Properties

Label 350.10.c.d.99.2
Level $350$
Weight $10$
Character 350.99
Analytic conductor $180.263$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,10,Mod(99,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.99"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-512,0,5440] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(180.262542657\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.10.c.d.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000i q^{2} -170.000i q^{3} -256.000 q^{4} +2720.00 q^{6} -2401.00i q^{7} -4096.00i q^{8} -9217.00 q^{9} +48824.0 q^{11} +43520.0i q^{12} +15876.0i q^{13} +38416.0 q^{14} +65536.0 q^{16} -21418.0i q^{17} -147472. i q^{18} +716410. q^{19} -408170. q^{21} +781184. i q^{22} +2.47000e6i q^{23} -696320. q^{24} -254016. q^{26} -1.77922e6i q^{27} +614656. i q^{28} -5.55683e6 q^{29} +5.79935e6 q^{31} +1.04858e6i q^{32} -8.30008e6i q^{33} +342688. q^{34} +2.35955e6 q^{36} -3.89443e6i q^{37} +1.14626e7i q^{38} +2.69892e6 q^{39} -6.36086e6 q^{41} -6.53072e6i q^{42} +1.87013e7i q^{43} -1.24989e7 q^{44} -3.95200e7 q^{46} +5.65391e7i q^{47} -1.11411e7i q^{48} -5.76480e6 q^{49} -3.64106e6 q^{51} -4.06426e6i q^{52} +5.98947e7i q^{53} +2.84675e7 q^{54} -9.83450e6 q^{56} -1.21790e8i q^{57} -8.89092e7i q^{58} -1.65630e8 q^{59} +5.14190e7 q^{61} +9.27896e7i q^{62} +2.21300e7i q^{63} -1.67772e7 q^{64} +1.32801e8 q^{66} +9.35465e7i q^{67} +5.48301e6i q^{68} +4.19900e8 q^{69} -9.56335e7 q^{71} +3.77528e7i q^{72} -3.06496e8i q^{73} +6.23109e7 q^{74} -1.83401e8 q^{76} -1.17226e8i q^{77} +4.31827e7i q^{78} -4.96474e8 q^{79} -4.83886e8 q^{81} -1.01774e8i q^{82} +3.71487e8i q^{83} +1.04492e8 q^{84} -2.99221e8 q^{86} +9.44660e8i q^{87} -1.99983e8i q^{88} +1.65483e8 q^{89} +3.81183e7 q^{91} -6.32320e8i q^{92} -9.85889e8i q^{93} -9.04625e8 q^{94} +1.78258e8 q^{96} +7.58017e8i q^{97} -9.22368e7i q^{98} -4.50011e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 512 q^{4} + 5440 q^{6} - 18434 q^{9} + 97648 q^{11} + 76832 q^{14} + 131072 q^{16} + 1432820 q^{19} - 816340 q^{21} - 1392640 q^{24} - 508032 q^{26} - 11113652 q^{29} + 11598696 q^{31} + 685376 q^{34}+ \cdots - 900021616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000i 0.707107i
\(3\) − 170.000i − 1.21172i −0.795570 0.605861i \(-0.792829\pi\)
0.795570 0.605861i \(-0.207171\pi\)
\(4\) −256.000 −0.500000
\(5\) 0 0
\(6\) 2720.00 0.856817
\(7\) − 2401.00i − 0.377964i
\(8\) − 4096.00i − 0.353553i
\(9\) −9217.00 −0.468272
\(10\) 0 0
\(11\) 48824.0 1.00546 0.502732 0.864442i \(-0.332328\pi\)
0.502732 + 0.864442i \(0.332328\pi\)
\(12\) 43520.0i 0.605861i
\(13\) 15876.0i 0.154169i 0.997025 + 0.0770843i \(0.0245611\pi\)
−0.997025 + 0.0770843i \(0.975439\pi\)
\(14\) 38416.0 0.267261
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) − 21418.0i − 0.0621955i −0.999516 0.0310977i \(-0.990100\pi\)
0.999516 0.0310977i \(-0.00990031\pi\)
\(18\) − 147472.i − 0.331118i
\(19\) 716410. 1.26116 0.630580 0.776124i \(-0.282817\pi\)
0.630580 + 0.776124i \(0.282817\pi\)
\(20\) 0 0
\(21\) −408170. −0.457988
\(22\) 781184.i 0.710970i
\(23\) 2.47000e6i 1.84044i 0.391401 + 0.920220i \(0.371990\pi\)
−0.391401 + 0.920220i \(0.628010\pi\)
\(24\) −696320. −0.428409
\(25\) 0 0
\(26\) −254016. −0.109014
\(27\) − 1.77922e6i − 0.644307i
\(28\) 614656.i 0.188982i
\(29\) −5.55683e6 −1.45893 −0.729467 0.684016i \(-0.760232\pi\)
−0.729467 + 0.684016i \(0.760232\pi\)
\(30\) 0 0
\(31\) 5.79935e6 1.12785 0.563925 0.825826i \(-0.309291\pi\)
0.563925 + 0.825826i \(0.309291\pi\)
\(32\) 1.04858e6i 0.176777i
\(33\) − 8.30008e6i − 1.21834i
\(34\) 342688. 0.0439788
\(35\) 0 0
\(36\) 2.35955e6 0.234136
\(37\) − 3.89443e6i − 0.341614i −0.985304 0.170807i \(-0.945362\pi\)
0.985304 0.170807i \(-0.0546375\pi\)
\(38\) 1.14626e7i 0.891775i
\(39\) 2.69892e6 0.186810
\(40\) 0 0
\(41\) −6.36086e6 −0.351551 −0.175776 0.984430i \(-0.556243\pi\)
−0.175776 + 0.984430i \(0.556243\pi\)
\(42\) − 6.53072e6i − 0.323847i
\(43\) 1.87013e7i 0.834187i 0.908863 + 0.417094i \(0.136951\pi\)
−0.908863 + 0.417094i \(0.863049\pi\)
\(44\) −1.24989e7 −0.502732
\(45\) 0 0
\(46\) −3.95200e7 −1.30139
\(47\) 5.65391e7i 1.69008i 0.534700 + 0.845042i \(0.320425\pi\)
−0.534700 + 0.845042i \(0.679575\pi\)
\(48\) − 1.11411e7i − 0.302931i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) −3.64106e6 −0.0753637
\(52\) − 4.06426e6i − 0.0770843i
\(53\) 5.98947e7i 1.04267i 0.853352 + 0.521335i \(0.174566\pi\)
−0.853352 + 0.521335i \(0.825434\pi\)
\(54\) 2.84675e7 0.455594
\(55\) 0 0
\(56\) −9.83450e6 −0.133631
\(57\) − 1.21790e8i − 1.52818i
\(58\) − 8.89092e7i − 1.03162i
\(59\) −1.65630e8 −1.77952 −0.889762 0.456424i \(-0.849130\pi\)
−0.889762 + 0.456424i \(0.849130\pi\)
\(60\) 0 0
\(61\) 5.14190e7 0.475488 0.237744 0.971328i \(-0.423592\pi\)
0.237744 + 0.971328i \(0.423592\pi\)
\(62\) 9.27896e7i 0.797511i
\(63\) 2.21300e7i 0.176990i
\(64\) −1.67772e7 −0.125000
\(65\) 0 0
\(66\) 1.32801e8 0.861499
\(67\) 9.35465e7i 0.567141i 0.958951 + 0.283570i \(0.0915190\pi\)
−0.958951 + 0.283570i \(0.908481\pi\)
\(68\) 5.48301e6i 0.0310977i
\(69\) 4.19900e8 2.23010
\(70\) 0 0
\(71\) −9.56335e7 −0.446630 −0.223315 0.974746i \(-0.571688\pi\)
−0.223315 + 0.974746i \(0.571688\pi\)
\(72\) 3.77528e7i 0.165559i
