000 −0.210042
\(205\) 0 0
\(206\) 20.0000 1.39347
\(207\) 0 0
\(208\) − 2.00000i − 0.138675i
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) − 12.0000i − 0.824163i
\(213\) − 6.00000i − 0.411113i
\(214\) −3.00000 −0.205076
\(215\) 0 0
\(216\) −5.00000 −0.340207
\(217\) − 4.00000i − 0.271538i
\(218\) − 14.0000i − 0.948200i
\(219\) −5.00000 −0.337869
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 8.00000i 0.536925i
\(223\) − 14.0000i − 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −9.00000 −0.598671
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 7.00000i 0.463586i
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) 3.00000 0.197386
\(232\) − 6.00000i − 0.393919i
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 14.0000i 0.909398i
\(238\) − 3.00000i − 0.194461i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −25.0000 −1.61039 −0.805196 0.593009i \(-0.797940\pi\)
−0.805196 + 0.593009i \(0.797940\pi\)
\(242\) − 2.00000i − 0.128565i
\(243\) − 16.0000i − 1.02640i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) − 14.0000i − 0.890799i
\(248\) 4.00000i 0.254000i
\(249\) 9.00000 0.570352
\(250\) 0 0
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) − 2.00000i − 0.125988i
\(253\) 0 0
\(254\) −2.00000 −0.125491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 30.0000i − 1.87135i −0.352865 0.935674i \(-0.614792\pi\)
0.352865 0.935674i \(-0.385208\pi\)
\(258\) − 8.00000i − 0.498058i
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 12.0000 0.742781
\(262\) 0 0
\(263\) − 6.00000i − 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) −3.00000 −0.184637
\(265\) 0 0
\(266\) −7.00000 −0.429198
\(267\) − 15.0000i − 0.917985i
\(268\) 7.00000i 0.427593i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 3.00000i 0.181902i
\(273\) − 2.00000i − 0.121046i
\(274\) −21.0000 −1.26866
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 7.00000i 0.419832i
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) − 6.00000i − 0.357295i
\(283\) 1.00000i 0.0594438i 0.999558 + 0.0297219i \(0.00946217\pi\)
−0.999558 + 0.0297219i \(0.990538\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) − 9.00000i − 0.531253i
\(288\) 2.00000i 0.117851i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 5.00000i 0.292603i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) − 15.0000i − 0.870388i
\(298\) − 12.0000i − 0.695141i
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 8.00000i 0.460348i
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) − 7.00000i − 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) − 3.00000i − 0.170941i
\(309\) −20.0000 −1.13776
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 2.00000i 0.113228i
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) −20.0000 −1.12867
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) − 12.0000i − 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) 12.0000i 0.672927i
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 21.0000i 1.16847i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 5.00000 0.276924
\(327\) 14.0000i 0.774202i
\(328\) 9.00000i 0.496942i
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −25.0000 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(332\) − 9.00000i − 0.493939i
\(333\) 16.0000i 0.876795i
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 1.00000 0.0545545
\(337\) − 13.0000i − 0.708155i −0.935216 0.354078i \(-0.884795\pi\)
0.935216 0.354078i \(-0.115205\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 9.00000 0.488813
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 14.0000i 0.757033i
\(343\) − 1.00000i − 0.0539949i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) − 21.0000i − 1.12734i −0.826000 0.563670i \(-0.809389\pi\)
0.826000 0.563670i \(-0.190611\pi\)
\(348\) 6.00000i 0.321634i
