Properties

Label 350.10.a.a.1.1
Level $350$
Weight $10$
Character 350.1
Self dual yes
Analytic conductor $180.263$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,10,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-16,-170] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(180.262542657\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -170.000 q^{3} +256.000 q^{4} +2720.00 q^{6} +2401.00 q^{7} -4096.00 q^{8} +9217.00 q^{9} +48824.0 q^{11} -43520.0 q^{12} +15876.0 q^{13} -38416.0 q^{14} +65536.0 q^{16} +21418.0 q^{17} -147472. q^{18} -716410. q^{19} -408170. q^{21} -781184. q^{22} +2.47000e6 q^{23} +696320. q^{24} -254016. q^{26} +1.77922e6 q^{27} +614656. q^{28} +5.55683e6 q^{29} +5.79935e6 q^{31} -1.04858e6 q^{32} -8.30008e6 q^{33} -342688. q^{34} +2.35955e6 q^{36} +3.89443e6 q^{37} +1.14626e7 q^{38} -2.69892e6 q^{39} -6.36086e6 q^{41} +6.53072e6 q^{42} +1.87013e7 q^{43} +1.24989e7 q^{44} -3.95200e7 q^{46} -5.65391e7 q^{47} -1.11411e7 q^{48} +5.76480e6 q^{49} -3.64106e6 q^{51} +4.06426e6 q^{52} +5.98947e7 q^{53} -2.84675e7 q^{54} -9.83450e6 q^{56} +1.21790e8 q^{57} -8.89092e7 q^{58} +1.65630e8 q^{59} +5.14190e7 q^{61} -9.27896e7 q^{62} +2.21300e7 q^{63} +1.67772e7 q^{64} +1.32801e8 q^{66} -9.35465e7 q^{67} +5.48301e6 q^{68} -4.19900e8 q^{69} -9.56335e7 q^{71} -3.77528e7 q^{72} -3.06496e8 q^{73} -6.23109e7 q^{74} -1.83401e8 q^{76} +1.17226e8 q^{77} +4.31827e7 q^{78} +4.96474e8 q^{79} -4.83886e8 q^{81} +1.01774e8 q^{82} +3.71487e8 q^{83} -1.04492e8 q^{84} -2.99221e8 q^{86} -9.44660e8 q^{87} -1.99983e8 q^{88} -1.65483e8 q^{89} +3.81183e7 q^{91} +6.32320e8 q^{92} -9.85889e8 q^{93} +9.04625e8 q^{94} +1.78258e8 q^{96} -7.58017e8 q^{97} -9.22368e7 q^{98} +4.50011e8 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −170.000 −1.21172 −0.605861 0.795570i \(-0.707171\pi\)
−0.605861 + 0.795570i \(0.707171\pi\)
\(4\) 256.000 0.500000
\(5\) 0 0
\(6\) 2720.00 0.856817
\(7\) 2401.00 0.377964
\(8\) −4096.00 −0.353553
\(9\) 9217.00 0.468272
\(10\) 0 0
\(11\) 48824.0 1.00546 0.502732 0.864442i \(-0.332328\pi\)
0.502732 + 0.864442i \(0.332328\pi\)
\(12\) −43520.0 −0.605861
\(13\) 15876.0 0.154169 0.0770843 0.997025i \(-0.475439\pi\)
0.0770843 + 0.997025i \(0.475439\pi\)
\(14\) −38416.0 −0.267261
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 21418.0 0.0621955 0.0310977 0.999516i \(-0.490100\pi\)
0.0310977 + 0.999516i \(0.490100\pi\)
\(18\) −147472. −0.331118
\(19\) −716410. −1.26116 −0.630580 0.776124i \(-0.717183\pi\)
−0.630580 + 0.776124i \(0.717183\pi\)
\(20\) 0 0
\(21\) −408170. −0.457988
\(22\) −781184. −0.710970
\(23\) 2.47000e6 1.84044 0.920220 0.391401i \(-0.128010\pi\)
0.920220 + 0.391401i \(0.128010\pi\)
\(24\) 696320. 0.428409
\(25\) 0 0
\(26\) −254016. −0.109014
\(27\) 1.77922e6 0.644307
\(28\) 614656. 0.188982
\(29\) 5.55683e6 1.45893 0.729467 0.684016i \(-0.239768\pi\)
0.729467 + 0.684016i \(0.239768\pi\)