\(73\) − 3.06496e8i − 1.26320i −0.775294 0.631601i \(-0.782398\pi\)
0.775294 0.631601i \(-0.217602\pi\)
\(74\) 6.23109e7 0.241558
\(75\) 0 0
\(76\) −1.83401e8 −0.630580
\(77\) − 1.17226e8i − 0.380029i
\(78\) 4.31827e7i 0.132094i
\(79\) −4.96474e8 −1.43408 −0.717042 0.697030i \(-0.754505\pi\)
−0.717042 + 0.697030i \(0.754505\pi\)
\(80\) 0 0
\(81\) −4.83886e8 −1.24899
\(82\) − 1.01774e8i − 0.248584i
\(83\) 3.71487e8i 0.859196i 0.903020 + 0.429598i \(0.141345\pi\)
−0.903020 + 0.429598i \(0.858655\pi\)
\(84\) 1.04492e8 0.228994
\(85\) 0 0
\(86\) −2.99221e8 −0.589860
\(87\) 9.44660e8i 1.76782i
\(88\) − 1.99983e8i − 0.355485i
\(89\) 1.65483e8 0.279574 0.139787 0.990182i \(-0.455358\pi\)
0.139787 + 0.990182i \(0.455358\pi\)
\(90\) 0 0
\(91\) 3.81183e7 0.0582703
\(92\) − 6.32320e8i − 0.920220i
\(93\) − 9.85889e8i − 1.36664i
\(94\) −9.04625e8 −1.19507
\(95\) 0 0
\(96\) 1.78258e8 0.214204
\(97\) 7.58017e8i 0.869373i 0.900582 + 0.434686i \(0.143141\pi\)
−0.900582 + 0.434686i \(0.856859\pi\)
\(98\) − 9.22368e7i − 0.101015i
\(99\) −4.50011e8 −0.470830
\(100\) 0 0
\(101\) −9.04212e8 −0.864618 −0.432309 0.901726i \(-0.642301\pi\)
−0.432309 + 0.901726i \(0.642301\pi\)
\(102\) − 5.82570e7i − 0.0532902i
\(103\) − 1.98157e9i − 1.73477i −0.497639 0.867384i \(-0.665800\pi\)
0.497639 0.867384i \(-0.334200\pi\)
\(104\) 6.50281e7 0.0545068
\(105\) 0 0
\(106\) −9.58315e8 −0.737279
\(107\) 4.16379e8i 0.307087i 0.988142 + 0.153544i \(0.0490686\pi\)
−0.988142 + 0.153544i \(0.950931\pi\)
\(108\) 4.55480e8i 0.322153i
\(109\) 1.26921e9 0.861220 0.430610 0.902538i \(-0.358299\pi\)
0.430610 + 0.902538i \(0.358299\pi\)
\(110\) 0 0
\(111\) −6.62053e8 −0.413942
\(112\) − 1.57352e8i − 0.0944911i
\(113\) 2.83528e9i 1.63585i 0.575328 + 0.817923i \(0.304874\pi\)
−0.575328 + 0.817923i \(0.695126\pi\)
\(114\) 1.94864e9 1.08058
\(115\) 0 0
\(116\) 1.42255e9 0.729467
\(117\) − 1.46329e8i − 0.0721929i
\(118\) − 2.65007e9i − 1.25831i
\(119\) −5.14246e7 −0.0235077
\(120\) 0 0
\(121\) 2.58353e7 0.0109567
\(122\) 8.22704e8i 0.336221i
\(123\) 1.08135e9i 0.425982i
\(124\) −1.48463e9 −0.563925
\(125\) 0 0
\(126\) −3.54080e8 −0.125151
\(127\) 5.44282e9i 1.85655i 0.371889 + 0.928277i \(0.378710\pi\)
−0.371889 + 0.928277i \(0.621290\pi\)
\(128\) − 2.68435e8i − 0.0883883i
\(129\) 3.17922e9 1.01080
\(130\) 0 0
\(131\) −6.44057e8 −0.191075 −0.0955374 0.995426i \(-0.530457\pi\)
−0.0955374 + 0.995426i \(0.530457\pi\)
\(132\) 2.12482e9i 0.609171i
\(133\) − 1.72010e9i − 0.476674i
\(134\) −1.49674e9 −0.401029
\(135\) 0 0
\(136\) −8.77281e7 −0.0219894
\(137\) 1.67376e9i 0.405928i 0.979186 + 0.202964i \(0.0650575\pi\)
−0.979186 + 0.202964i \(0.934942\pi\)
\(138\) 6.71840e9i 1.57692i
\(139\) 4.17330e9 0.948229 0.474115 0.880463i \(-0.342768\pi\)
0.474115 + 0.880463i \(0.342768\pi\)
\(140\) 0 0
\(141\) 9.61164e9 2.04791
\(142\) − 1.53014e9i − 0.315815i
\(143\) 7.75130e8i 0.155011i
\(144\) −6.04045e8 −0.117068
\(145\) 0 0
\(146\) 4.90394e9 0.893218
\(147\) 9.80016e8i 0.173103i
\(148\) 9.96974e8i 0.170807i
\(149\) 4.64096e8 0.0771382 0.0385691 0.999256i \(-0.487720\pi\)
0.0385691 + 0.999256i \(0.487720\pi\)
\(150\) 0 0
\(151\) 7.31929e9 1.14571 0.572853 0.819658i \(-0.305837\pi\)
0.572853 + 0.819658i \(0.305837\pi\)
\(152\) − 2.93442e9i − 0.445888i
\(153\) 1.97410e8i 0.0291244i
\(154\) 1.87562e9 0.268721
\(155\) 0 0
\(156\) −6.90924e8 −0.0934048
\(157\) − 4.43050e9i − 0.581975i −0.956727 0.290987i \(-0.906016\pi\)
0.956727 0.290987i \(-0.0939838\pi\)
\(158\) − 7.94359e9i − 1.01405i
\(159\) 1.01821e10 1.26343
\(160\) 0 0
\(161\) 5.93047e9 0.695621
\(162\) − 7.74217e9i − 0.883172i
\(163\) 1.33645e10i 1.48289i 0.671013 + 0.741446i \(0.265860\pi\)
−0.671013 + 0.741446i \(0.734140\pi\)
\(164\) 1.62838e9 0.175776
\(165\) 0 0
\(166\) −5.94379e9 −0.607543
\(167\) − 1.24456e10i − 1.23821i −0.785310 0.619103i \(-0.787496\pi\)
0.785310 0.619103i \(-0.212504\pi\)
\(168\) 1.67186e9i 0.161923i
\(169\) 1.03525e10 0.976232
\(170\) 0 0
\(171\) −6.60315e9 −0.590566
\(172\) − 4.78753e9i − 0.417094i
\(173\) − 1.04544e10i − 0.887345i −0.896189 0.443672i \(-0.853675\pi\)
0.896189 0.443672i \(-0.146325\pi\)
\(174\) −1.51146e10 −1.25004
\(175\) 0 0
\(176\) 3.19973e9 0.251366
\(177\) 2.81570e10i 2.15629i
\(178\) 2.64772e9i 0.197689i
\(179\) 4.04391e9 0.294417 0.147208 0.989105i \(-0.452971\pi\)
0.147208 + 0.989105i \(0.452971\pi\)
\(180\) 0 0
\(181\) 1.24735e10 0.863843 0.431922 0.901911i \(-0.357836\pi\)
0.431922 + 0.901911i \(0.357836\pi\)
\(182\) 6.09892e8i 0.0412033i
\(183\) − 8.74123e9i − 0.576160i
\(184\) 1.01171e10 0.650694
\(185\) 0 0
\(186\) 1.57742e10 0.966362
\(187\) − 1.04571e9i − 0.0625353i
\(188\) − 1.44740e10i − 0.845042i
\(189\) −4.27191e9 −0.243525
\(190\) 0 0
\(191\) −3.81947e9 −0.207660 −0.103830 0.994595i \(-0.533110\pi\)
−0.103830 + 0.994595i \(0.533110\pi\)
\(192\) 2.85213e9i 0.151465i
\(193\) 2.41193e10i 1.25129i 0.780109 + 0.625644i \(0.215164\pi\)
−0.780109 + 0.625644i \(0.784836\pi\)
\(194\) −1.21283e10 −0.614739
\(195\) 0 0
\(196\) 1.47579e9 0.0714286
\(197\) − 1.24798e10i − 0.590351i −0.955443 0.295176i \(-0.904622\pi\)
0.955443 0.295176i \(-0.0953782\pi\)
\(198\) − 7.20017e9i − 0.332927i
\(199\) 2.93127e9 0.132500 0.0662502 0.997803i \(-0.478896\pi\)