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 3.00000i 0.159901i
\(353\) − 30.0000i − 1.59674i −0.602168 0.798369i \(-0.705696\pi\)
0.602168 0.798369i \(-0.294304\pi\)
\(354\) −12.0000 −0.637793
\(355\) 0 0
\(356\) −15.0000 −0.794998
\(357\) 3.00000i 0.158777i
\(358\) − 3.00000i − 0.158555i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 2.00000i 0.105118i
\(363\) 2.00000i 0.104973i
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) −10.0000 −0.522708
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) − 4.00000i − 0.207390i
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) −9.00000 −0.465379
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) − 12.0000i − 0.618031i
\(378\) 5.00000i 0.257172i
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) − 6.00000i − 0.306987i
\(383\) 30.0000i 1.53293i 0.642287 + 0.766464i \(0.277986\pi\)
−0.642287 + 0.766464i \(0.722014\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) − 16.0000i − 0.813326i
\(388\) 10.0000i 0.507673i
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) −6.00000 −0.301511
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) − 14.0000i − 0.701757i
\(399\) 7.00000 0.350438
\(400\) 0 0
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) − 7.00000i − 0.349128i
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) 24.0000i 1.18964i
\(408\) − 3.00000i − 0.148522i
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) 21.0000 1.03585
\(412\) 20.0000i 0.985329i
\(413\) − 12.0000i − 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) − 7.00000i − 0.342791i
\(418\) 21.0000i 1.02714i
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 17.0000i 0.827547i
\(423\) − 12.0000i − 0.583460i
\(424\) 12.0000 0.582772
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) − 10.0000i − 0.483934i
\(428\) − 3.00000i − 0.145010i
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) − 5.00000i − 0.240563i
\(433\) − 11.0000i − 0.528626i −0.964437 0.264313i \(-0.914855\pi\)
0.964437 0.264313i \(-0.0851452\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) − 5.00000i − 0.238909i
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 6.00000i 0.285391i
\(443\) − 21.0000i − 0.997740i −0.866677 0.498870i \(-0.833748\pi\)
0.866677 0.498870i \(-0.166252\pi\)
\(444\) −8.00000 −0.379663
\(445\) 0 0
\(446\) 14.0000 0.662919
\(447\) 12.0000i 0.567581i
\(448\) − 1.00000i − 0.0472456i
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) 0 0
\(451\) −27.0000 −1.27138
\(452\) − 9.00000i − 0.423324i
\(453\) − 8.00000i − 0.375873i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) −7.00000 −0.327805
\(457\) 17.0000i 0.795226i 0.917553 + 0.397613i \(0.130161\pi\)
−0.917553 + 0.397613i \(0.869839\pi\)
\(458\) − 26.0000i − 1.21490i
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 3.00000i 0.139573i
\(463\) − 8.00000i − 0.371792i −0.982569 0.185896i \(-0.940481\pi\)
0.982569 0.185896i \(-0.0595187\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 12.0000i 0.552345i
\(473\) − 24.0000i − 1.10352i
\(474\) −14.0000 −0.643041
\(475\) 0 0
\(476\) 3.00000 0.137505
\(477\) 24.0000i 1.09888i
\(478\) 12.0000i 0.548867i
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) − 25.0000i − 1.13872i
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) 16.0000 0.725775
\(487\) − 34.0000i − 1.54069i −0.637629 0.770344i \(-0.720085\pi\)
0.637629 0.770344i \(-0.279915\pi\)
\(488\) 10.0000i 0.452679i
\(489\) −5.00000 −0.226108
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) − 9.00000i − 0.405751i
\(493\) 18.0000i 0.810679i
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 6.00000i 0.269137i
\(498\) 9.00000i 0.403300i
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 15.0000i 0.669483i
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) 0 0
\(507\) − 9.00000i − 0.399704i
\(508\) − 2.00000i − 0.0887357i