\(30\) 0 0
\(31\) 5.79935e6 1.12785 0.563925 0.825826i \(-0.309291\pi\)
0.563925 + 0.825826i \(0.309291\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −8.30008e6 −1.21834
\(34\) −342688. −0.0439788
\(35\) 0 0
\(36\) 2.35955e6 0.234136
\(37\) 3.89443e6 0.341614 0.170807 0.985304i \(-0.445362\pi\)
0.170807 + 0.985304i \(0.445362\pi\)
\(38\) 1.14626e7 0.891775
\(39\) −2.69892e6 −0.186810
\(40\) 0 0
\(41\) −6.36086e6 −0.351551 −0.175776 0.984430i \(-0.556243\pi\)
−0.175776 + 0.984430i \(0.556243\pi\)
\(42\) 6.53072e6 0.323847
\(43\) 1.87013e7 0.834187 0.417094 0.908863i \(-0.363049\pi\)
0.417094 + 0.908863i \(0.363049\pi\)
\(44\) 1.24989e7 0.502732
\(45\) 0 0
\(46\) −3.95200e7 −1.30139
\(47\) −5.65391e7 −1.69008 −0.845042 0.534700i \(-0.820425\pi\)
−0.845042 + 0.534700i \(0.820425\pi\)
\(48\) −1.11411e7 −0.302931
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) −3.64106e6 −0.0753637
\(52\) 4.06426e6 0.0770843
\(53\) 5.98947e7 1.04267 0.521335 0.853352i \(-0.325434\pi\)
0.521335 + 0.853352i \(0.325434\pi\)
\(54\) −2.84675e7 −0.455594
\(55\) 0 0
\(56\) −9.83450e6 −0.133631
\(57\) 1.21790e8 1.52818
\(58\) −8.89092e7 −1.03162
\(59\) 1.65630e8 1.77952 0.889762 0.456424i \(-0.150870\pi\)
0.889762 + 0.456424i \(0.150870\pi\)
\(60\) 0 0
\(61\) 5.14190e7 0.475488 0.237744 0.971328i \(-0.423592\pi\)
0.237744 + 0.971328i \(0.423592\pi\)
\(62\) −9.27896e7 −0.797511
\(63\) 2.21300e7 0.176990
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 1.32801e8 0.861499
\(67\) −9.35465e7 −0.567141 −0.283570 0.958951i \(-0.591519\pi\)
−0.283570 + 0.958951i \(0.591519\pi\)
\(68\) 5.48301e6 0.0310977
\(69\) −4.19900e8 −2.23010
\(70\) 0 0
\(71\) −9.56335e7 −0.446630 −0.223315 0.974746i \(-0.571688\pi\)
−0.223315 + 0.974746i \(0.571688\pi\)
\(72\) −3.77528e7 −0.165559
\(73\) −3.06496e8 −1.26320 −0.631601 0.775294i \(-0.717602\pi\)
−0.631601 + 0.775294i \(0.717602\pi\)
\(74\) −6.23109e7 −0.241558
\(75\) 0 0
\(76\) −1.83401e8 −0.630580
\(77\) 1.17226e8 0.380029
\(78\) 4.31827e7 0.132094
\(79\) 4.96474e8 1.43408 0.717042 0.697030i \(-0.245495\pi\)
0.717042 + 0.697030i \(0.245495\pi\)
\(80\) 0 0
\(81\) −4.83886e8 −1.24899
\(82\) 1.01774e8 0.248584
\(83\) 3.71487e8 0.859196 0.429598 0.903020i \(-0.358655\pi\)
0.429598 + 0.903020i \(0.358655\pi\)
\(84\) −1.04492e8 −0.228994
\(85\) 0 0
\(86\) −2.99221e8 −0.589860
\(87\) −9.44660e8 −1.76782
\(88\) −1.99983e8 −0.355485
\(89\) −1.65483e8 −0.279574 −0.139787 0.990182i \(-0.544642\pi\)
−0.139787 + 0.990182i \(0.544642\pi\)
\(90\) 0 0
\(91\) 3.81183e7 0.0582703
\(92\) 6.32320e8 0.920220
\(93\) −9.85889e8 −1.36664
\(94\) 9.04625e8 1.19507
\(95\) 0 0
\(96\) 1.78258e8 0.214204
\(97\) −7.58017e8 −0.869373 −0.434686 0.900582i \(-0.643141\pi\)
−0.434686 + 0.900582i \(0.643141\pi\)
\(98\) −9.22368e7 −0.101015
\(99\) 4.50011e8 0.470830
\(100\) 0 0
\(101\) −9.04212e8 −0.864618 −0.432309 0.901726i \(-0.642301\pi\)
