Properties

Label 350.2.a.c.1.1
Level $350$
Weight $2$
Character 350.1
Self dual yes
Analytic conductor $2.795$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,2,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.00000 q^{3} +1.00000 q^{4} -3.00000 q^{6} +1.00000 q^{7} -1.00000 q^{8} +6.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +3.00000 q^{3} +1.00000 q^{4} -3.00000 q^{6} +1.00000 q^{7} -1.00000 q^{8} +6.00000 q^{9} -5.00000 q^{11} +3.00000 q^{12} +6.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} -6.00000 q^{18} -3.00000 q^{19} +3.00000 q^{21} +5.00000 q^{22} -3.00000 q^{24} -6.00000 q^{26} +9.00000 q^{27} +1.00000 q^{28} -6.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} -15.0000 q^{33} -1.00000 q^{34} +6.00000 q^{36} -8.00000 q^{37} +3.00000 q^{38} +18.0000 q^{39} +11.0000 q^{41} -3.00000 q^{42} +8.00000 q^{43} -5.00000 q^{44} -2.00000 q^{47} +3.00000 q^{48} +1.00000 q^{49} +3.00000 q^{51} +6.00000 q^{52} -4.00000 q^{53} -9.00000 q^{54} -1.00000 q^{56} -9.00000 q^{57} +6.00000 q^{58} +4.00000 q^{59} -2.00000 q^{61} +4.00000 q^{62} +6.00000 q^{63} +1.00000 q^{64} +15.0000 q^{66} -9.00000 q^{67} +1.00000 q^{68} -10.0000 q^{71} -6.00000 q^{72} +7.00000 q^{73} +8.00000 q^{74} -3.00000 q^{76} -5.00000 q^{77} -18.0000 q^{78} -2.00000 q^{79} +9.00000 q^{81} -11.0000 q^{82} -11.0000 q^{83} +3.00000 q^{84} -8.00000 q^{86} -18.0000 q^{87} +5.00000 q^{88} -11.0000 q^{89} +6.00000 q^{91} -12.0000 q^{93} +2.00000 q^{94} -3.00000 q^{96} +10.0000 q^{97} -1.00000 q^{98} -30.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −3.00000 −1.22474
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 3.00000 0.866025
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) −6.00000 −1.41421
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) 5.00000 1.06600
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 9.00000 1.73205
\(28\) 1.00000 0.188982
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) −15.0000 −2.61116
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 3.00000 0.486664
\(39\) 18.0000 2.88231
\(40\) 0 0
\(41\) 11.0000 1.71791 0.858956 0.512050i \(-0.171114\pi\)
0.858956 + 0.512050i \(0.171114\pi\)
\(42\) −3.00000 −0.462910
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) −5.00000 −0.753778
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 3.00000 0.433013
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 6.00000 0.832050
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −9.00000 −1.22474
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) −9.00000 −1.19208
\(58\) 6.00000 0.787839
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 4.00000 0.508001
\(63\) 6.00000 0.755929
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 15.0000 1.84637
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) −6.00000 −0.707107
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −3.00000 −0.344124
\(77\) −5.00000 −0.569803
\(78\) −18.0000 −2.03810
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) −11.0000 −1.21475
\(83\) −11.0000 −1.20741 −0.603703 0.797209i \(-0.706309\pi\)
−0.603703 + 0.797209i \(0.706309\pi\)
\(84\) 3.00000 0.327327
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) −18.0000 −1.92980
\(88\) 5.00000 0.533002
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) −12.0000 −1.24434
\(94\) 2.00000 0.206284
\(95\) 0 0
\(96\) −3.00000 −0.306186
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −1.00000 −0.101015
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) −3.00000 −0.297044
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 9.00000 0.866025