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) 5.00000 0.221187
\(512\) 1.00000i 0.0441942i
\(513\) − 35.0000i − 1.54529i
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) − 18.0000i − 0.791639i
\(518\) − 8.00000i − 0.351500i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 39.0000 1.70862 0.854311 0.519763i \(-0.173980\pi\)
0.854311 + 0.519763i \(0.173980\pi\)
\(522\) 12.0000i 0.525226i
\(523\) 7.00000i 0.306089i 0.988219 + 0.153044i \(0.0489077\pi\)
−0.988219 + 0.153044i \(0.951092\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 6.00000 0.261612
\(527\) − 12.0000i − 0.522728i
\(528\) − 3.00000i − 0.130558i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −24.0000 −1.04151
\(532\) − 7.00000i − 0.303488i
\(533\) 18.0000i 0.779667i
\(534\) 15.0000 0.649113
\(535\) 0 0
\(536\) −7.00000 −0.302354
\(537\) 3.00000i 0.129460i
\(538\) 6.00000i 0.258678i
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 2.00000i 0.0859074i
\(543\) − 2.00000i − 0.0858282i
\(544\) −3.00000 −0.128624
\(545\) 0 0
\(546\) 2.00000 0.0855921
\(547\) 35.0000i 1.49649i 0.663421 + 0.748246i \(0.269104\pi\)
−0.663421 + 0.748246i \(0.730896\pi\)
\(548\) − 21.0000i − 0.897076i
\(549\) −20.0000 −0.853579
\(550\) 0 0
\(551\) 42.0000 1.78926
\(552\) 0 0
\(553\) − 14.0000i − 0.595341i
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −7.00000 −0.296866
\(557\) 36.0000i 1.52537i 0.646771 + 0.762684i \(0.276119\pi\)
−0.646771 + 0.762684i \(0.723881\pi\)
\(558\) − 8.00000i − 0.338667i
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 9.00000 0.379980
\(562\) − 18.0000i − 0.759284i
\(563\) − 12.0000i − 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) −1.00000 −0.0420331
\(567\) 1.00000i 0.0419961i
\(568\) − 6.00000i − 0.251754i
\(569\) 27.0000 1.13190 0.565949 0.824440i \(-0.308510\pi\)
0.565949 + 0.824440i \(0.308510\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 6.00000i 0.250873i
\(573\) 6.00000i 0.250654i
\(574\) 9.00000 0.375653
\(575\) 0 0
\(576\) −2.00000 −0.0833333
\(577\) − 7.00000i − 0.291414i −0.989328 0.145707i \(-0.953454\pi\)
0.989328 0.145707i \(-0.0465456\pi\)
\(578\) 8.00000i 0.332756i
\(579\) −5.00000 −0.207793
\(580\) 0 0
\(581\) −9.00000 −0.373383
\(582\) − 10.0000i − 0.414513i
\(583\) 36.0000i 1.49097i
\(584\) −5.00000 −0.206901
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 39.0000i 1.60970i 0.593477 + 0.804851i \(0.297755\pi\)
−0.593477 + 0.804851i \(0.702245\pi\)
\(588\) − 1.00000i − 0.0412393i
\(589\) −28.0000 −1.15372
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 8.00000i 0.328798i
\(593\) 27.0000i 1.10876i 0.832265 + 0.554379i \(0.187044\pi\)
−0.832265 + 0.554379i \(0.812956\pi\)
\(594\) 15.0000 0.615457
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) 14.0000i 0.572982i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −7.00000 −0.285536 −0.142768 0.989756i \(-0.545600\pi\)
−0.142768 + 0.989756i \(0.545600\pi\)
\(602\) 8.00000i 0.326056i
\(603\) − 14.0000i − 0.570124i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) 44.0000i 1.78590i 0.450151 + 0.892952i \(0.351370\pi\)
−0.450151 + 0.892952i \(0.648630\pi\)
\(608\) 7.00000i 0.283887i
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) − 6.00000i − 0.242536i
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) − 18.0000i − 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) − 20.0000i − 0.804518i
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 18.0000i − 0.721734i
\(623\) 15.0000i 0.600962i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) − 21.0000i − 0.838659i
\(628\) − 20.0000i − 0.798087i
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 14.0000i 0.556890i
\(633\) − 17.0000i − 0.675689i
\(634\) 12.0000 0.476581
\(635\) 0 0
\(636\) −12.0000 −0.475831
\(637\) 2.00000i 0.0792429i
\(638\) 18.0000i 0.712627i