−0.432309 + 0.901726i \(0.642301\pi\)
\(102\) 5.82570e7 0.0532902
\(103\) −1.98157e9 −1.73477 −0.867384 0.497639i \(-0.834200\pi\)
−0.867384 + 0.497639i \(0.834200\pi\)
\(104\) −6.50281e7 −0.0545068
\(105\) 0 0
\(106\) −9.58315e8 −0.737279
\(107\) −4.16379e8 −0.307087 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(108\) 4.55480e8 0.322153
\(109\) −1.26921e9 −0.861220 −0.430610 0.902538i \(-0.641701\pi\)
−0.430610 + 0.902538i \(0.641701\pi\)
\(110\) 0 0
\(111\) −6.62053e8 −0.413942
\(112\) 1.57352e8 0.0944911
\(113\) 2.83528e9 1.63585 0.817923 0.575328i \(-0.195126\pi\)
0.817923 + 0.575328i \(0.195126\pi\)
\(114\) −1.94864e9 −1.08058
\(115\) 0 0
\(116\) 1.42255e9 0.729467
\(117\) 1.46329e8 0.0721929
\(118\) −2.65007e9 −1.25831
\(119\) 5.14246e7 0.0235077
\(120\) 0 0
\(121\) 2.58353e7 0.0109567
\(122\) −8.22704e8 −0.336221
\(123\) 1.08135e9 0.425982
\(124\) 1.48463e9 0.563925
\(125\) 0 0
\(126\) −3.54080e8 −0.125151
\(127\) −5.44282e9 −1.85655 −0.928277 0.371889i \(-0.878710\pi\)
−0.928277 + 0.371889i \(0.878710\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −3.17922e9 −1.01080
\(130\) 0 0
\(131\) −6.44057e8 −0.191075 −0.0955374 0.995426i \(-0.530457\pi\)
−0.0955374 + 0.995426i \(0.530457\pi\)
\(132\) −2.12482e9 −0.609171
\(133\) −1.72010e9 −0.476674
\(134\) 1.49674e9 0.401029
\(135\) 0 0
\(136\) −8.77281e7 −0.0219894
\(137\) −1.67376e9 −0.405928 −0.202964 0.979186i \(-0.565058\pi\)
−0.202964 + 0.979186i \(0.565058\pi\)
\(138\) 6.71840e9 1.57692
\(139\) −4.17330e9 −0.948229 −0.474115 0.880463i \(-0.657232\pi\)
−0.474115 + 0.880463i \(0.657232\pi\)
\(140\) 0 0
\(141\) 9.61164e9 2.04791
\(142\) 1.53014e9 0.315815
\(143\) 7.75130e8 0.155011
\(144\) 6.04045e8 0.117068
\(145\) 0 0
\(146\) 4.90394e9 0.893218
\(147\) −9.80016e8 −0.173103
\(148\) 9.96974e8 0.170807
\(149\) −4.64096e8 −0.0771382 −0.0385691 0.999256i \(-0.512280\pi\)
−0.0385691 + 0.999256i \(0.512280\pi\)
\(150\) 0 0
\(151\) 7.31929e9 1.14571 0.572853 0.819658i \(-0.305837\pi\)
0.572853 + 0.819658i \(0.305837\pi\)
\(152\) 2.93442e9 0.445888
\(153\) 1.97410e8 0.0291244
\(154\) −1.87562e9 −0.268721
\(155\) 0 0
\(156\) −6.90924e8 −0.0934048
\(157\) 4.43050e9 0.581975 0.290987 0.956727i \(-0.406016\pi\)
0.290987 + 0.956727i \(0.406016\pi\)
\(158\) −7.94359e9 −1.01405
\(159\) −1.01821e10 −1.26343
\(160\) 0 0
\(161\) 5.93047e9 0.695621
\(162\) 7.74217e9 0.883172
\(163\) 1.33645e10 1.48289 0.741446 0.671013i \(-0.234140\pi\)
0.741446 + 0.671013i \(0.234140\pi\)
\(164\) −1.62838e9 −0.175776
\(165\) 0 0
\(166\) −5.94379e9 −0.607543
\(167\) 1.24456e10 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(168\) 1.67186e9 0.161923
\(169\) −1.03525e10 −0.976232
\(170\) 0 0
\(171\) −6.60315e9 −0.590566
\(172\) 4.78753e9 0.417094
\(173\) −1.04544e10 −0.887345 −0.443672 0.896189i \(-0.646325\pi\)
−0.443672 + 0.896189i \(0.646325\pi\)
\(174\) 1.51146e10 1.25004
\(175\) 0 0
\(176\) 3.19973e9 0.251366