0.0662502 + 0.997803i \(0.478896\pi\)
\(200\) 0 0
\(201\) 1.59029e10 0.687218
\(202\) − 1.44674e10i − 0.611377i
\(203\) 1.33419e10i 0.551425i
\(204\) 9.32111e8 0.0376818
\(205\) 0 0
\(206\) 3.17051e10 1.22667
\(207\) − 2.27660e10i − 0.861827i
\(208\) 1.04045e9i 0.0385422i
\(209\) 3.49780e10 1.26805
\(210\) 0 0
\(211\) 3.36978e10 1.17039 0.585195 0.810892i \(-0.301018\pi\)
0.585195 + 0.810892i \(0.301018\pi\)
\(212\) − 1.53330e10i − 0.521335i
\(213\) 1.62577e10i 0.541191i
\(214\) −6.66206e9 −0.217143
\(215\) 0 0
\(216\) −7.28769e9 −0.227797
\(217\) − 1.39242e10i − 0.426287i
\(218\) 2.03073e10i 0.608974i
\(219\) −5.21044e10 −1.53065
\(220\) 0 0
\(221\) 3.40032e8 0.00958859
\(222\) − 1.05928e10i − 0.292701i
\(223\) 3.87208e10i 1.04851i 0.851561 + 0.524255i \(0.175656\pi\)
−0.851561 + 0.524255i \(0.824344\pi\)
\(224\) 2.51763e9 0.0668153
\(225\) 0 0
\(226\) −4.53644e10 −1.15672
\(227\) 7.69011e10i 1.92228i 0.276063 + 0.961139i \(0.410970\pi\)
−0.276063 + 0.961139i \(0.589030\pi\)
\(228\) 3.11782e10i 0.764089i
\(229\) −4.35114e10 −1.04555 −0.522773 0.852472i \(-0.675103\pi\)
−0.522773 + 0.852472i \(0.675103\pi\)
\(230\) 0 0
\(231\) −1.99285e10 −0.460490
\(232\) 2.27608e10i 0.515811i
\(233\) 2.07043e10i 0.460213i 0.973165 + 0.230107i \(0.0739075\pi\)
−0.973165 + 0.230107i \(0.926093\pi\)
\(234\) 2.34127e9 0.0510481
\(235\) 0 0
\(236\) 4.24012e10 0.889762
\(237\) 8.44006e10i 1.73771i
\(238\) − 8.22794e8i − 0.0166224i
\(239\) −2.16220e10 −0.428653 −0.214326 0.976762i \(-0.568756\pi\)
−0.214326 + 0.976762i \(0.568756\pi\)
\(240\) 0 0
\(241\) 6.77789e10 1.29425 0.647124 0.762385i \(-0.275971\pi\)
0.647124 + 0.762385i \(0.275971\pi\)
\(242\) 4.13365e8i 0.00774754i
\(243\) 4.72402e10i 0.869127i
\(244\) −1.31633e10 −0.237744
\(245\) 0 0
\(246\) −1.73015e10 −0.301215
\(247\) 1.13737e10i 0.194431i
\(248\) − 2.37541e10i − 0.398755i
\(249\) 6.31528e10 1.04111
\(250\) 0 0
\(251\) 4.87895e9 0.0775881 0.0387940 0.999247i \(-0.487648\pi\)
0.0387940 + 0.999247i \(0.487648\pi\)
\(252\) − 5.66528e9i − 0.0884951i
\(253\) 1.20595e11i 1.85050i
\(254\) −8.70852e10 −1.31278
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) − 2.75029e10i − 0.393259i −0.980478 0.196630i \(-0.937000\pi\)
0.980478 0.196630i \(-0.0629997\pi\)
\(258\) 5.08675e10i 0.714746i
\(259\) −9.35053e9 −0.129118
\(260\) 0 0
\(261\) 5.12173e10 0.683178
\(262\) − 1.03049e10i − 0.135110i
\(263\) 2.22595e10i 0.286889i 0.989658 + 0.143445i \(0.0458179\pi\)
−0.989658 + 0.143445i \(0.954182\pi\)
\(264\) −3.39971e10 −0.430749
\(265\) 0 0
\(266\) 2.75216e10 0.337059
\(267\) − 2.81320e10i − 0.338766i
\(268\) − 2.39479e10i − 0.283570i
\(269\) −1.73017e10 −0.201466 −0.100733 0.994913i \(-0.532119\pi\)
−0.100733 + 0.994913i \(0.532119\pi\)
\(270\) 0 0
\(271\) 4.81901e10 0.542745 0.271372 0.962474i \(-0.412523\pi\)
0.271372 + 0.962474i \(0.412523\pi\)
\(272\) − 1.40365e9i − 0.0155489i
\(273\) − 6.48011e9i − 0.0706074i
\(274\) −2.67801e10 −0.287035
\(275\) 0 0
\(276\) −1.07494e11 −1.11505
\(277\) 8.03834e10i 0.820365i 0.912003 + 0.410183i \(0.134535\pi\)
−0.912003 + 0.410183i \(0.865465\pi\)
\(278\) 6.67728e10i 0.670499i
\(279\) −5.34526e10 −0.528141
\(280\) 0 0
\(281\) −1.95595e11 −1.87146 −0.935729 0.352719i \(-0.885257\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(282\) 1.53786e11i 1.44809i
\(283\) 6.02802e10i 0.558645i 0.960197 + 0.279322i \(0.0901098\pi\)
−0.960197 + 0.279322i \(0.909890\pi\)
\(284\) 2.44822e10 0.223315
\(285\) 0 0
\(286\) −1.24021e10 −0.109609
\(287\) 1.52724e10i 0.132874i
\(288\) − 9.66472e9i − 0.0827796i
\(289\) 1.18129e11 0.996132
\(290\) 0 0
\(291\) 1.28863e11 1.05344
\(292\) 7.84631e10i 0.631601i
\(293\) 4.86743e10i 0.385830i 0.981216 + 0.192915i \(0.0617941\pi\)
−0.981216 + 0.192915i \(0.938206\pi\)
\(294\) −1.56803e10 −0.122402
\(295\) 0 0
\(296\) −1.59516e10 −0.120779
\(297\) − 8.68686e10i − 0.647827i
\(298\) 7.42553e9i 0.0545449i
\(299\) −3.92137e10 −0.283738
\(300\) 0 0
\(301\) 4.49018e10 0.315293
\(302\) 1.17109e11i 0.810136i
\(303\) 1.53716e11i 1.04768i
\(304\) 4.69506e10 0.315290
\(305\) 0 0
\(306\) −3.15856e9 −0.0205941
\(307\) 2.75178e11i 1.76804i 0.467453 + 0.884018i \(0.345172\pi\)
−0.467453 + 0.884018i \(0.654828\pi\)
\(308\) 3.00100e10i 0.190015i
\(309\) −3.36867e11 −2.10206
\(310\) 0 0
\(311\) 1.12322e11 0.680835 0.340418 0.940274i \(-0.389432\pi\)
0.340418 + 0.940274i \(0.389432\pi\)
\(312\) − 1.10548e10i − 0.0660472i
\(313\) 1.06140e11i 0.625069i 0.949906 + 0.312535i \(0.101178\pi\)
−0.949906 + 0.312535i \(0.898822\pi\)
\(314\) 7.08880e10 0.411518
\(315\) 0 0
\(316\) 1.27097e11 0.717042
\(317\) 2.31358e9i 0.0128682i 0.999979 + 0.00643409i \(0.00204805\pi\)
−0.999979 + 0.00643409i \(0.997952\pi\)
\(318\) 1.62914e11i 0.893378i
\(319\) −2.71306e11 −1.46691
\(320\) 0 0
\(321\) 7.07844e10 0.372105
\(322\) 9.48875e10i 0.491878i
\(323\) − 1.53441e10i − 0.0784385i
\(324\) 1.23875e11 0.624497
\(325\) 0 0
\(326\) −2.13832e11 −1.04856
\(327\) − 2.15766e11i − 1.04356i
\(328\) 2.60541e10i 0.124292i
\(329\) 1.35750e11 0.638792
\(330\) 0 0
\(331\) −2.16185e11 −0.989921 −0.494960 0.868916i \(-0.664817\pi\)
−0.494960 + 0.868916i \(0.664817\pi\)
\(332\) − 9.51007e10i − 0.429598i
\(333\) 3.58950e10i 0.159968i
\(334\) 1.99130e11 0.875544
\(335\) 0 0
