Properties

Label 350.2.a
Level $350$
Weight $2$
Character orbit 350.a
Rep. character $\chi_{350}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(350))\).

Total New Old
Modular forms 72 10 62
Cusp forms 49 10 39
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(6\)\(1\)\(5\)\(4\)\(1\)\(3\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(12\)\(2\)\(10\)\(9\)\(2\)\(7\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(11\)\(2\)\(9\)\(8\)\(2\)\(6\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(7\)\(0\)\(7\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(9\)\(1\)\(8\)\(6\)\(1\)\(5\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(9\)\(0\)\(9\)\(6\)\(0\)\(6\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(10\)\(1\)\(9\)\(7\)\(1\)\(6\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(8\)\(3\)\(5\)\(5\)\(3\)\(2\)\(3\)\(0\)\(3\)
Plus space\(+\)\(32\)\(2\)\(30\)\(21\)\(2\)\(19\)\(11\)\(0\)\(11\)
Minus space\(-\)\(40\)\(8\)\(32\)\(28\)\(8\)\(20\)\(12\)\(0\)\(12\)

Trace form

\( 10 q + 2 q^{3} + 10 q^{4} - 2 q^{6} + 18 q^{9} + 2 q^{12} + 10 q^{13} + 2 q^{14} + 10 q^{16} - 8 q^{17} + 4 q^{18} - 2 q^{19} + 6 q^{21} - 4 q^{22} - 2 q^{24} - 18 q^{26} - 4 q^{27} - 16 q^{29} + 4 q^{31}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(350))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
350.2.a.a 350.a 1.a $1$ $2.795$ \(\Q\) None 350.2.a.a \(-1\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
350.2.a.b 350.a 1.a $1$ $2.795$ \(\Q\) None 70.2.a.a \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-3q^{9}+4q^{11}+\cdots\)
350.2.a.c 350.a 1.a $1$ $2.795$ \(\Q\) None 350.2.a.c \(-1\) \(3\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}-3q^{6}+q^{7}-q^{8}+\cdots\)
350.2.a.d 350.a 1.a $1$ $2.795$ \(\Q\) None 350.2.a.c \(1\) \(-3\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-3q^{6}-q^{7}+q^{8}+\cdots\)
350.2.a.e 350.a 1.a $1$ $2.795$ \(\Q\) None 350.2.a.a \(1\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
350.2.a.f 350.a 1.a $1$ $2.795$ \(\Q\) None 14.2.a.a \(1\) \(2\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}-q^{7}+q^{8}+\cdots\)
350.2.a.g 350.a 1.a $2$ $2.795$ \(\Q(\sqrt{6}) \) None 70.2.c.a \(-2\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}-q^{7}-q^{8}+\cdots\)
350.2.a.h 350.a 1.a $2$ $2.795$ \(\Q(\sqrt{6}) \) None 70.2.c.a \(2\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+\beta q^{6}+q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(350))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(350)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)