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) −24.0000 −2.27798
\(112\) 1.00000 0.0944911
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 9.00000 0.842927
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 36.0000 3.32820
\(118\) −4.00000 −0.368230
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 2.00000 0.181071
\(123\) 33.0000 2.97551
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) −6.00000 −0.534522
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 24.0000 2.11308
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) −15.0000 −1.30558
\(133\) −3.00000 −0.260133
\(134\) 9.00000 0.777482
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −11.0000 −0.933008 −0.466504 0.884519i \(-0.654487\pi\)
−0.466504 + 0.884519i \(0.654487\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 10.0000 0.839181
\(143\) −30.0000 −2.50873
\(144\) 6.00000 0.500000
\(145\) 0 0
\(146\) −7.00000 −0.579324
\(147\) 3.00000 0.247436
\(148\) −8.00000 −0.657596
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 3.00000 0.243332
\(153\) 6.00000 0.485071
\(154\) 5.00000 0.402911
\(155\) 0 0
\(156\) 18.0000 1.44115
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 2.00000 0.159111
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) −9.00000 −0.707107
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) 11.0000 0.858956
\(165\) 0 0
\(166\) 11.0000 0.853766
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) −3.00000 −0.231455
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −18.0000 −1.37649
\(172\) 8.00000 0.609994
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 18.0000 1.36458
\(175\) 0 0
\(176\) −5.00000 −0.376889
\(177\) 12.0000 0.901975
\(178\) 11.0000 0.824485
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) −6.00000 −0.444750
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 12.0000 0.879883
\(187\) −5.00000 −0.365636
\(188\) −2.00000 −0.145865
\(189\) 9.00000 0.654654
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 3.00000 0.216506
\(193\) 19.0000 1.36765 0.683825 0.729646i \(-0.260315\pi\)
0.683825 + 0.729646i \(0.260315\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 30.0000 2.13201
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −27.0000 −1.90443
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 3.00000 0.210042
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) −4.00000 −0.274721
\(213\) −30.0000 −2.05557
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) −9.00000 −0.612372
\(217\) −4.00000 −0.271538
\(218\) 18.0000 1.21911
\(219\) 21.0000 1.41905
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 24.0000 1.61077
\(223\) −22.0000 −1.47323 −0.736614 0.676313i \(-0.763577\pi\)
−0.736614 + 0.676313i \(0.763577\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) −9.00000 −0.596040
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −15.0000 −0.986928
\(232\) 6.00000 0.393919
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −36.0000 −2.35339
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) −6.00000 −0.389742
\(238\) −1.00000 −0.0648204
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 0 0
\(241\) −5.00000 −0.322078 −0.161039 0.986948i \(-0.551485\pi\)
−0.161039 + 0.986948i \(0.551485\pi\)
\(242\) −14.0000 −0.899954
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) −33.0000 −2.10400
\(247\) −18.0000 −1.14531
\(248\) 4.00000 0.254000
\(249\) −33.0000 −2.09129
\(250\) 0 0
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 6.00000 0.377964
\(253\) 0 0
\(254\) −14.0000 −0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) −24.0000 −1.49417
