Properties

Label 350.2.c
Level $350$
Weight $2$
Character orbit 350.c
Rep. character $\chi_{350}(99,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $120$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(120\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(350, [\chi])\).

Total New Old
Modular forms 72 8 64
Cusp forms 48 8 40
Eisenstein series 24 0 24

Trace form

\( 8 q - 8 q^{4} - 4 q^{9} + O(q^{10}) \) \( 8 q - 8 q^{4} - 4 q^{9} + 4 q^{11} + 4 q^{14} + 8 q^{16} + 16 q^{19} + 4 q^{21} - 12 q^{26} + 24 q^{29} - 8 q^{31} + 4 q^{34} + 4 q^{36} - 56 q^{39} + 20 q^{41} - 4 q^{44} - 8 q^{49} - 12 q^{51} + 36 q^{54} - 4 q^{56} - 4 q^{59} - 36 q^{61} - 8 q^{64} + 36 q^{66} - 40 q^{71} - 8 q^{74} - 16 q^{76} - 24 q^{79} + 16 q^{81} - 4 q^{84} - 8 q^{86} + 44 q^{89} + 20 q^{91} - 32 q^{94} + 96 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(350, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
350.2.c.a 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None 350.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+3iq^{3}-q^{4}-3q^{6}-iq^{7}+\cdots\)
350.2.c.b 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None 70.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}-iq^{7}-iq^{8}+3q^{9}+\cdots\)
350.2.c.c 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None 350.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+iq^{7}-iq^{8}+\cdots\)
350.2.c.d 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None 14.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-2iq^{3}-q^{4}+2q^{6}-iq^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(350, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(350, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)