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 3.00000i 0.118401i
\(643\) 40.0000i 1.57745i 0.614749 + 0.788723i \(0.289257\pi\)
−0.614749 + 0.788723i \(0.710743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −21.0000 −0.826234
\(647\) − 24.0000i − 0.943537i −0.881722 0.471769i \(-0.843616\pi\)
0.881722 0.471769i \(-0.156384\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 5.00000i 0.195815i
\(653\) − 36.0000i − 1.40879i −0.709809 0.704394i \(-0.751219\pi\)
0.709809 0.704394i \(-0.248781\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) − 10.0000i − 0.390137i
\(658\) 6.00000i 0.233904i
\(659\) −9.00000 −0.350590 −0.175295 0.984516i \(-0.556088\pi\)
−0.175295 + 0.984516i \(0.556088\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) − 25.0000i − 0.971653i
\(663\) − 6.00000i − 0.233021i
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) −16.0000 −0.619987
\(667\) 0 0
\(668\) − 12.0000i − 0.464294i
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 1.00000i 0.0385758i
\(673\) − 2.00000i − 0.0770943i −0.999257 0.0385472i \(-0.987727\pi\)
0.999257 0.0385472i \(-0.0122730\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 9.00000i 0.345643i
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) − 12.0000i − 0.459504i
\(683\) − 3.00000i − 0.114792i −0.998351 0.0573959i \(-0.981720\pi\)
0.998351 0.0573959i \(-0.0182797\pi\)
\(684\) −14.0000 −0.535303
\(685\) 0 0
\(686\) 1.00000 0.0381802
\(687\) 26.0000i 0.991962i
\(688\) − 8.00000i − 0.304997i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) − 6.00000i − 0.228086i
\(693\) 6.00000i 0.227921i
\(694\) 21.0000 0.797149
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) − 27.0000i − 1.02270i
\(698\) − 8.00000i − 0.302804i
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) − 10.0000i − 0.377426i
\(703\) 56.0000i 2.11208i
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 30.0000 1.12906
\(707\) 0 0
\(708\) − 12.0000i − 0.450988i
\(709\) 28.0000 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(710\) 0 0
\(711\) −28.0000 −1.05008
\(712\) − 15.0000i − 0.562149i
\(713\) 0 0
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) 3.00000 0.112115
\(717\) − 12.0000i − 0.448148i
\(718\) 6.00000i 0.223918i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 30.0000i 1.11648i
\(723\) 25.0000i 0.929760i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) −2.00000 −0.0742270
\(727\) − 34.0000i − 1.26099i −0.776193 0.630495i \(-0.782852\pi\)
0.776193 0.630495i \(-0.217148\pi\)
\(728\) − 2.00000i − 0.0741249i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) − 10.0000i − 0.369611i
\(733\) 40.0000i 1.47743i 0.674016 + 0.738717i \(0.264568\pi\)
−0.674016 + 0.738717i \(0.735432\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) − 21.0000i − 0.773545i
\(738\) − 18.0000i − 0.662589i
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −14.0000 −0.514303
\(742\) − 12.0000i − 0.440534i
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 4.00000 0.146647
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) 18.0000i 0.658586i
\(748\) − 9.00000i − 0.329073i
\(749\) −3.00000 −0.109618
\(750\) 0 0
\(751\) −46.0000 −1.67856 −0.839282 0.543696i \(-0.817024\pi\)
−0.839282 + 0.543696i \(0.817024\pi\)
\(752\) − 6.00000i − 0.218797i
\(753\) − 15.0000i − 0.546630i
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) −5.00000 −0.181848
\(757\) − 34.0000i − 1.23575i −0.786276 0.617876i \(-0.787994\pi\)
0.786276 0.617876i \(-0.212006\pi\)
\(758\) − 17.0000i − 0.617468i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 −0.326250 −0.163125 0.986605i \(-0.552157\pi\)
−0.163125 + 0.986605i \(0.552157\pi\)
\(762\) 2.00000i 0.0724524i
\(763\) − 14.0000i − 0.506834i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) −30.0000 −1.08394
\(767\) 24.0000i 0.866590i
\(768\) − 1.00000i − 0.0360844i