\(177\) −2.81570e10 −2.15629
\(178\) 2.64772e9 0.197689
\(179\) −4.04391e9 −0.294417 −0.147208 0.989105i \(-0.547029\pi\)
−0.147208 + 0.989105i \(0.547029\pi\)
\(180\) 0 0
\(181\) 1.24735e10 0.863843 0.431922 0.901911i \(-0.357836\pi\)
0.431922 + 0.901911i \(0.357836\pi\)
\(182\) −6.09892e8 −0.0412033
\(183\) −8.74123e9 −0.576160
\(184\) −1.01171e10 −0.650694
\(185\) 0 0
\(186\) 1.57742e10 0.966362
\(187\) 1.04571e9 0.0625353
\(188\) −1.44740e10 −0.845042
\(189\) 4.27191e9 0.243525
\(190\) 0 0
\(191\) −3.81947e9 −0.207660 −0.103830 0.994595i \(-0.533110\pi\)
−0.103830 + 0.994595i \(0.533110\pi\)
\(192\) −2.85213e9 −0.151465
\(193\) 2.41193e10 1.25129 0.625644 0.780109i \(-0.284836\pi\)
0.625644 + 0.780109i \(0.284836\pi\)
\(194\) 1.21283e10 0.614739
\(195\) 0 0
\(196\) 1.47579e9 0.0714286
\(197\) 1.24798e10 0.590351 0.295176 0.955443i \(-0.404622\pi\)
0.295176 + 0.955443i \(0.404622\pi\)
\(198\) −7.20017e9 −0.332927
\(199\) −2.93127e9 −0.132500 −0.0662502 0.997803i \(-0.521104\pi\)
−0.0662502 + 0.997803i \(0.521104\pi\)
\(200\) 0 0
\(201\) 1.59029e10 0.687218
\(202\) 1.44674e10 0.611377
\(203\) 1.33419e10 0.551425
\(204\) −9.32111e8 −0.0376818
\(205\) 0 0
\(206\) 3.17051e10 1.22667
\(207\) 2.27660e10 0.861827
\(208\) 1.04045e9 0.0385422
\(209\) −3.49780e10 −1.26805
\(210\) 0 0
\(211\) 3.36978e10 1.17039 0.585195 0.810892i \(-0.301018\pi\)
0.585195 + 0.810892i \(0.301018\pi\)
\(212\) 1.53330e10 0.521335
\(213\) 1.62577e10 0.541191
\(214\) 6.66206e9 0.217143
\(215\) 0 0
\(216\) −7.28769e9 −0.227797
\(217\) 1.39242e10 0.426287
\(218\) 2.03073e10 0.608974
\(219\) 5.21044e10 1.53065
\(220\) 0 0
\(221\) 3.40032e8 0.00958859
\(222\) 1.05928e10 0.292701
\(223\) 3.87208e10 1.04851 0.524255 0.851561i \(-0.324344\pi\)
0.524255 + 0.851561i \(0.324344\pi\)
\(224\) −2.51763e9 −0.0668153
\(225\) 0 0
\(226\) −4.53644e10 −1.15672
\(227\) −7.69011e10 −1.92228 −0.961139 0.276063i \(-0.910970\pi\)
−0.961139 + 0.276063i \(0.910970\pi\)
\(228\) 3.11782e10 0.764089
\(229\) 4.35114e10 1.04555 0.522773 0.852472i \(-0.324897\pi\)
0.522773 + 0.852472i \(0.324897\pi\)
\(230\) 0 0
\(231\) −1.99285e10 −0.460490
\(232\) −2.27608e10 −0.515811
\(233\) 2.07043e10 0.460213 0.230107 0.973165i \(-0.426093\pi\)
0.230107 + 0.973165i \(0.426093\pi\)
\(234\) −2.34127e9 −0.0510481
\(235\) 0 0
\(236\) 4.24012e10 0.889762
\(237\) −8.44006e10 −1.73771
\(238\) −8.22794e8 −0.0166224
\(239\) 2.16220e10 0.428653 0.214326 0.976762i \(-0.431244\pi\)
0.214326 + 0.976762i \(0.431244\pi\)
\(240\) 0 0
\(241\) 6.77789e10 1.29425 0.647124 0.762385i \(-0.275971\pi\)
0.647124 + 0.762385i \(0.275971\pi\)
\(242\) −4.13365e8 −0.00774754
\(243\) 4.72402e10 0.869127
\(244\) 1.31633e10 0.237744
\(245\) 0 0
\(246\) −1.73015e10 −0.301215
\(247\) −1.13737e10 −0.194431
\(248\) −2.37541e10 −0.398755
\(249\) −6.31528e10 −1.04111
\(250\) 0 0
\(251\) 4.87895e9 0.0775881 0.0387940 0.999247i \(-0.487648\pi\)