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) −36.0000 −2.22834
\(262\) −8.00000 −0.494242
\(263\) 10.0000 0.616626 0.308313 0.951285i \(-0.400236\pi\)
0.308313 + 0.951285i \(0.400236\pi\)
\(264\) 15.0000 0.923186
\(265\) 0 0
\(266\) 3.00000 0.183942
\(267\) −33.0000 −2.01957
\(268\) −9.00000 −0.549762
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) 1.00000 0.0606339
\(273\) 18.0000 1.08941
\(274\) −3.00000 −0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) 30.0000 1.80253 0.901263 0.433273i \(-0.142641\pi\)
0.901263 + 0.433273i \(0.142641\pi\)
\(278\) 11.0000 0.659736
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 6.00000 0.357295
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) −10.0000 −0.593391
\(285\) 0 0
\(286\) 30.0000 1.77394
\(287\) 11.0000 0.649309
\(288\) −6.00000 −0.353553
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 30.0000 1.75863
\(292\) 7.00000 0.409644
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) −45.0000 −2.61116
\(298\) −12.0000 −0.695141
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) −13.0000 −0.741949 −0.370975 0.928643i \(-0.620976\pi\)
−0.370975 + 0.928643i \(0.620976\pi\)
\(308\) −5.00000 −0.284901
\(309\) −12.0000 −0.682656
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) −18.0000 −1.01905
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) −4.00000 −0.224662 −0.112331 0.993671i \(-0.535832\pi\)
−0.112331 + 0.993671i \(0.535832\pi\)
\(318\) 12.0000 0.672927
\(319\) 30.0000 1.67968
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) −19.0000 −1.05231
\(327\) −54.0000 −2.98621
\(328\) −11.0000 −0.607373
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) −17.0000 −0.934405 −0.467202 0.884150i \(-0.654738\pi\)
−0.467202 + 0.884150i \(0.654738\pi\)
\(332\) −11.0000 −0.603703
\(333\) −48.0000 −2.63038
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) 3.00000 0.163663
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) −23.0000 −1.25104
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 18.0000 0.973329
\(343\) 1.00000 0.0539949
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −19.0000 −1.01997 −0.509987 0.860182i \(-0.670350\pi\)
−0.509987 + 0.860182i \(0.670350\pi\)
\(348\) −18.0000 −0.964901
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 54.0000 2.88231
\(352\) 5.00000 0.266501
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −12.0000 −0.637793
\(355\) 0 0
\(356\) −11.0000 −0.582999
\(357\) 3.00000 0.158777
\(358\) −3.00000 −0.158555
\(359\) 26.0000 1.37223 0.686114 0.727494i \(-0.259315\pi\)
0.686114 + 0.727494i \(0.259315\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −10.0000 −0.525588
\(363\) 42.0000 2.20443
\(364\) 6.00000 0.314485
\(365\) 0 0
\(366\) 6.00000 0.313625
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 66.0000 3.43582
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) −12.0000 −0.622171
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 5.00000 0.258544
\(375\) 0 0
\(376\) 2.00000 0.103142
\(377\) −36.0000 −1.85409
\(378\) −9.00000 −0.462910
\(379\) 9.00000 0.462299 0.231149 0.972918i \(-0.425751\pi\)
0.231149 + 0.972918i \(0.425751\pi\)
\(380\) 0 0
\(381\) 42.0000 2.15173
\(382\) 6.00000 0.306987
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) −19.0000 −0.967075
\(387\) 48.0000 2.43998
\(388\) 10.0000 0.507673
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 24.0000 1.21064
\(394\) −22.0000 −1.10834
\(395\) 0 0
\(396\) −30.0000 −1.50756
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) 10.0000 0.501255
\(399\) −9.00000 −0.450564
\(400\) 0 0