\(769\) −23.0000 −0.829401 −0.414701 0.909958i \(-0.636114\pi\)
−0.414701 + 0.909958i \(0.636114\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) 5.00000i 0.179954i
\(773\) 12.0000i 0.431610i 0.976436 + 0.215805i \(0.0692376\pi\)
−0.976436 + 0.215805i \(0.930762\pi\)
\(774\) 16.0000 0.575108
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) 8.00000i 0.286998i
\(778\) 24.0000i 0.860442i
\(779\) −63.0000 −2.25721
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) − 30.0000i − 1.07211i
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) − 4.00000i − 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) 6.00000i 0.213741i
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) −9.00000 −0.320003
\(792\) − 6.00000i − 0.213201i
\(793\) 20.0000i 0.710221i
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 14.0000 0.496217
\(797\) − 30.0000i − 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 7.00000i 0.247797i
\(799\) 18.0000 0.636794
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) − 27.0000i − 0.953403i
\(803\) − 15.0000i − 0.529339i
\(804\) 7.00000 0.246871
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) − 6.00000i − 0.211210i
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) − 6.00000i − 0.210559i
\(813\) − 2.00000i − 0.0701431i
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 3.00000 0.105021
\(817\) − 56.0000i − 1.95919i
\(818\) 25.0000i 0.874105i
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 21.0000i 0.732459i
\(823\) − 26.0000i − 0.906303i −0.891434 0.453152i \(-0.850300\pi\)
0.891434 0.453152i \(-0.149700\pi\)
\(824\) −20.0000 −0.696733
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 9.00000i 0.312961i 0.987681 + 0.156480i \(0.0500148\pi\)
−0.987681 + 0.156480i \(0.949985\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 2.00000i 0.0693375i
\(833\) − 3.00000i − 0.103944i
\(834\) 7.00000 0.242390
\(835\) 0 0
\(836\) −21.0000 −0.726300
\(837\) 20.0000i 0.691301i
\(838\) 3.00000i 0.103633i
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 20.0000i 0.689246i
\(843\) 18.0000i 0.619953i
\(844\) −17.0000 −0.585164
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) − 2.00000i − 0.0687208i
\(848\) 12.0000i 0.412082i
\(849\) 1.00000 0.0343199
\(850\) 0 0
\(851\) 0 0
\(852\) 6.00000i 0.205557i
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 15.0000i 0.512390i 0.966625 + 0.256195i \(0.0824690\pi\)
−0.966625 + 0.256195i \(0.917531\pi\)
\(858\) − 6.00000i − 0.204837i
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 0 0
\(861\) −9.00000 −0.306719
\(862\) − 36.0000i − 1.22616i
\(863\) 12.0000i 0.408485i 0.978920 + 0.204242i \(0.0654731\pi\)
−0.978920 + 0.204242i \(0.934527\pi\)
\(864\) 5.00000 0.170103
\(865\) 0 0
\(866\) 11.0000 0.373795
\(867\) − 8.00000i − 0.271694i
\(868\) 4.00000i 0.135769i
\(869\) −42.0000 −1.42475
\(870\) 0 0
\(871\) −14.0000 −0.474372
\(872\) 14.0000i 0.474100i
\(873\) − 20.0000i − 0.676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 5.00000 0.168934
\(877\) 32.0000i 1.08056i 0.841484 + 0.540282i \(0.181682\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(878\) 4.00000i 0.134993i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) − 2.00000i − 0.0673435i
\(883\) − 47.0000i − 1.58168i −0.612026 0.790838i \(-0.709645\pi\)
0.612026 0.790838i \(-0.290355\pi\)
\(884\) −6.00000 −0.201802
\(885\) 0 0
\(886\) 21.0000 0.705509
\(887\) 6.00000i 0.201460i 0.994914 + 0.100730i \(0.0321179\pi\)
−0.994914 + 0.100730i \(0.967882\pi\)
\(888\) − 8.00000i − 0.268462i
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 14.0000i 0.468755i
\(893\) − 42.0000i − 1.40548i
\(894\) −12.0000 −0.401340
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 15.0000i 0.500556i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) − 27.0000i − 0.899002i
\(903\) − 8.00000i − 0.266223i