0.0387940 + 0.999247i \(0.487648\pi\)
\(252\) 5.66528e9 0.0884951
\(253\) 1.20595e11 1.85050
\(254\) 8.70852e10 1.31278
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) 2.75029e10 0.393259 0.196630 0.980478i \(-0.437000\pi\)
0.196630 + 0.980478i \(0.437000\pi\)
\(258\) 5.08675e10 0.714746
\(259\) 9.35053e9 0.129118
\(260\) 0 0
\(261\) 5.12173e10 0.683178
\(262\) 1.03049e10 0.135110
\(263\) 2.22595e10 0.286889 0.143445 0.989658i \(-0.454182\pi\)
0.143445 + 0.989658i \(0.454182\pi\)
\(264\) 3.39971e10 0.430749
\(265\) 0 0
\(266\) 2.75216e10 0.337059
\(267\) 2.81320e10 0.338766
\(268\) −2.39479e10 −0.283570
\(269\) 1.73017e10 0.201466 0.100733 0.994913i \(-0.467881\pi\)
0.100733 + 0.994913i \(0.467881\pi\)
\(270\) 0 0
\(271\) 4.81901e10 0.542745 0.271372 0.962474i \(-0.412523\pi\)
0.271372 + 0.962474i \(0.412523\pi\)
\(272\) 1.40365e9 0.0155489
\(273\) −6.48011e9 −0.0706074
\(274\) 2.67801e10 0.287035
\(275\) 0 0
\(276\) −1.07494e11 −1.11505
\(277\) −8.03834e10 −0.820365 −0.410183 0.912003i \(-0.634535\pi\)
−0.410183 + 0.912003i \(0.634535\pi\)
\(278\) 6.67728e10 0.670499
\(279\) 5.34526e10 0.528141
\(280\) 0 0
\(281\) −1.95595e11 −1.87146 −0.935729 0.352719i \(-0.885257\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(282\) −1.53786e11 −1.44809
\(283\) 6.02802e10 0.558645 0.279322 0.960197i \(-0.409890\pi\)
0.279322 + 0.960197i \(0.409890\pi\)
\(284\) −2.44822e10 −0.223315
\(285\) 0 0
\(286\) −1.24021e10 −0.109609
\(287\) −1.52724e10 −0.132874
\(288\) −9.66472e9 −0.0827796
\(289\) −1.18129e11 −0.996132
\(290\) 0 0
\(291\) 1.28863e11 1.05344
\(292\) −7.84631e10 −0.631601
\(293\) 4.86743e10 0.385830 0.192915 0.981216i \(-0.438206\pi\)
0.192915 + 0.981216i \(0.438206\pi\)
\(294\) 1.56803e10 0.122402
\(295\) 0 0
\(296\) −1.59516e10 −0.120779
\(297\) 8.68686e10 0.647827
\(298\) 7.42553e9 0.0545449
\(299\) 3.92137e10 0.283738
\(300\) 0 0
\(301\) 4.49018e10 0.315293
\(302\) −1.17109e11 −0.810136
\(303\) 1.53716e11 1.04768
\(304\) −4.69506e10 −0.315290
\(305\) 0 0
\(306\) −3.15856e9 −0.0205941
\(307\) −2.75178e11 −1.76804 −0.884018 0.467453i \(-0.845172\pi\)
−0.884018 + 0.467453i \(0.845172\pi\)
\(308\) 3.00100e10 0.190015
\(309\) 3.36867e11 2.10206
\(310\) 0 0
\(311\) 1.12322e11 0.680835 0.340418 0.940274i \(-0.389432\pi\)
0.340418 + 0.940274i \(0.389432\pi\)
\(312\) 1.10548e10 0.0660472
\(313\) 1.06140e11 0.625069 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(314\) −7.08880e10 −0.411518
\(315\) 0 0
\(316\) 1.27097e11 0.717042
\(317\) −2.31358e9 −0.0128682 −0.00643409 0.999979i \(-0.502048\pi\)
−0.00643409 + 0.999979i \(0.502048\pi\)
\(318\) 1.62914e11 0.893378
\(319\) 2.71306e11 1.46691
\(320\) 0 0
\(321\) 7.07844e10 0.372105
\(322\) −9.48875e10 −0.491878
\(323\) −1.53441e10 −0.0784385
\(324\) −1.23875e11 −0.624497
\(325\) 0 0
\(326\) −2.13832e11 −1.04856
\(327\) 2.15766e11 1.04356
\(328\) 2.60541e10 0.124292