\(401\) 37.0000 1.84769 0.923846 0.382765i \(-0.125028\pi\)
0.923846 + 0.382765i \(0.125028\pi\)
\(402\) 27.0000 1.34664
\(403\) −24.0000 −1.19553
\(404\) 0 0
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 40.0000 1.98273
\(408\) −3.00000 −0.148522
\(409\) −21.0000 −1.03838 −0.519192 0.854658i \(-0.673767\pi\)
−0.519192 + 0.854658i \(0.673767\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) −4.00000 −0.197066
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) −6.00000 −0.294174
\(417\) −33.0000 −1.61602
\(418\) −15.0000 −0.733674
\(419\) −39.0000 −1.90527 −0.952637 0.304109i \(-0.901641\pi\)
−0.952637 + 0.304109i \(0.901641\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) −1.00000 −0.0486792
\(423\) −12.0000 −0.583460
\(424\) 4.00000 0.194257
\(425\) 0 0
\(426\) 30.0000 1.45350
\(427\) −2.00000 −0.0967868
\(428\) −3.00000 −0.145010
\(429\) −90.0000 −4.34524
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 9.00000 0.433013
\(433\) 1.00000 0.0480569 0.0240285 0.999711i \(-0.492351\pi\)
0.0240285 + 0.999711i \(0.492351\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −18.0000 −0.862044
\(437\) 0 0
\(438\) −21.0000 −1.00342
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) −6.00000 −0.285391
\(443\) −37.0000 −1.75792 −0.878962 0.476893i \(-0.841763\pi\)
−0.878962 + 0.476893i \(0.841763\pi\)
\(444\) −24.0000 −1.13899
\(445\) 0 0
\(446\) 22.0000 1.04173
\(447\) 36.0000 1.70274
\(448\) 1.00000 0.0472456
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 0 0
\(451\) −55.0000 −2.58985
\(452\) 1.00000 0.0470360
\(453\) 24.0000 1.12762
\(454\) −28.0000 −1.31411
\(455\) 0 0
\(456\) 9.00000 0.421464
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 14.0000 0.654177
\(459\) 9.00000 0.420084
\(460\) 0 0
\(461\) −38.0000 −1.76984 −0.884918 0.465746i \(-0.845786\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 15.0000 0.697863
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 36.0000 1.66410
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) −4.00000 −0.184115
\(473\) −40.0000 −1.83920
\(474\) 6.00000 0.275589
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) −24.0000 −1.09888
\(478\) −4.00000 −0.182956
\(479\) −6.00000 −0.274147 −0.137073 0.990561i \(-0.543770\pi\)
−0.137073 + 0.990561i \(0.543770\pi\)
\(480\) 0 0
\(481\) −48.0000 −2.18861
\(482\) 5.00000 0.227744
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) 0 0
\(487\) 34.0000 1.54069 0.770344 0.637629i \(-0.220085\pi\)
0.770344 + 0.637629i \(0.220085\pi\)
\(488\) 2.00000 0.0905357
\(489\) 57.0000 2.57763
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 33.0000 1.48775
\(493\) −6.00000 −0.270226
\(494\) 18.0000 0.809858
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −10.0000 −0.448561
\(498\) 33.0000 1.47877
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) −36.0000 −1.60836
\(502\) −27.0000 −1.20507
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 0 0
\(507\) 69.0000 3.06440
\(508\) 14.0000 0.621150
\(509\) −14.0000 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(510\) 0 0
\(511\) 7.00000 0.309662
\(512\) −1.00000 −0.0441942
\(513\) −27.0000 −1.19208
\(514\) 2.00000 0.0882162
\(515\) 0 0
\(516\) 24.0000 1.05654
\(517\) 10.0000 0.439799
\(518\) 8.00000 0.351500
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 11.0000 0.481919 0.240959 0.970535i \(-0.422538\pi\)
0.240959 + 0.970535i \(0.422538\pi\)
\(522\) 36.0000 1.57568
\(523\) −13.0000 −0.568450 −0.284225 0.958758i \(-0.591736\pi\)
−0.284225 + 0.958758i \(0.591736\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) −10.0000 −0.436021
\(527\) −4.00000 −0.174243