\(336\) −2.67498e10 −0.114497
\(337\) 5.00291e10i 0.211294i 0.994404 + 0.105647i \(0.0336914\pi\)
−0.994404 + 0.105647i \(0.966309\pi\)
\(338\) 1.65639e11i 0.690300i
\(339\) 4.81997e11 1.98219
\(340\) 0 0
\(341\) 2.83147e11 1.13401
\(342\) − 1.05650e11i − 0.417594i
\(343\) 1.38413e10i 0.0539949i
\(344\) 7.66005e10 0.294930
\(345\) 0 0
\(346\) 1.67271e11 0.627448
\(347\) − 1.84606e11i − 0.683541i −0.939784 0.341770i \(-0.888974\pi\)
0.939784 0.341770i \(-0.111026\pi\)
\(348\) − 2.41833e11i − 0.883912i
\(349\) −2.74666e11 −0.991039 −0.495520 0.868597i \(-0.665022\pi\)
−0.495520 + 0.868597i \(0.665022\pi\)
\(350\) 0 0
\(351\) 2.82469e10 0.0993319
\(352\) 5.11957e10i 0.177743i
\(353\) 1.58053e11i 0.541774i 0.962611 + 0.270887i \(0.0873169\pi\)
−0.962611 + 0.270887i \(0.912683\pi\)
\(354\) −4.50513e11 −1.52473
\(355\) 0 0
\(356\) −4.23635e10 −0.139787
\(357\) 8.74219e9i 0.0284848i
\(358\) 6.47025e10i 0.208184i
\(359\) −3.40759e11 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(360\) 0 0
\(361\) 1.90556e11 0.590526
\(362\) 1.99576e11i 0.610829i
\(363\) − 4.39200e9i − 0.0132765i
\(364\) −9.75828e9 −0.0291351
\(365\) 0 0
\(366\) 1.39860e11 0.407406
\(367\) − 6.10216e11i − 1.75584i −0.478803 0.877922i \(-0.658929\pi\)
0.478803 0.877922i \(-0.341071\pi\)
\(368\) 1.61874e11i 0.460110i
\(369\) 5.86280e10 0.164622
\(370\) 0 0
\(371\) 1.43807e11 0.394092
\(372\) 2.52388e11i 0.683321i
\(373\) − 4.34930e11i − 1.16340i −0.813402 0.581701i \(-0.802387\pi\)
0.813402 0.581701i \(-0.197613\pi\)
\(374\) 1.67314e10 0.0442191
\(375\) 0 0
\(376\) 2.31584e11 0.597535
\(377\) − 8.82202e10i − 0.224922i
\(378\) − 6.83505e10i − 0.172198i
\(379\) 7.30677e11 1.81907 0.909534 0.415630i \(-0.136439\pi\)
0.909534 + 0.415630i \(0.136439\pi\)
\(380\) 0 0
\(381\) 9.25280e11 2.24963
\(382\) − 6.11115e10i − 0.146838i
\(383\) − 2.11074e11i − 0.501233i −0.968086 0.250617i \(-0.919367\pi\)
0.968086 0.250617i \(-0.0806333\pi\)
\(384\) −4.56340e10 −0.107102
\(385\) 0 0
\(386\) −3.85909e11 −0.884794
\(387\) − 1.72370e11i − 0.390627i
\(388\) − 1.94052e11i − 0.434686i
\(389\) −7.21857e9 −0.0159837 −0.00799186 0.999968i \(-0.502544\pi\)
−0.00799186 + 0.999968i \(0.502544\pi\)
\(390\) 0 0
\(391\) 5.29025e10 0.114467
\(392\) 2.36126e10i 0.0505076i
\(393\) 1.09490e11i 0.231530i
\(394\) 1.99677e11 0.417441
\(395\) 0 0
\(396\) 1.15203e11 0.235415
\(397\) − 6.99387e11i − 1.41306i −0.707684 0.706529i \(-0.750260\pi\)
0.707684 0.706529i \(-0.249740\pi\)
\(398\) 4.69004e10i 0.0936920i
\(399\) −2.92417e11 −0.577597
\(400\) 0 0
\(401\) 6.40644e11 1.23728 0.618638 0.785676i \(-0.287685\pi\)
0.618638 + 0.785676i \(0.287685\pi\)
\(402\) 2.54447e11i 0.485936i
\(403\) 9.20704e10i 0.173879i
\(404\) 2.31478e11 0.432309
\(405\) 0 0
\(406\) −2.13471e11 −0.389917
\(407\) − 1.90142e11i − 0.343481i
\(408\) 1.49138e10i 0.0266451i
\(409\) 1.31500e10 0.0232365 0.0116182 0.999933i \(-0.496302\pi\)
0.0116182 + 0.999933i \(0.496302\pi\)
\(410\) 0 0
\(411\) 2.84538e11 0.491873
\(412\) 5.07281e11i 0.867384i
\(413\) 3.97677e11i 0.672597i
\(414\) 3.64256e11 0.609404
\(415\) 0 0
\(416\) −1.66472e10 −0.0272534
\(417\) − 7.09461e11i − 1.14899i
\(418\) 5.59648e11i 0.896647i
\(419\) 5.79915e11 0.919182 0.459591 0.888131i \(-0.347996\pi\)
0.459591 + 0.888131i \(0.347996\pi\)
\(420\) 0 0
\(421\) 1.66175e11 0.257808 0.128904 0.991657i \(-0.458854\pi\)
0.128904 + 0.991657i \(0.458854\pi\)
\(422\) 5.39165e11i 0.827591i
\(423\) − 5.21121e11i − 0.791419i
\(424\) 2.45329e11 0.368639
\(425\) 0 0
\(426\) −2.60123e11 −0.382680
\(427\) − 1.23457e11i − 0.179718i
\(428\) − 1.06593e11i − 0.153544i
\(429\) 1.31772e11 0.187830
\(430\) 0 0
\(431\) 7.57723e11 1.05770 0.528850 0.848715i \(-0.322623\pi\)
0.528850 + 0.848715i \(0.322623\pi\)
\(432\) − 1.16603e11i − 0.161077i
\(433\) 1.07485e12i 1.46944i 0.678371 + 0.734719i \(0.262686\pi\)
−0.678371 + 0.734719i \(0.737314\pi\)
\(434\) 2.22788e11 0.301431
\(435\) 0 0
\(436\) −3.24918e11 −0.430610
\(437\) 1.76953e12i 2.32109i
\(438\) − 8.33670e11i − 1.08233i
\(439\) −1.70418e11 −0.218991 −0.109496 0.993987i \(-0.534924\pi\)
−0.109496 + 0.993987i \(0.534924\pi\)
\(440\) 0 0
\(441\) 5.31342e10 0.0668960
\(442\) 5.44051e9i 0.00678016i
\(443\) − 1.22937e12i − 1.51658i −0.651918 0.758290i \(-0.726035\pi\)
0.651918 0.758290i \(-0.273965\pi\)
\(444\) 1.69486e11 0.206971
\(445\) 0 0
\(446\) −6.19533e11 −0.741409
\(447\) − 7.88963e10i − 0.0934701i
\(448\) 4.02821e10i 0.0472456i
\(449\) 7.25792e10 0.0842759 0.0421380 0.999112i \(-0.486583\pi\)
0.0421380 + 0.999112i \(0.486583\pi\)
\(450\) 0 0
\(451\) −3.10563e11 −0.353472
\(452\) − 7.25831e11i − 0.817923i
\(453\) − 1.24428e12i − 1.38828i
\(454\) −1.23042e12 −1.35926
\(455\) 0 0
\(456\) −4.98851e11 −0.540292
\(457\) − 6.64172e11i − 0.712291i −0.934431 0.356146i \(-0.884091\pi\)
0.934431 0.356146i \(-0.115909\pi\)
\(458\) − 6.96183e11i − 0.739313i
\(459\) −3.81073e10 −0.0400730
\(460\) 0 0
\(461\) −1.21501e12 −1.25293 −0.626463 0.779451i \(-0.715498\pi\)
−0.626463 + 0.779451i \(0.715498\pi\)
\(462\) − 3.18856e11i − 0.325616i
\(463\) − 2.93878e11i − 0.297202i −0.988897 0.148601i \(-0.952523\pi\)
0.988897 0.148601i \(-0.0474771\pi\)
\(464\) −3.64172e11 −0.364734
\(465\) 0 0
\(466\) −3.31269e11 −0.325420