\(329\) −1.35750e11 −0.638792
\(330\) 0 0
\(331\) −2.16185e11 −0.989921 −0.494960 0.868916i \(-0.664817\pi\)
−0.494960 + 0.868916i \(0.664817\pi\)
\(332\) 9.51007e10 0.429598
\(333\) 3.58950e10 0.159968
\(334\) −1.99130e11 −0.875544
\(335\) 0 0
\(336\) −2.67498e10 −0.114497
\(337\) −5.00291e10 −0.211294 −0.105647 0.994404i \(-0.533691\pi\)
−0.105647 + 0.994404i \(0.533691\pi\)
\(338\) 1.65639e11 0.690300
\(339\) −4.81997e11 −1.98219
\(340\) 0 0
\(341\) 2.83147e11 1.13401
\(342\) 1.05650e11 0.417594
\(343\) 1.38413e10 0.0539949
\(344\) −7.66005e10 −0.294930
\(345\) 0 0
\(346\) 1.67271e11 0.627448
\(347\) 1.84606e11 0.683541 0.341770 0.939784i \(-0.388974\pi\)
0.341770 + 0.939784i \(0.388974\pi\)
\(348\) −2.41833e11 −0.883912
\(349\) 2.74666e11 0.991039 0.495520 0.868597i \(-0.334978\pi\)
0.495520 + 0.868597i \(0.334978\pi\)
\(350\) 0 0
\(351\) 2.82469e10 0.0993319
\(352\) −5.11957e10 −0.177743
\(353\) 1.58053e11 0.541774 0.270887 0.962611i \(-0.412683\pi\)
0.270887 + 0.962611i \(0.412683\pi\)
\(354\) 4.50513e11 1.52473
\(355\) 0 0
\(356\) −4.23635e10 −0.139787
\(357\) −8.74219e9 −0.0284848
\(358\) 6.47025e10 0.208184
\(359\) 3.40759e11 1.08274 0.541368 0.840786i \(-0.317907\pi\)
0.541368 + 0.840786i \(0.317907\pi\)
\(360\) 0 0
\(361\) 1.90556e11 0.590526
\(362\) −1.99576e11 −0.610829
\(363\) −4.39200e9 −0.0132765
\(364\) 9.75828e9 0.0291351
\(365\) 0 0
\(366\) 1.39860e11 0.407406
\(367\) 6.10216e11 1.75584 0.877922 0.478803i \(-0.158929\pi\)
0.877922 + 0.478803i \(0.158929\pi\)
\(368\) 1.61874e11 0.460110
\(369\) −5.86280e10 −0.164622
\(370\) 0 0
\(371\) 1.43807e11 0.394092
\(372\) −2.52388e11 −0.683321
\(373\) −4.34930e11 −1.16340 −0.581701 0.813402i \(-0.697613\pi\)
−0.581701 + 0.813402i \(0.697613\pi\)
\(374\) −1.67314e10 −0.0442191
\(375\) 0 0
\(376\) 2.31584e11 0.597535
\(377\) 8.82202e10 0.224922
\(378\) −6.83505e10 −0.172198
\(379\) −7.30677e11 −1.81907 −0.909534 0.415630i \(-0.863561\pi\)
−0.909534 + 0.415630i \(0.863561\pi\)
\(380\) 0 0
\(381\) 9.25280e11 2.24963
\(382\) 6.11115e10 0.146838
\(383\) −2.11074e11 −0.501233 −0.250617 0.968086i \(-0.580633\pi\)
−0.250617 + 0.968086i \(0.580633\pi\)
\(384\) 4.56340e10 0.107102
\(385\) 0 0
\(386\) −3.85909e11 −0.884794
\(387\) 1.72370e11 0.390627
\(388\) −1.94052e11 −0.434686
\(389\) 7.21857e9 0.0159837 0.00799186 0.999968i \(-0.497456\pi\)
0.00799186 + 0.999968i \(0.497456\pi\)
\(390\) 0 0
\(391\) 5.29025e10 0.114467
\(392\) −2.36126e10 −0.0505076
\(393\) 1.09490e11 0.231530
\(394\) −1.99677e11 −0.417441
\(395\) 0 0
\(396\) 1.15203e11 0.235415
\(397\) 6.99387e11 1.41306 0.706529 0.707684i \(-0.250260\pi\)
0.706529 + 0.707684i \(0.250260\pi\)
\(398\) 4.69004e10 0.0936920
\(399\) 2.92417e11 0.577597
\(400\) 0 0
\(401\) 6.40644e11 1.23728 0.618638 0.785676i \(-0.287685\pi\)
0.618638 + 0.785676i \(0.287685\pi\)
\(402\) −2.54447e11 −0.485936
\(403\) 9.20704e10 0.173879
\(404\) −2.31478e11 −0.432309