\(528\) −15.0000 −0.652791
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 24.0000 1.04151
\(532\) −3.00000 −0.130066
\(533\) 66.0000 2.85878
\(534\) 33.0000 1.42805
\(535\) 0 0
\(536\) 9.00000 0.388741
\(537\) 9.00000 0.388379
\(538\) −18.0000 −0.776035
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) −42.0000 −1.80572 −0.902861 0.429934i \(-0.858537\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 6.00000 0.257722
\(543\) 30.0000 1.28742
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −18.0000 −0.770329
\(547\) −27.0000 −1.15444 −0.577218 0.816590i \(-0.695862\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(548\) 3.00000 0.128154
\(549\) −12.0000 −0.512148
\(550\) 0 0
\(551\) 18.0000 0.766826
\(552\) 0 0
\(553\) −2.00000 −0.0850487
\(554\) −30.0000 −1.27458
\(555\) 0 0
\(556\) −11.0000 −0.466504
\(557\) −4.00000 −0.169485 −0.0847427 0.996403i \(-0.527007\pi\)
−0.0847427 + 0.996403i \(0.527007\pi\)
\(558\) 24.0000 1.01600
\(559\) 48.0000 2.03018
\(560\) 0 0
\(561\) −15.0000 −0.633300
\(562\) −14.0000 −0.590554
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) −6.00000 −0.252646
\(565\) 0 0
\(566\) −13.0000 −0.546431
\(567\) 9.00000 0.377964
\(568\) 10.0000 0.419591
\(569\) 21.0000 0.880366 0.440183 0.897908i \(-0.354914\pi\)
0.440183 + 0.897908i \(0.354914\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −30.0000 −1.25436
\(573\) −18.0000 −0.751961
\(574\) −11.0000 −0.459131
\(575\) 0 0
\(576\) 6.00000 0.250000
\(577\) −13.0000 −0.541197 −0.270599 0.962692i \(-0.587222\pi\)
−0.270599 + 0.962692i \(0.587222\pi\)
\(578\) 16.0000 0.665512
\(579\) 57.0000 2.36884
\(580\) 0 0
\(581\) −11.0000 −0.456357
\(582\) −30.0000 −1.24354
\(583\) 20.0000 0.828315
\(584\) −7.00000 −0.289662
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) 13.0000 0.536567 0.268284 0.963340i \(-0.413544\pi\)
0.268284 + 0.963340i \(0.413544\pi\)
\(588\) 3.00000 0.123718
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) 66.0000 2.71488
\(592\) −8.00000 −0.328798
\(593\) 39.0000 1.60154 0.800769 0.598973i \(-0.204424\pi\)
0.800769 + 0.598973i \(0.204424\pi\)
\(594\) 45.0000 1.84637
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) −30.0000 −1.22782
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 21.0000 0.856608 0.428304 0.903635i \(-0.359111\pi\)
0.428304 + 0.903635i \(0.359111\pi\)
\(602\) −8.00000 −0.326056
\(603\) −54.0000 −2.19905
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) 3.00000 0.121666
\(609\) −18.0000 −0.729397
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 6.00000 0.242536
\(613\) −18.0000 −0.727013 −0.363507 0.931592i \(-0.618421\pi\)
−0.363507 + 0.931592i \(0.618421\pi\)
\(614\) 13.0000 0.524637
\(615\) 0 0
\(616\) 5.00000 0.201456
\(617\) −14.0000 −0.563619 −0.281809 0.959470i \(-0.590935\pi\)
−0.281809 + 0.959470i \(0.590935\pi\)
\(618\) 12.0000 0.482711
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) −11.0000 −0.440706
\(624\) 18.0000 0.720577
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) 45.0000 1.79713
\(628\) −4.00000 −0.159617
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 2.00000 0.0795557
\(633\) 3.00000 0.119239
\(634\) 4.00000 0.158860
\(635\) 0 0
\(636\) −12.0000 −0.475831
\(637\) 6.00000 0.237729
\(638\) −30.0000 −1.18771
\(639\) −60.0000 −2.37356
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 9.00000 0.355202
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 3.00000 0.118033
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) −9.00000 −0.353553
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 19.0000 0.744097