\(467\) 4.73112e11i 0.460297i 0.973155 + 0.230149i \(0.0739212\pi\)
−0.973155 + 0.230149i \(0.926079\pi\)
\(468\) 3.74602e10i 0.0360964i
\(469\) 2.24605e11 0.214359
\(470\) 0 0
\(471\) −7.53185e11 −0.705192
\(472\) 6.78419e11i 0.629157i
\(473\) 9.13072e11i 0.838745i
\(474\) −1.35041e12 −1.22875
\(475\) 0 0
\(476\) 1.31647e10 0.0117538
\(477\) − 5.52049e11i − 0.488253i
\(478\) − 3.45952e11i − 0.303103i
\(479\) 2.05945e12 1.78748 0.893742 0.448582i \(-0.148071\pi\)
0.893742 + 0.448582i \(0.148071\pi\)
\(480\) 0 0
\(481\) 6.18280e10 0.0526662
\(482\) 1.08446e12i 0.915172i
\(483\) − 1.00818e12i − 0.842900i
\(484\) −6.61383e9 −0.00547834
\(485\) 0 0
\(486\) −7.55843e11 −0.614566
\(487\) − 1.22247e12i − 0.984821i −0.870363 0.492411i \(-0.836116\pi\)
0.870363 0.492411i \(-0.163884\pi\)
\(488\) − 2.10612e11i − 0.168110i
\(489\) 2.27197e12 1.79685
\(490\) 0 0
\(491\) 1.98225e11 0.153918 0.0769592 0.997034i \(-0.475479\pi\)
0.0769592 + 0.997034i \(0.475479\pi\)
\(492\) − 2.76825e11i − 0.212991i
\(493\) 1.19016e11i 0.0907391i
\(494\) −1.81980e11 −0.137484
\(495\) 0 0
\(496\) 3.80066e11 0.281963
\(497\) 2.29616e11i 0.168810i
\(498\) 1.01044e12i 0.736174i
\(499\) 3.00745e11 0.217143 0.108571 0.994089i \(-0.465372\pi\)
0.108571 + 0.994089i \(0.465372\pi\)
\(500\) 0 0
\(501\) −2.11576e12 −1.50036
\(502\) 7.80633e10i 0.0548631i
\(503\) − 3.30194e11i − 0.229993i −0.993366 0.114996i \(-0.963314\pi\)
0.993366 0.114996i \(-0.0366856\pi\)
\(504\) 9.06445e10 0.0625755
\(505\) 0 0
\(506\) −1.92952e12 −1.30850
\(507\) − 1.75992e12i − 1.18292i
\(508\) − 1.39336e12i − 0.928277i
\(509\) 6.32399e10 0.0417600 0.0208800 0.999782i \(-0.493353\pi\)
0.0208800 + 0.999782i \(0.493353\pi\)
\(510\) 0 0
\(511\) −7.35898e11 −0.477445
\(512\) 6.87195e10i 0.0441942i
\(513\) − 1.27465e12i − 0.812574i
\(514\) 4.40046e11 0.278076
\(515\) 0 0
\(516\) −8.13880e11 −0.505402
\(517\) 2.76046e12i 1.69932i
\(518\) − 1.49608e11i − 0.0913003i
\(519\) −1.77725e12 −1.07522
\(520\) 0 0
\(521\) −1.88994e12 −1.12377 −0.561886 0.827215i \(-0.689924\pi\)
−0.561886 + 0.827215i \(0.689924\pi\)
\(522\) 8.19476e11i 0.483080i
\(523\) − 8.95863e11i − 0.523581i −0.965125 0.261791i \(-0.915687\pi\)
0.965125 0.261791i \(-0.0843130\pi\)
\(524\) 1.64879e11 0.0955374
\(525\) 0 0
\(526\) −3.56152e11 −0.202861
\(527\) − 1.24210e11i − 0.0701472i
\(528\) − 5.43954e11i − 0.304586i
\(529\) −4.29975e12 −2.38722
\(530\) 0 0
\(531\) 1.52661e12 0.833302
\(532\) 4.40346e11i 0.238337i
\(533\) − 1.00985e11i − 0.0541981i
\(534\) 4.50113e11 0.239544
\(535\) 0 0
\(536\) 3.83166e11 0.200515
\(537\) − 6.87464e11i − 0.356752i
\(538\) − 2.76826e11i − 0.142458i
\(539\) −2.81461e11 −0.143638
\(540\) 0 0
\(541\) 1.00221e12 0.503005 0.251502 0.967857i \(-0.419075\pi\)
0.251502 + 0.967857i \(0.419075\pi\)
\(542\) 7.71041e11i 0.383778i
\(543\) − 2.12050e12i − 1.04674i
\(544\) 2.24584e10 0.0109947
\(545\) 0 0
\(546\) 1.03682e11 0.0499270
\(547\) 2.73436e12i 1.30591i 0.757396 + 0.652955i \(0.226471\pi\)
−0.757396 + 0.652955i \(0.773529\pi\)
\(548\) − 4.28481e11i − 0.202964i
\(549\) −4.73929e11 −0.222658
\(550\) 0 0
\(551\) −3.98097e12 −1.83995
\(552\) − 1.71991e12i − 0.788461i
\(553\) 1.19203e12i 0.542033i
\(554\) −1.28613e12 −0.580086
\(555\) 0 0
\(556\) −1.06837e12 −0.474115
\(557\) − 4.22359e12i − 1.85923i −0.368534 0.929614i \(-0.620140\pi\)
0.368534 0.929614i \(-0.379860\pi\)
\(558\) − 8.55241e11i − 0.373452i
\(559\) −2.96902e11 −0.128606
\(560\) 0 0
\(561\) −1.77771e11 −0.0757754
\(562\) − 3.12953e12i − 1.32332i
\(563\) 3.08311e12i 1.29330i 0.762785 + 0.646652i \(0.223831\pi\)
−0.762785 + 0.646652i \(0.776169\pi\)
\(564\) −2.46058e12 −1.02396
\(565\) 0 0
\(566\) −9.64483e11 −0.395021
\(567\) 1.16181e12i 0.472075i
\(568\) 3.91715e11i 0.157907i
\(569\) 2.74669e11 0.109851 0.0549256 0.998490i \(-0.482508\pi\)
0.0549256 + 0.998490i \(0.482508\pi\)
\(570\) 0 0
\(571\) 2.82499e12 1.11213 0.556064 0.831140i \(-0.312311\pi\)
0.556064 + 0.831140i \(0.312311\pi\)
\(572\) − 1.98433e11i − 0.0775055i
\(573\) 6.49310e11i 0.251626i
\(574\) −2.44359e11 −0.0939560
\(575\) 0 0
\(576\) 1.54636e11 0.0585340
\(577\) 3.76585e12i 1.41440i 0.707014 + 0.707199i \(0.250042\pi\)
−0.707014 + 0.707199i \(0.749958\pi\)
\(578\) 1.89007e12i 0.704371i
\(579\) 4.10028e12 1.51621
\(580\) 0 0
\(581\) 8.91940e11 0.324745
\(582\) 2.06181e12i 0.744894i
\(583\) 2.92430e12i 1.04837i
\(584\) −1.25541e12 −0.446609
\(585\) 0 0
\(586\) −7.78789e11 −0.272823
\(587\) − 3.00831e12i − 1.04580i −0.852393 0.522902i \(-0.824849\pi\)
0.852393 0.522902i \(-0.175151\pi\)
\(588\) − 2.50884e11i − 0.0865516i
\(589\) 4.15471e12 1.42240
\(590\) 0 0
\(591\) −2.12157e12 −0.715342
\(592\) − 2.55225e11i − 0.0854036i
\(593\) − 3.64775e12i − 1.21138i −0.795703 0.605688i \(-0.792898\pi\)
0.795703 0.605688i \(-0.207102\pi\)
\(594\) 1.38990e12 0.458083
\(595\) 0 0
\(596\) −1.18809e11 −0.0385691
\(597\) − 4.98316e11i − 0.160554i
\(598\) − 6.27420e11i − 0.200633i
\(599\) −4.17778e12 −1.32594 −0.662972 0.748644i \(-0.730705\pi\)
−0.662972 + 0.748644i \(0.730705\pi\)
\(600\) 0 0
\(601\) 4.84445e12 1.51464 0.757321 0.653043i \(-0.226508\pi\)
0.757321 + 0.653043i \(0.226508\pi\)
\(602\) 7.18429e11i 0.222946i
\(603\) − 8.62218e11i − 0.265576i
\(604\) −1.87374e12 −0.572853
\(605\) 0 0
