Defining parameters
| Level: | \( N \) | \(=\) | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 350.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(350))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 72 | 10 | 62 |
| Cusp forms | 49 | 10 | 39 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(6\) | \(1\) | \(5\) | \(4\) | \(1\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(12\) | \(2\) | \(10\) | \(9\) | \(2\) | \(7\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(11\) | \(2\) | \(9\) | \(8\) | \(2\) | \(6\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(7\) | \(0\) | \(7\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(9\) | \(1\) | \(8\) | \(6\) | \(1\) | \(5\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(9\) | \(0\) | \(9\) | \(6\) | \(0\) | \(6\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(10\) | \(1\) | \(9\) | \(7\) | \(1\) | \(6\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(8\) | \(3\) | \(5\) | \(5\) | \(3\) | \(2\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(32\) | \(2\) | \(30\) | \(21\) | \(2\) | \(19\) | \(11\) | \(0\) | \(11\) | |||||
| Minus space | \(-\) | \(40\) | \(8\) | \(32\) | \(28\) | \(8\) | \(20\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(350))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(350))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(350)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)