\(653\) 28.0000 1.09572 0.547862 0.836569i \(-0.315442\pi\)
0.547862 + 0.836569i \(0.315442\pi\)
\(654\) 54.0000 2.11157
\(655\) 0 0
\(656\) 11.0000 0.429478
\(657\) 42.0000 1.63858
\(658\) 2.00000 0.0779681
\(659\) 1.00000 0.0389545 0.0194772 0.999810i \(-0.493800\pi\)
0.0194772 + 0.999810i \(0.493800\pi\)
\(660\) 0 0
\(661\) −50.0000 −1.94477 −0.972387 0.233373i \(-0.925024\pi\)
−0.972387 + 0.233373i \(0.925024\pi\)
\(662\) 17.0000 0.660724
\(663\) 18.0000 0.699062
\(664\) 11.0000 0.426883
\(665\) 0 0
\(666\) 48.0000 1.85996
\(667\) 0 0
\(668\) −12.0000 −0.464294
\(669\) −66.0000 −2.55171
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) −3.00000 −0.115728
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) −29.0000 −1.11704
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 48.0000 1.84479 0.922395 0.386248i \(-0.126229\pi\)
0.922395 + 0.386248i \(0.126229\pi\)
\(678\) −3.00000 −0.115214
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 84.0000 3.21889
\(682\) −20.0000 −0.765840
\(683\) 13.0000 0.497431 0.248716 0.968577i \(-0.419992\pi\)
0.248716 + 0.968577i \(0.419992\pi\)
\(684\) −18.0000 −0.688247
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) −42.0000 −1.60240
\(688\) 8.00000 0.304997
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 49.0000 1.86405 0.932024 0.362397i \(-0.118041\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) −2.00000 −0.0760286
\(693\) −30.0000 −1.13961
\(694\) 19.0000 0.721230
\(695\) 0 0
\(696\) 18.0000 0.682288
\(697\) 11.0000 0.416655
\(698\) 8.00000 0.302804
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −32.0000 −1.20862 −0.604312 0.796748i \(-0.706552\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(702\) −54.0000 −2.03810
\(703\) 24.0000 0.905177
\(704\) −5.00000 −0.188445
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) 12.0000 0.450988
\(709\) 4.00000 0.150223 0.0751116 0.997175i \(-0.476069\pi\)
0.0751116 + 0.997175i \(0.476069\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 11.0000 0.412242
\(713\) 0 0
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) 3.00000 0.112115
\(717\) 12.0000 0.448148
\(718\) −26.0000 −0.970311
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 10.0000 0.372161
\(723\) −15.0000 −0.557856
\(724\) 10.0000 0.371647
\(725\) 0 0
\(726\) −42.0000 −1.55877
\(727\) −6.00000 −0.222528 −0.111264 0.993791i \(-0.535490\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(728\) −6.00000 −0.222375
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) −6.00000 −0.221766
\(733\) −40.0000 −1.47743 −0.738717 0.674016i \(-0.764568\pi\)
−0.738717 + 0.674016i \(0.764568\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 45.0000 1.65760
\(738\) −66.0000 −2.42949
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) −54.0000 −1.98374
\(742\) 4.00000 0.146845
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 12.0000 0.439941
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) −66.0000 −2.41481
\(748\) −5.00000 −0.182818
\(749\) −3.00000 −0.109618
\(750\) 0 0
\(751\) 50.0000 1.82453 0.912263 0.409605i \(-0.134333\pi\)
0.912263 + 0.409605i \(0.134333\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 81.0000 2.95180
\(754\) 36.0000 1.31104
\(755\) 0 0
\(756\) 9.00000 0.327327
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −9.00000 −0.326895
\(759\) 0 0
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) −42.0000 −1.52150
\(763\) −18.0000 −0.651644
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −6.00000 −0.216789
\(767\) 24.0000 0.866590
\(768\) 3.00000 0.108253
\(769\) 19.0000 0.685158 0.342579 0.939489i \(-0.388700\pi\)
