Defining parameters
Level: | \( N \) | \(=\) | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 350.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(350, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 8 | 64 |
Cusp forms | 48 | 8 | 40 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(350, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
350.2.c.a | $2$ | $2.795$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}+3iq^{3}-q^{4}-3q^{6}-iq^{7}+\cdots\) |
350.2.c.b | $2$ | $2.795$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}-q^{4}-iq^{7}-iq^{8}+3q^{9}+\cdots\) |
350.2.c.c | $2$ | $2.795$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+iq^{7}-iq^{8}+\cdots\) |
350.2.c.d | $2$ | $2.795$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}-2iq^{3}-q^{4}+2q^{6}-iq^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(350, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(350, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)