# Properties

 Label 350.2.a.d Level $350$ Weight $2$ Character orbit 350.a Self dual yes Analytic conductor $2.795$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [350,2,Mod(1,350)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(350, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("350.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$350 = 2 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 350.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$2.79476407074$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} - q^{7} + q^{8} + 6 q^{9}+O(q^{10})$$ q + q^2 - 3 * q^3 + q^4 - 3 * q^6 - q^7 + q^8 + 6 * q^9 $$q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} - q^{7} + q^{8} + 6 q^{9} - 5 q^{11} - 3 q^{12} - 6 q^{13} - q^{14} + q^{16} - q^{17} + 6 q^{18} - 3 q^{19} + 3 q^{21} - 5 q^{22} - 3 q^{24} - 6 q^{26} - 9 q^{27} - q^{28} - 6 q^{29} - 4 q^{31} + q^{32} + 15 q^{33} - q^{34} + 6 q^{36} + 8 q^{37} - 3 q^{38} + 18 q^{39} + 11 q^{41} + 3 q^{42} - 8 q^{43} - 5 q^{44} + 2 q^{47} - 3 q^{48} + q^{49} + 3 q^{51} - 6 q^{52} + 4 q^{53} - 9 q^{54} - q^{56} + 9 q^{57} - 6 q^{58} + 4 q^{59} - 2 q^{61} - 4 q^{62} - 6 q^{63} + q^{64} + 15 q^{66} + 9 q^{67} - q^{68} - 10 q^{71} + 6 q^{72} - 7 q^{73} + 8 q^{74} - 3 q^{76} + 5 q^{77} + 18 q^{78} - 2 q^{79} + 9 q^{81} + 11 q^{82} + 11 q^{83} + 3 q^{84} - 8 q^{86} + 18 q^{87} - 5 q^{88} - 11 q^{89} + 6 q^{91} + 12 q^{93} + 2 q^{94} - 3 q^{96} - 10 q^{97} + q^{98} - 30 q^{99}+O(q^{100})$$ q + q^2 - 3 * q^3 + q^4 - 3 * q^6 - q^7 + q^8 + 6 * q^9 - 5 * q^11 - 3 * q^12 - 6 * q^13 - q^14 + q^16 - q^17 + 6 * q^18 - 3 * q^19 + 3 * q^21 - 5 * q^22 - 3 * q^24 - 6 * q^26 - 9 * q^27 - q^28 - 6 * q^29 - 4 * q^31 + q^32 + 15 * q^33 - q^34 + 6 * q^36 + 8 * q^37 - 3 * q^38 + 18 * q^39 + 11 * q^41 + 3 * q^42 - 8 * q^43 - 5 * q^44 + 2 * q^47 - 3 * q^48 + q^49 + 3 * q^51 - 6 * q^52 + 4 * q^53 - 9 * q^54 - q^56 + 9 * q^57 - 6 * q^58 + 4 * q^59 - 2 * q^61 - 4 * q^62 - 6 * q^63 + q^64 + 15 * q^66 + 9 * q^67 - q^68 - 10 * q^71 + 6 * q^72 - 7 * q^73 + 8 * q^74 - 3 * q^76 + 5 * q^77 + 18 * q^78 - 2 * q^79 + 9 * q^81 + 11 * q^82 + 11 * q^83 + 3 * q^84 - 8 * q^86 + 18 * q^87 - 5 * q^88 - 11 * q^89 + 6 * q^91 + 12 * q^93 + 2 * q^94 - 3 * q^96 - 10 * q^97 + q^98 - 30 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −3.00000 1.00000 0 −3.00000 −1.00000 1.00000 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.2.a.d yes 1
3.b odd 2 1 3150.2.a.j 1
4.b odd 2 1 2800.2.a.bg 1
5.b even 2 1 350.2.a.c 1
5.c odd 4 2 350.2.c.a 2
7.b odd 2 1 2450.2.a.bg 1
15.d odd 2 1 3150.2.a.bq 1
15.e even 4 2 3150.2.g.v 2
20.d odd 2 1 2800.2.a.b 1
20.e even 4 2 2800.2.g.a 2
35.c odd 2 1 2450.2.a.a 1
35.f even 4 2 2450.2.c.r 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.2.a.c 1 5.b even 2 1
350.2.a.d yes 1 1.a even 1 1 trivial
350.2.c.a 2 5.c odd 4 2
2450.2.a.a 1 35.c odd 2 1
2450.2.a.bg 1 7.b odd 2 1
2450.2.c.r 2 35.f even 4 2
2800.2.a.b 1 20.d odd 2 1
2800.2.a.bg 1 4.b odd 2 1
2800.2.g.a 2 20.e even 4 2
3150.2.a.j 1 3.b odd 2 1
3150.2.a.bq 1 15.d odd 2 1
3150.2.g.v 2 15.e even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(350))$$:

 $$T_{3} + 3$$ T3 + 3 $$T_{13} + 6$$ T13 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T + 3$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T + 5$$
$13$ $$T + 6$$
$17$ $$T + 1$$
$19$ $$T + 3$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T + 4$$
$37$ $$T - 8$$
$41$ $$T - 11$$
$43$ $$T + 8$$
$47$ $$T - 2$$
$53$ $$T - 4$$
$59$ $$T - 4$$
$61$ $$T + 2$$
$67$ $$T - 9$$
$71$ $$T + 10$$
$73$ $$T + 7$$
$79$ $$T + 2$$
$83$ $$T - 11$$
$89$ $$T + 11$$
$97$ $$T + 10$$