0.342579 + 0.939489i \(0.388700\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 19.0000 0.683825
\(773\) −36.0000 −1.29483 −0.647415 0.762138i \(-0.724150\pi\)
−0.647415 + 0.762138i \(0.724150\pi\)
\(774\) −48.0000 −1.72532
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) −24.0000 −0.860995
\(778\) −8.00000 −0.286814
\(779\) −33.0000 −1.18235
\(780\) 0 0
\(781\) 50.0000 1.78914
\(782\) 0 0
\(783\) −54.0000 −1.92980
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) −24.0000 −0.856052
\(787\) −52.0000 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(788\) 22.0000 0.783718
\(789\) 30.0000 1.06803
\(790\) 0 0
\(791\) 1.00000 0.0355559
\(792\) 30.0000 1.06600
\(793\) −12.0000 −0.426132
\(794\) 10.0000 0.354887
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 9.00000 0.318597
\(799\) −2.00000 −0.0707549
\(800\) 0 0
\(801\) −66.0000 −2.33200
\(802\) −37.0000 −1.30652
\(803\) −35.0000 −1.23512
\(804\) −27.0000 −0.952217
\(805\) 0 0
\(806\) 24.0000 0.845364
\(807\) 54.0000 1.90089
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) −6.00000 −0.210559
\(813\) −18.0000 −0.631288
\(814\) −40.0000 −1.40200
\(815\) 0 0
\(816\) 3.00000 0.105021
\(817\) −24.0000 −0.839654
\(818\) 21.0000 0.734248
\(819\) 36.0000 1.25794
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) −9.00000 −0.313911
\(823\) −10.0000 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −4.00000 −0.139178
\(827\) −41.0000 −1.42571 −0.712855 0.701312i \(-0.752598\pi\)
−0.712855 + 0.701312i \(0.752598\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) 90.0000 3.12207
\(832\) 6.00000 0.208013
\(833\) 1.00000 0.0346479
\(834\) 33.0000 1.14270
\(835\) 0 0
\(836\) 15.0000 0.518786
\(837\) −36.0000 −1.24434
\(838\) 39.0000 1.34723
\(839\) 2.00000 0.0690477 0.0345238 0.999404i \(-0.489009\pi\)
0.0345238 + 0.999404i \(0.489009\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −20.0000 −0.689246
\(843\) 42.0000 1.44656
\(844\) 1.00000 0.0344214
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 14.0000 0.481046
\(848\) −4.00000 −0.137361
\(849\) 39.0000 1.33848
\(850\) 0 0
\(851\) 0 0
\(852\) −30.0000 −1.02778
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 90.0000 3.07255
\(859\) −51.0000 −1.74010 −0.870049 0.492966i \(-0.835913\pi\)
−0.870049 + 0.492966i \(0.835913\pi\)
\(860\) 0 0
\(861\) 33.0000 1.12464
\(862\) 36.0000 1.22616
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) −9.00000 −0.306186
\(865\) 0 0
\(866\) −1.00000 −0.0339814
\(867\) −48.0000 −1.63017
\(868\) −4.00000 −0.135769
\(869\) 10.0000 0.339227
\(870\) 0 0
\(871\) −54.0000 −1.82972
\(872\) 18.0000 0.609557
\(873\) 60.0000 2.03069
\(874\) 0 0
\(875\) 0 0
\(876\) 21.0000 0.709524
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) −28.0000 −0.944954
\(879\) 42.0000 1.41662
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) −6.00000 −0.202031
\(883\) −15.0000 −0.504790 −0.252395 0.967624i \(-0.581218\pi\)
−0.252395 + 0.967624i \(0.581218\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) 37.0000 1.24304
\(887\) 34.0000 1.14161 0.570804 0.821086i \(-0.306632\pi\)
0.570804 + 0.821086i \(0.306632\pi\)
\(888\) 24.0000 0.805387
\(889\) 14.0000 0.469545
\(890\) 0 0
\(891\) −45.0000 −1.50756
\(892\) −22.0000 −0.736614
\(893\) 6.00000 0.200782
\(894\) −36.0000 −1.20402
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −33.0000 −1.10122
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 55.0000 1.83130
\(903\) 24.0000 0.798670
\(904\) −1.00000 −0.0332595
\(905\) 0 0
\(906\) −24.0000 −0.797347
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 28.0000 0.929213