\(405\) 0 0
\(406\) −2.13471e11 −0.389917
\(407\) 1.90142e11 0.343481
\(408\) 1.49138e10 0.0266451
\(409\) −1.31500e10 −0.0232365 −0.0116182 0.999933i \(-0.503698\pi\)
−0.0116182 + 0.999933i \(0.503698\pi\)
\(410\) 0 0
\(411\) 2.84538e11 0.491873
\(412\) −5.07281e11 −0.867384
\(413\) 3.97677e11 0.672597
\(414\) −3.64256e11 −0.609404
\(415\) 0 0
\(416\) −1.66472e10 −0.0272534
\(417\) 7.09461e11 1.14899
\(418\) 5.59648e11 0.896647
\(419\) −5.79915e11 −0.919182 −0.459591 0.888131i \(-0.652004\pi\)
−0.459591 + 0.888131i \(0.652004\pi\)
\(420\) 0 0
\(421\) 1.66175e11 0.257808 0.128904 0.991657i \(-0.458854\pi\)
0.128904 + 0.991657i \(0.458854\pi\)
\(422\) −5.39165e11 −0.827591
\(423\) −5.21121e11 −0.791419
\(424\) −2.45329e11 −0.368639
\(425\) 0 0
\(426\) −2.60123e11 −0.382680
\(427\) 1.23457e11 0.179718
\(428\) −1.06593e11 −0.153544
\(429\) −1.31772e11 −0.187830
\(430\) 0 0
\(431\) 7.57723e11 1.05770 0.528850 0.848715i \(-0.322623\pi\)
0.528850 + 0.848715i \(0.322623\pi\)
\(432\) 1.16603e11 0.161077
\(433\) 1.07485e12 1.46944 0.734719 0.678371i \(-0.237314\pi\)
0.734719 + 0.678371i \(0.237314\pi\)
\(434\) −2.22788e11 −0.301431
\(435\) 0 0
\(436\) −3.24918e11 −0.430610
\(437\) −1.76953e12 −2.32109
\(438\) −8.33670e11 −1.08233
\(439\) 1.70418e11 0.218991 0.109496 0.993987i \(-0.465076\pi\)
0.109496 + 0.993987i \(0.465076\pi\)
\(440\) 0 0
\(441\) 5.31342e10 0.0668960
\(442\) −5.44051e9 −0.00678016
\(443\) −1.22937e12 −1.51658 −0.758290 0.651918i \(-0.773965\pi\)
−0.758290 + 0.651918i \(0.773965\pi\)
\(444\) −1.69486e11 −0.206971
\(445\) 0 0
\(446\) −6.19533e11 −0.741409
\(447\) 7.88963e10 0.0934701
\(448\) 4.02821e10 0.0472456
\(449\) −7.25792e10 −0.0842759 −0.0421380 0.999112i \(-0.513417\pi\)
−0.0421380 + 0.999112i \(0.513417\pi\)
\(450\) 0 0
\(451\) −3.10563e11 −0.353472
\(452\) 7.25831e11 0.817923
\(453\) −1.24428e12 −1.38828
\(454\) 1.23042e12 1.35926
\(455\) 0 0
\(456\) −4.98851e11 −0.540292
\(457\) 6.64172e11 0.712291 0.356146 0.934431i \(-0.384091\pi\)
0.356146 + 0.934431i \(0.384091\pi\)
\(458\) −6.96183e11 −0.739313
\(459\) 3.81073e10 0.0400730
\(460\) 0 0
\(461\) −1.21501e12 −1.25293 −0.626463 0.779451i \(-0.715498\pi\)
−0.626463 + 0.779451i \(0.715498\pi\)
\(462\) 3.18856e11 0.325616
\(463\) −2.93878e11 −0.297202 −0.148601 0.988897i \(-0.547477\pi\)
−0.148601 + 0.988897i \(0.547477\pi\)
\(464\) 3.64172e11 0.364734
\(465\) 0 0
\(466\) −3.31269e11 −0.325420
\(467\) −4.73112e11 −0.460297 −0.230149 0.973155i \(-0.573921\pi\)
−0.230149 + 0.973155i \(0.573921\pi\)
\(468\) 3.74602e10 0.0360964
\(469\) −2.24605e11 −0.214359
\(470\) 0 0
\(471\) −7.53185e11 −0.705192
\(472\) −6.78419e11 −0.629157
\(473\) 9.13072e11 0.838745
\(474\) 1.35041e12 1.22875
\(475\) 0 0
\(476\) 1.31647e10 0.0117538
\(477\) 5.52049e11 0.488253
\(478\) −3.45952e11 −0.303103
\(479\) −2.05945e12 −1.78748 −0.893742 0.448582i \(-0.851929\pi\)