\(606\) −2.45946e12 −0.740819
\(607\) − 1.58444e12i − 0.473726i −0.971543 0.236863i \(-0.923881\pi\)
0.971543 0.236863i \(-0.0761193\pi\)
\(608\) 7.51210e11i 0.222944i
\(609\) 2.26813e12 0.668175
\(610\) 0 0
\(611\) −8.97614e11 −0.260558
\(612\) − 5.05369e10i − 0.0145622i
\(613\) 2.79203e11i 0.0798635i 0.999202 + 0.0399318i \(0.0127141\pi\)
−0.999202 + 0.0399318i \(0.987286\pi\)
\(614\) −4.40285e12 −1.25019
\(615\) 0 0
\(616\) −4.80159e11 −0.134361
\(617\) − 5.55576e12i − 1.54333i −0.636027 0.771667i \(-0.719423\pi\)
0.636027 0.771667i \(-0.280577\pi\)
\(618\) − 5.38986e12i − 1.48638i
\(619\) 2.70437e12 0.740385 0.370192 0.928955i \(-0.379292\pi\)
0.370192 + 0.928955i \(0.379292\pi\)
\(620\) 0 0
\(621\) 4.39467e12 1.18581
\(622\) 1.79715e12i 0.481423i
\(623\) − 3.97324e11i − 0.105669i
\(624\) 1.76876e11 0.0467024
\(625\) 0 0
\(626\) −1.69823e12 −0.441991
\(627\) − 5.94626e12i − 1.53653i
\(628\) 1.13421e12i 0.290987i
\(629\) −8.34109e10 −0.0212469
\(630\) 0 0
\(631\) −4.73158e12 −1.18816 −0.594078 0.804407i \(-0.702483\pi\)
−0.594078 + 0.804407i \(0.702483\pi\)
\(632\) 2.03356e12i 0.507025i
\(633\) − 5.72863e12i − 1.41819i
\(634\) −3.70172e10 −0.00909918
\(635\) 0 0
\(636\) −2.60662e12 −0.631713
\(637\) − 9.15220e10i − 0.0220241i
\(638\) − 4.34090e12i − 1.03726i
\(639\) 8.81454e11 0.209144
\(640\) 0 0
\(641\) 1.38865e12 0.324887 0.162444 0.986718i \(-0.448062\pi\)
0.162444 + 0.986718i \(0.448062\pi\)
\(642\) 1.13255e12i 0.263118i
\(643\) − 3.09398e12i − 0.713786i −0.934145 0.356893i \(-0.883836\pi\)
0.934145 0.356893i \(-0.116164\pi\)
\(644\) −1.51820e12 −0.347810
\(645\) 0 0
\(646\) 2.45505e11 0.0554644
\(647\) 2.31453e12i 0.519270i 0.965707 + 0.259635i \(0.0836022\pi\)
−0.965707 + 0.259635i \(0.916398\pi\)
\(648\) 1.98200e12i 0.441586i
\(649\) −8.08670e12 −1.78925
\(650\) 0 0
\(651\) −2.36712e12 −0.516542
\(652\) − 3.42132e12i − 0.741446i
\(653\) 8.10575e11i 0.174455i 0.996188 + 0.0872276i \(0.0278007\pi\)
−0.996188 + 0.0872276i \(0.972199\pi\)
\(654\) 3.45225e12 0.737908
\(655\) 0 0
\(656\) −4.16865e11 −0.0878878
\(657\) 2.82498e12i 0.591522i
\(658\) 2.17200e12i 0.451694i
\(659\) −4.57355e11 −0.0944645 −0.0472323 0.998884i \(-0.515040\pi\)
−0.0472323 + 0.998884i \(0.515040\pi\)
\(660\) 0 0
\(661\) 7.94557e12 1.61889 0.809447 0.587193i \(-0.199767\pi\)
0.809447 + 0.587193i \(0.199767\pi\)
\(662\) − 3.45897e12i − 0.699980i
\(663\) − 5.78055e10i − 0.0116187i
\(664\) 1.52161e12 0.303772
\(665\) 0 0
\(666\) −5.74319e11 −0.113115
\(667\) − 1.37254e13i − 2.68508i
\(668\) 3.18608e12i 0.619103i
\(669\) 6.58254e12 1.27050
\(670\) 0 0
\(671\) 2.51048e12 0.478086
\(672\) − 4.27997e11i − 0.0809616i
\(673\) 8.92805e12i 1.67760i 0.544439 + 0.838801i \(0.316743\pi\)
−0.544439 + 0.838801i \(0.683257\pi\)
\(674\) −8.00465e11 −0.149408
\(675\) 0 0
\(676\) −2.65023e12 −0.488116
\(677\) − 8.01730e12i − 1.46683i −0.679782 0.733414i \(-0.737926\pi\)
0.679782 0.733414i \(-0.262074\pi\)
\(678\) 7.71195e12i 1.40162i
\(679\) 1.82000e12 0.328592
\(680\) 0 0
\(681\) 1.30732e13 2.32927
\(682\) 4.53036e12i 0.801868i
\(683\) − 4.14724e12i − 0.729233i −0.931158 0.364617i \(-0.881200\pi\)
0.931158 0.364617i \(-0.118800\pi\)
\(684\) 1.69041e12 0.295283
\(685\) 0 0
\(686\) −2.21461e11 −0.0381802
\(687\) 7.39694e12i 1.26691i
\(688\) 1.22561e12i 0.208547i
\(689\) −9.50888e11 −0.160747
\(690\) 0 0
\(691\) −6.05580e12 −1.01046 −0.505231 0.862984i \(-0.668593\pi\)
−0.505231 + 0.862984i \(0.668593\pi\)
\(692\) 2.67633e12i 0.443672i
\(693\) 1.08048e12i 0.177957i
\(694\) 2.95370e12 0.483336
\(695\) 0 0
\(696\) 3.86933e12 0.625020
\(697\) 1.36237e11i 0.0218649i
\(698\) − 4.39466e12i − 0.700771i
\(699\) 3.51973e12 0.557651
\(700\) 0 0
\(701\) 1.88599e12 0.294990 0.147495 0.989063i \(-0.452879\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(702\) 4.51950e11i 0.0702383i
\(703\) − 2.79001e12i − 0.430831i
\(704\) −8.19131e11 −0.125683
\(705\) 0 0
\(706\) −2.52886e12 −0.383092
\(707\) 2.17101e12i 0.326795i
\(708\) − 7.20820e12i − 1.07815i
\(709\) 4.76210e12 0.707767 0.353884 0.935289i \(-0.384861\pi\)
0.353884 + 0.935289i \(0.384861\pi\)
\(710\) 0 0
\(711\) 4.57600e12 0.671542
\(712\) − 6.77817e11i − 0.0988444i
\(713\) 1.43244e13i 2.07574i
\(714\) −1.39875e11 −0.0201418
\(715\) 0 0
\(716\) −1.03524e12 −0.147208
\(717\) 3.67574e12i 0.519408i
\(718\) − 5.45215e12i − 0.765610i
\(719\) −5.34893e12 −0.746427 −0.373213 0.927746i \(-0.621744\pi\)
−0.373213 + 0.927746i \(0.621744\pi\)
\(720\) 0 0
\(721\) −4.75774e12 −0.655681
\(722\) 3.04889e12i 0.417565i
\(723\) − 1.15224e13i − 1.56827i
\(724\) −3.19322e12 −0.431922
\(725\) 0 0
\(726\) 7.02720e10 0.00938788
\(727\) 9.08222e12i 1.20583i 0.797804 + 0.602917i \(0.205995\pi\)
−0.797804 + 0.602917i \(0.794005\pi\)
\(728\) − 1.56132e11i − 0.0206016i
\(729\) −1.49349e12 −0.195852
\(730\) 0 0
\(731\) 4.00544e11 0.0518827
\(732\) 2.23776e12i 0.288080i
\(733\) 1.20547e13i 1.54237i 0.636611 + 0.771185i \(0.280336\pi\)
−0.636611 + 0.771185i \(0.719664\pi\)
\(734\) 9.76345e12 1.24157
\(735\) 0 0
\(736\) −2.58998e12 −0.325347
\(737\) 4.56731e12i 0.570239i
\(738\) 9.38048e11i 0.116405i
\(739\) −1.08128e13 −1.33364 −0.666822 0.745217i \(-0.732346\pi\)
−0.666822 + 0.745217i \(0.732346\pi\)
\(740\) 0 0
\(741\) 1.93353e12 0.235597