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) −9.00000 −0.298020
\(913\) 55.0000 1.82023
\(914\) 25.0000 0.826927
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) 8.00000 0.264183
\(918\) −9.00000 −0.297044
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) −39.0000 −1.28509
\(922\) 38.0000 1.25146
\(923\) −60.0000 −1.97492
\(924\) −15.0000 −0.493464
\(925\) 0 0
\(926\) 8.00000 0.262896
\(927\) −24.0000 −0.788263
\(928\) 6.00000 0.196960
\(929\) 46.0000 1.50921 0.754606 0.656179i \(-0.227828\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 0 0
\(931\) −3.00000 −0.0983210
\(932\) −6.00000 −0.196537
\(933\) 18.0000 0.589294
\(934\) −4.00000 −0.130884
\(935\) 0 0
\(936\) −36.0000 −1.17670
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 9.00000 0.293860
\(939\) 30.0000 0.979013
\(940\) 0 0
\(941\) 56.0000 1.82555 0.912774 0.408465i \(-0.133936\pi\)
0.912774 + 0.408465i \(0.133936\pi\)
\(942\) 12.0000 0.390981
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 40.0000 1.30051
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) −6.00000 −0.194871
\(949\) 42.0000 1.36338
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) −1.00000 −0.0324102
\(953\) −9.00000 −0.291539 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(954\) 24.0000 0.777029
\(955\) 0 0
\(956\) 4.00000 0.129369
\(957\) 90.0000 2.90929
\(958\) 6.00000 0.193851
\(959\) 3.00000 0.0968751
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 48.0000 1.54758
\(963\) −18.0000 −0.580042
\(964\) −5.00000 −0.161039
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) −14.0000 −0.449977
\(969\) −9.00000 −0.289122
\(970\) 0 0
\(971\) −51.0000 −1.63667 −0.818334 0.574743i \(-0.805102\pi\)
−0.818334 + 0.574743i \(0.805102\pi\)
\(972\) 0 0
\(973\) −11.0000 −0.352644
\(974\) −34.0000 −1.08943
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) −21.0000 −0.671850 −0.335925 0.941889i \(-0.609049\pi\)
−0.335925 + 0.941889i \(0.609049\pi\)
\(978\) −57.0000 −1.82266
\(979\) 55.0000 1.75781
\(980\) 0 0
\(981\) −108.000 −3.44817
\(982\) 12.0000 0.382935
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) −33.0000 −1.05200
\(985\) 0 0
\(986\) 6.00000 0.191079
\(987\) −6.00000 −0.190982
\(988\) −18.0000 −0.572656
\(989\) 0 0
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 4.00000 0.127000
\(993\) −51.0000 −1.61844
\(994\) 10.0000 0.317181
\(995\) 0 0
\(996\) −33.0000 −1.04565
\(997\) 58.0000 1.83688 0.918439 0.395562i \(-0.129450\pi\)
0.918439 + 0.395562i \(0.129450\pi\)
\(998\) −36.0000 −1.13956
\(999\) −72.0000 −2.27798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.a.c.1.1 1
3.2 odd 2 3150.2.a.bq.1.1 1
4.3 odd 2 2800.2.a.b.1.1 1
5.2 odd 4 350.2.c.a.99.1 2
5.3 odd 4 350.2.c.a.99.2 2
5.4 even 2 350.2.a.d.1.1 yes 1
7.6 odd 2 2450.2.a.a.1.1 1
15.2 even 4 3150.2.g.v.2899.2 2
15.8 even 4 3150.2.g.v.2899.1 2
15.14 odd 2 3150.2.a.j.1.1 1
20.3 even 4 2800.2.g.a.449.1 2
20.7 even 4 2800.2.g.a.449.2 2
20.19 odd 2 2800.2.a.bg.1.1 1
35.13 even 4 2450.2.c.r.99.2 2
35.27 even 4 2450.2.c.r.99.1 2
35.34 odd 2 2450.2.a.bg.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.2.a.c.1.1 1 1.1 even 1 trivial
350.2.a.d.1.1 yes 1 5.4 even 2
350.2.c.a.99.1 2 5.2 odd 4
350.2.c.a.99.2 2 5.3 odd 4
2450.2.a.a.1.1 1 7.6 odd 2
2450.2.a.bg.1.1 1 35.34 odd 2
2450.2.c.r.99.1 2 35.27 even 4
2450.2.c.r.99.2 2 35.13 even 4
2800.2.a.b.1.1 1 4.3 odd 2
2800.2.a.bg.1.1 1 20.19 odd 2
2800.2.g.a.449.1 2 20.3 even 4
2800.2.g.a.449.2 2 20.7 even 4
3150.2.a.j.1.1 1 15.14 odd 2
3150.2.a.bq.1.1 1 3.2 odd 2
3150.2.g.v.2899.1 2 15.8 even 4
3150.2.g.v.2899.2 2 15.2 even 4