\(904\) 9.00000 0.299336
\(905\) 0 0
\(906\) 8.00000 0.265782
\(907\) − 4.00000i − 0.132818i −0.997792 0.0664089i \(-0.978846\pi\)
0.997792 0.0664089i \(-0.0211542\pi\)
\(908\) − 12.0000i − 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) − 7.00000i − 0.231793i
\(913\) 27.0000i 0.893570i
\(914\) −17.0000 −0.562310
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) 0 0
\(918\) 15.0000i 0.495074i
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) −7.00000 −0.230658
\(922\) 18.0000i 0.592798i
\(923\) − 12.0000i − 0.394985i
\(924\) −3.00000 −0.0986928
\(925\) 0 0
\(926\) 8.00000 0.262896
\(927\) − 40.0000i − 1.31377i
\(928\) 6.00000i 0.196960i
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) 6.00000i 0.196537i
\(933\) 18.0000i 0.589294i
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) −4.00000 −0.130744
\(937\) 29.0000i 0.947389i 0.880689 + 0.473694i \(0.157080\pi\)
−0.880689 + 0.473694i \(0.842920\pi\)
\(938\) 7.00000i 0.228558i
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 20.0000i 0.651635i
\(943\) 0 0
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) − 14.0000i − 0.454699i
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 3.00000i 0.0972306i
\(953\) − 57.0000i − 1.84641i −0.384307 0.923206i \(-0.625559\pi\)
0.384307 0.923206i \(-0.374441\pi\)
\(954\) −24.0000 −0.777029
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) − 18.0000i − 0.581857i
\(958\) − 18.0000i − 0.581554i
\(959\) −21.0000 −0.678125
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 16.0000i 0.515861i
\(963\) 6.00000i 0.193347i
\(964\) 25.0000 0.805196
\(965\) 0 0
\(966\) 0 0
\(967\) − 34.0000i − 1.09337i −0.837340 0.546683i \(-0.815890\pi\)
0.837340 0.546683i \(-0.184110\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 21.0000 0.674617
\(970\) 0 0
\(971\) 9.00000 0.288824 0.144412 0.989518i \(-0.453871\pi\)
0.144412 + 0.989518i \(0.453871\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 7.00000i 0.224410i
\(974\) 34.0000 1.08943
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) − 3.00000i − 0.0959785i −0.998848 0.0479893i \(-0.984719\pi\)
0.998848 0.0479893i \(-0.0152813\pi\)
\(978\) − 5.00000i − 0.159882i
\(979\) 45.0000 1.43821
\(980\) 0 0
\(981\) −28.0000 −0.893971
\(982\) − 12.0000i − 0.382935i
\(983\) − 12.0000i − 0.382741i −0.981518 0.191370i \(-0.938707\pi\)
0.981518 0.191370i \(-0.0612931\pi\)
\(984\) 9.00000 0.286910
\(985\) 0 0
\(986\) −18.0000 −0.573237
\(987\) − 6.00000i − 0.190982i
\(988\) 14.0000i 0.445399i
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) − 4.00000i − 0.127000i
\(993\) 25.0000i 0.793351i
\(994\) −6.00000 −0.190308
\(995\) 0 0
\(996\) −9.00000 −0.285176
\(997\) 62.0000i 1.96356i 0.190022 + 0.981780i \(0.439144\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 28.0000i 0.886325i
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.c.c.99.2 2
3.2 odd 2 3150.2.g.f.2899.1 2
4.3 odd 2 2800.2.g.i.449.2 2
5.2 odd 4 350.2.a.a.1.1 1
5.3 odd 4 350.2.a.e.1.1 yes 1
5.4 even 2 inner 350.2.c.c.99.1 2
7.6 odd 2 2450.2.c.h.99.2 2
15.2 even 4 3150.2.a.x.1.1 1
15.8 even 4 3150.2.a.m.1.1 1
15.14 odd 2 3150.2.g.f.2899.2 2
20.3 even 4 2800.2.a.h.1.1 1
20.7 even 4 2800.2.a.x.1.1 1
20.19 odd 2 2800.2.g.i.449.1 2
35.13 even 4 2450.2.a.x.1.1 1
35.27 even 4 2450.2.a.m.1.1 1
35.34 odd 2 2450.2.c.h.99.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.2.a.a.1.1 1 5.2 odd 4
350.2.a.e.1.1 yes 1 5.3 odd 4
350.2.c.c.99.1 2 5.4 even 2 inner
350.2.c.c.99.2 2 1.1 even 1 trivial
2450.2.a.m.1.1 1 35.27 even 4
2450.2.a.x.1.1 1 35.13 even 4
2450.2.c.h.99.1 2 35.34 odd 2
2450.2.c.h.99.2 2 7.6 odd 2
2800.2.a.h.1.1 1 20.3 even 4
2800.2.a.x.1.1 1 20.7 even 4
2800.2.g.i.449.1 2 20.19 odd 2
2800.2.g.i.449.2 2 4.3 odd 2
3150.2.a.m.1.1 1 15.8 even 4
3150.2.a.x.1.1 1 15.2 even 4
3150.2.g.f.2899.1 2 3.2 odd 2
3150.2.g.f.2899.2 2 15.14 odd 2