\(742\) 2.30091e12i 0.278665i
\(743\) − 6.39433e12i − 0.769742i −0.922970 0.384871i \(-0.874246\pi\)
0.922970 0.384871i \(-0.125754\pi\)
\(744\) −4.03820e12 −0.483181
\(745\) 0 0
\(746\) 6.95889e12 0.822650
\(747\) − 3.42400e12i − 0.402337i
\(748\) 2.67702e11i 0.0312676i
\(749\) 9.99726e11 0.116068
\(750\) 0 0
\(751\) −2.30580e12 −0.264510 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(752\) 3.70534e12i 0.422521i
\(753\) − 8.29422e11i − 0.0940152i
\(754\) 1.41152e12 0.159044
\(755\) 0 0
\(756\) 1.09361e12 0.121763
\(757\) − 6.85316e12i − 0.758507i −0.925293 0.379253i \(-0.876181\pi\)
0.925293 0.379253i \(-0.123819\pi\)
\(758\) 1.16908e13i 1.28628i
\(759\) 2.05012e13 2.24229
\(760\) 0 0
\(761\) −1.55520e12 −0.168095 −0.0840474 0.996462i \(-0.526785\pi\)
−0.0840474 + 0.996462i \(0.526785\pi\)
\(762\) 1.48045e13i 1.59073i
\(763\) − 3.04737e12i − 0.325510i
\(764\) 9.77784e11 0.103830
\(765\) 0 0
\(766\) 3.37718e12 0.354425
\(767\) − 2.62954e12i − 0.274347i
\(768\) − 7.30144e11i − 0.0757327i
\(769\) 1.31148e12 0.135236 0.0676179 0.997711i \(-0.478460\pi\)
0.0676179 + 0.997711i \(0.478460\pi\)
\(770\) 0 0
\(771\) −4.67549e12 −0.476521
\(772\) − 6.17454e12i − 0.625644i
\(773\) 9.82010e12i 0.989255i 0.869105 + 0.494627i \(0.164695\pi\)
−0.869105 + 0.494627i \(0.835305\pi\)
\(774\) 2.75792e12 0.276215
\(775\) 0 0
\(776\) 3.10484e12 0.307370
\(777\) 1.58959e12i 0.156455i
\(778\) − 1.15497e11i − 0.0113022i
\(779\) −4.55698e12 −0.443362
\(780\) 0 0
\(781\) −4.66921e12 −0.449070
\(782\) 8.46439e11i 0.0809404i
\(783\) 9.88682e12i 0.940001i
\(784\) −3.77802e11 −0.0357143
\(785\) 0 0
\(786\) −1.75184e12 −0.163716
\(787\) − 4.81658e12i − 0.447562i −0.974639 0.223781i \(-0.928160\pi\)
0.974639 0.223781i \(-0.0718400\pi\)
\(788\) 3.19484e12i 0.295176i
\(789\) 3.78411e12 0.347630
\(790\) 0 0
\(791\) 6.80750e12 0.618292
\(792\) 1.84324e12i 0.166464i
\(793\) 8.16328e11i 0.0733053i
\(794\) 1.11902e13 0.999183
\(795\) 0 0
\(796\) −7.50406e11 −0.0662502
\(797\) 7.71344e12i 0.677151i 0.940939 + 0.338575i \(0.109945\pi\)
−0.940939 + 0.338575i \(0.890055\pi\)
\(798\) − 4.67867e12i − 0.408423i
\(799\) 1.21095e12 0.105116
\(800\) 0 0
\(801\) −1.52525e12 −0.130917
\(802\) 1.02503e13i 0.874887i
\(803\) − 1.49644e13i − 1.27010i
\(804\) −4.07114e12 −0.343609
\(805\) 0 0
\(806\) −1.47313e12 −0.122951
\(807\) 2.94128e12i 0.244121i
\(808\) 3.70365e12i 0.305688i
\(809\) −2.12869e13 −1.74721 −0.873604 0.486637i \(-0.838223\pi\)
−0.873604 + 0.486637i \(0.838223\pi\)
\(810\) 0 0
\(811\) 2.45053e13 1.98914 0.994570 0.104067i \(-0.0331856\pi\)
0.994570 + 0.104067i \(0.0331856\pi\)
\(812\) − 3.41554e12i − 0.275713i
\(813\) − 8.19231e12i − 0.657656i
\(814\) 3.04227e12 0.242878
\(815\) 0 0
\(816\) −2.38621e11 −0.0188409
\(817\) 1.33978e13i 1.05204i
\(818\) 2.10400e11i 0.0164307i
\(819\) −3.51336e11 −0.0272863
\(820\) 0 0
\(821\) −9.72826e12 −0.747293 −0.373646 0.927571i \(-0.621893\pi\)
−0.373646 + 0.927571i \(0.621893\pi\)
\(822\) 4.55261e12i 0.347807i
\(823\) 8.28745e11i 0.0629683i 0.999504 + 0.0314841i \(0.0100234\pi\)
−0.999504 + 0.0314841i \(0.989977\pi\)
\(824\) −8.11650e12 −0.613333
\(825\) 0 0
\(826\) −6.36283e12 −0.475598
\(827\) 2.42842e13i 1.80530i 0.430376 + 0.902649i \(0.358381\pi\)
−0.430376 + 0.902649i \(0.641619\pi\)
\(828\) 5.82809e12i 0.430913i
\(829\) −1.95570e13 −1.43816 −0.719078 0.694929i \(-0.755436\pi\)
−0.719078 + 0.694929i \(0.755436\pi\)
\(830\) 0 0
\(831\) 1.36652e13 0.994055
\(832\) − 2.66355e11i − 0.0192711i
\(833\) 1.23471e11i 0.00888507i
\(834\) 1.13514e13 0.812459
\(835\) 0 0
\(836\) −8.95437e12 −0.634025
\(837\) − 1.03183e13i − 0.726682i
\(838\) 9.27865e12i 0.649960i
\(839\) 7.69577e12 0.536196 0.268098 0.963392i \(-0.413605\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(840\) 0 0
\(841\) 1.63712e13 1.12849
\(842\) 2.65880e12i 0.182298i
\(843\) 3.32512e13i 2.26769i
\(844\) −8.62664e12 −0.585195
\(845\) 0 0
\(846\) 8.33793e12 0.559618
\(847\) − 6.20305e10i − 0.00414124i
\(848\) 3.92526e12i 0.260667i
\(849\) 1.02476e13 0.676923
\(850\) 0 0
\(851\) 9.61924e12 0.628721
\(852\) − 4.16197e12i − 0.270596i
\(853\) 2.79895e12i 0.181019i 0.995896 + 0.0905097i \(0.0288496\pi\)
−0.995896 + 0.0905097i \(0.971150\pi\)
\(854\) 1.97531e12 0.127079
\(855\) 0 0
\(856\) 1.70549e12 0.108572
\(857\) − 5.56141e12i − 0.352185i −0.984374 0.176093i \(-0.943654\pi\)
0.984374 0.176093i \(-0.0563459\pi\)
\(858\) 2.10835e12i 0.132816i
\(859\) −3.51052e12 −0.219989 −0.109995 0.993932i \(-0.535083\pi\)
−0.109995 + 0.993932i \(0.535083\pi\)
\(860\) 0 0
\(861\) 2.59631e12 0.161006
\(862\) 1.21236e13i 0.747908i
\(863\) − 1.43838e13i − 0.882721i −0.897330 0.441361i \(-0.854496\pi\)
0.897330 0.441361i \(-0.145504\pi\)
\(864\) 1.86565e12 0.113898
\(865\) 0 0
\(866\) −1.71976e13 −1.03905
\(867\) − 2.00820e13i − 1.20704i
\(868\) 3.56460e12i 0.213144i
\(869\) −2.42399e13 −1.44192
\(870\) 0 0
\(871\) −1.48514e12 −0.0874353
\(872\) − 5.19868e12i − 0.304487i
\(873\) − 6.98664e12i − 0.407103i
\(874\) −2.83125e13 −1.64126
\(875\) 0 0
\(876\) 1.33387e13 0.765325
\(877\) − 6.34278e12i − 0.362061i −0.983477 0.181030i \(-0.942057\pi\)
0.983477 0.181030i \(-0.0579433\pi\)
\(878\) − 2.72670e12i − 0.154850i
\(879\) 8.27463e12 0.467519
\(880\) 0 0
\(881\) −2.89282e13 −1.61782 −0.808910 0.587933i \(-0.799942\pi\)
−0.808910 + 0.587933i \(0.799942\pi\)
\(882\) 8.50147e11i 0.0473026i
\(883\) 7.17154e12i 0.396999i 0.980101 + 0.198500i \(0.0636068\pi\)
−0.980101 + 0.198500i \(0.936393\pi\)
\(884\) −8.70482e10 −0.00479430
\(885\) 0 0
\(886\) 1.96699e13 1.07238
\(887\) − 1.68020e13i − 0.911389i −0.890136 0.455695i \(-0.849391\pi\)
0.890136 0.455695i \(-0.150609\pi\)
\(888\) 2.71177e12i 0.146351i
\(889\) 1.30682e13 0.701711
\(890\) 0 0
\(891\) −2.36252e13 −1.25582
\(892\) − 9.91254e12i − 0.524255i
\(893\) 4.05052e13i 2.13147i
\(894\) 1.26234e12 0.0660933
\(895\) 0 0
\(896\) −6.44514e11 −0.0334077
\(897\) 6.66633e12i 0.343812i
\(898\) 1.16127e12i 0.0595921i
\(899\) −3.22260e13 −1.64546
\(900\) 0 0
\(901\) 1.28282e12 0.0648493
\(902\) − 4.96900e12i − 0.249942i
\(903\) − 7.63331e12i − 0.382048i
\(904\) 1.16133e13 0.578359
\(905\) 0 0
\(906\) 1.99085e13 0.981660
\(907\) − 1.87924e13i − 0.922038i −0.887390 0.461019i \(-0.847484\pi\)
0.887390 0.461019i \(-0.152516\pi\)
\(908\) − 1.96867e13i − 0.961139i
\(909\) 8.33412e12 0.404876
\(910\) 0 0
\(911\) −3.39496e13 −1.63306 −0.816529 0.577304i \(-0.804105\pi\)
−0.816529 + 0.577304i \(0.804105\pi\)
\(912\) − 7.98161e12i − 0.382044i
\(913\) 1.81375e13i 0.863890i
\(914\) 1.06267e13 0.503666
\(915\) 0 0
\(916\) 1.11389e13 0.522773
\(917\) 1.54638e12i 0.0722195i
\(918\) − 6.09717e11i − 0.0283359i
\(919\) −1.03287e13 −0.477667 −0.238833 0.971061i \(-0.576765\pi\)
−0.238833 + 0.971061i \(0.576765\pi\)
\(920\) 0 0
\(921\) 4.67803e13 2.14237
\(922\) − 1.94401e13i − 0.885952i
\(923\) − 1.51828e12i − 0.0688563i
\(924\) 5.10169e12 0.230245
\(925\) 0 0
\(926\) 4.70205e12 0.210154
\(927\) 1.82641e13i 0.812344i
\(928\) − 5.82675e12i − 0.257906i
\(929\) 2.79767e13 1.23233 0.616163 0.787619i \(-0.288686\pi\)
0.616163 + 0.787619i \(0.288686\pi\)
\(930\) 0 0
\(931\) −4.12996e12 −0.180166
\(932\) − 5.30030e12i − 0.230107i
\(933\) − 1.90947e13i − 0.824984i
\(934\) −7.56980e12 −0.325479
\(935\) 0 0
\(936\) −5.99364e11 −0.0255240
\(937\) 3.31649e13i 1.40556i 0.711406 + 0.702782i \(0.248059\pi\)
−0.711406 + 0.702782i \(0.751941\pi\)
\(938\) 3.59368e12i 0.151575i
\(939\) 1.80437e13 0.757411
\(940\) 0 0
\(941\) 3.19309e13 1.32757 0.663786 0.747923i \(-0.268949\pi\)
0.663786 + 0.747923i \(0.268949\pi\)
\(942\) − 1.20510e13i − 0.498646i
\(943\) − 1.57113e13i − 0.647009i
\(944\) −1.08547e13 −0.444881
\(945\) 0 0
\(946\) −1.46092e13 −0.593082
\(947\) 3.56921e13i 1.44210i 0.692881 + 0.721052i \(0.256341\pi\)
−0.692881 + 0.721052i \(0.743659\pi\)
\(948\) − 2.16066e13i − 0.868856i
\(949\) 4.86594e12 0.194746
\(950\) 0 0
\(951\) 3.93308e11 0.0155927
\(952\) 2.10635e11i 0.00831122i
\(953\) 3.04923e13i 1.19749i 0.800940 + 0.598745i \(0.204334\pi\)
−0.800940 + 0.598745i \(0.795666\pi\)
\(954\) 8.83279e12 0.345247
\(955\) 0 0
\(956\) 5.53524e12 0.214326
\(957\) 4.61221e13i 1.77748i
\(958\) 3.29512e13i 1.26394i
\(959\) 4.01869e12 0.153427
\(960\) 0 0
\(961\) 7.19282e12 0.272047
\(962\) 9.89248e11i 0.0372406i
\(963\) − 3.83776e12i − 0.143800i
\(964\) −1.73514e13 −0.647124
\(965\) 0 0
\(966\) 1.61309e13 0.596020
\(967\) − 3.45533e13i − 1.27078i −0.772192 0.635389i \(-0.780840\pi\)
0.772192 0.635389i \(-0.219160\pi\)
\(968\) − 1.05821e11i − 0.00387377i
\(969\) −2.60849e12 −0.0950457
\(970\) 0 0
\(971\) −2.06708e13 −0.746225 −0.373112 0.927786i \(-0.621709\pi\)
−0.373112 + 0.927786i \(0.621709\pi\)
\(972\) − 1.20935e13i − 0.434563i
\(973\) − 1.00201e13i − 0.358397i
\(974\) 1.95595e13 0.696374
\(975\) 0 0
\(976\) 3.36980e12 0.118872
\(977\) 1.78789e11i 0.00627791i 0.999995 + 0.00313896i \(0.000999163\pi\)
−0.999995 + 0.00313896i \(0.999001\pi\)
\(978\) 3.63515e13i 1.27057i
\(979\) 8.07952e12 0.281102
\(980\) 0 0
\(981\) −1.16983e13 −0.403285
\(982\) 3.17159e12i 0.108837i
\(983\) 1.42657e13i 0.487305i 0.969863 + 0.243652i \(0.0783456\pi\)
−0.969863 + 0.243652i \(0.921654\pi\)
\(984\) 4.42919e12 0.150608
\(985\) 0 0
\(986\) −1.90426e12 −0.0641622
\(987\) − 2.30776e13i − 0.774038i
\(988\) − 2.91167e12i − 0.0972157i
\(989\) −4.61922e13 −1.53527
\(990\) 0 0
\(991\) −2.71296e13 −0.893537 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(992\) 6.08106e12i 0.199378i
\(993\) 3.67515e13i 1.19951i
\(994\) −3.67386e12 −0.119367
\(995\) 0 0
\(996\) −1.61671e13 −0.520554
\(997\) − 3.86723e12i − 0.123957i −0.998077 0.0619787i \(-0.980259\pi\)
0.998077 0.0619787i \(-0.0197411\pi\)
\(998\) 4.81191e12i 0.153543i
\(999\) −6.92905e12 −0.220104
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.10.c.d.99.2 2
5.2 odd 4 350.10.a.a.1.1 1
5.3 odd 4 14.10.a.b.1.1 1
5.4 even 2 inner 350.10.c.d.99.1 2
15.8 even 4 126.10.a.a.1.1 1
20.3 even 4 112.10.a.a.1.1 1
35.3 even 12 98.10.c.d.79.1 2
35.13 even 4 98.10.a.b.1.1 1
35.18 odd 12 98.10.c.a.79.1 2
35.23 odd 12 98.10.c.a.67.1 2
35.33 even 12 98.10.c.d.67.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.a.b.1.1 1 5.3 odd 4
98.10.a.b.1.1 1 35.13 even 4
98.10.c.a.67.1 2 35.23 odd 12
98.10.c.a.79.1 2 35.18 odd 12
98.10.c.d.67.1 2 35.33 even 12
98.10.c.d.79.1 2 35.3 even 12
112.10.a.a.1.1 1 20.3 even 4
126.10.a.a.1.1 1 15.8 even 4
350.10.a.a.1.1 1 5.2 odd 4
350.10.c.d.99.1 2 5.4 even 2 inner
350.10.c.d.99.2 2 1.1 even 1 trivial