−0.893742 + 0.448582i \(0.851929\pi\)
\(480\) 0 0
\(481\) 6.18280e10 0.0526662
\(482\) −1.08446e12 −0.915172
\(483\) −1.00818e12 −0.842900
\(484\) 6.61383e9 0.00547834
\(485\) 0 0
\(486\) −7.55843e11 −0.614566
\(487\) 1.22247e12 0.984821 0.492411 0.870363i \(-0.336116\pi\)
0.492411 + 0.870363i \(0.336116\pi\)
\(488\) −2.10612e11 −0.168110
\(489\) −2.27197e12 −1.79685
\(490\) 0 0
\(491\) 1.98225e11 0.153918 0.0769592 0.997034i \(-0.475479\pi\)
0.0769592 + 0.997034i \(0.475479\pi\)
\(492\) 2.76825e11 0.212991
\(493\) 1.19016e11 0.0907391
\(494\) 1.81980e11 0.137484
\(495\) 0 0
\(496\) 3.80066e11 0.281963
\(497\) −2.29616e11 −0.168810
\(498\) 1.01044e12 0.736174
\(499\) −3.00745e11 −0.217143 −0.108571 0.994089i \(-0.534628\pi\)
−0.108571 + 0.994089i \(0.534628\pi\)
\(500\) 0 0
\(501\) −2.11576e12 −1.50036
\(502\) −7.80633e10 −0.0548631
\(503\) −3.30194e11 −0.229993 −0.114996 0.993366i \(-0.536686\pi\)
−0.114996 + 0.993366i \(0.536686\pi\)
\(504\) −9.06445e10 −0.0625755
\(505\) 0 0
\(506\) −1.92952e12 −1.30850
\(507\) 1.75992e12 1.18292
\(508\) −1.39336e12 −0.928277
\(509\) −6.32399e10 −0.0417600 −0.0208800 0.999782i \(-0.506647\pi\)
−0.0208800 + 0.999782i \(0.506647\pi\)
\(510\) 0 0
\(511\) −7.35898e11 −0.477445
\(512\) −6.87195e10 −0.0441942
\(513\) −1.27465e12 −0.812574
\(514\) −4.40046e11 −0.278076
\(515\) 0 0
\(516\) −8.13880e11 −0.505402
\(517\) −2.76046e12 −1.69932
\(518\) −1.49608e11 −0.0913003
\(519\) 1.77725e12 1.07522
\(520\) 0 0
\(521\) −1.88994e12 −1.12377 −0.561886 0.827215i \(-0.689924\pi\)
−0.561886 + 0.827215i \(0.689924\pi\)
\(522\) −8.19476e11 −0.483080
\(523\) −8.95863e11 −0.523581 −0.261791 0.965125i \(-0.584313\pi\)
−0.261791 + 0.965125i \(0.584313\pi\)
\(524\) −1.64879e11 −0.0955374
\(525\) 0 0
\(526\) −3.56152e11 −0.202861
\(527\) 1.24210e11 0.0701472
\(528\) −5.43954e11 −0.304586
\(529\) 4.29975e12 2.38722
\(530\) 0 0
\(531\) 1.52661e12 0.833302
\(532\) −4.40346e11 −0.238337
\(533\) −1.00985e11 −0.0541981
\(534\) −4.50113e11 −0.239544
\(535\) 0 0
\(536\) 3.83166e11 0.200515
\(537\) 6.87464e11 0.356752
\(538\) −2.76826e11 −0.142458
\(539\) 2.81461e11 0.143638
\(540\) 0 0
\(541\) 1.00221e12 0.503005 0.251502 0.967857i \(-0.419075\pi\)
0.251502 + 0.967857i \(0.419075\pi\)
\(542\) −7.71041e11 −0.383778
\(543\) −2.12050e12 −1.04674
\(544\) −2.24584e10 −0.0109947
\(545\) 0 0
\(546\) 1.03682e11 0.0499270
\(547\) −2.73436e12 −1.30591 −0.652955 0.757396i \(-0.726471\pi\)
−0.652955 + 0.757396i \(0.726471\pi\)
\(548\) −4.28481e11 −0.202964
\(549\) 4.73929e11 0.222658
\(550\) 0 0
\(551\) −3.98097e12 −1.83995
\(552\) 1.71991e12 0.788461
\(553\) 1.19203e12 0.542033
\(554\) 1.28613e12 0.580086
\(555\) 0 0
\(556\) −1.06837e12 −0.474115
\(557\) 4.22359e12 1.85923 0.929614 0.368534i \(-0.120140\pi\)
0.929614 + 0.368534i \(0.120140\pi\)
\(558\) −8.55241e11 −0.373452
\(559\) 2.96902e11 0.128606
\(560\) 0 0
\(561\) −1.77771e11 −0.0757754
\(562\) 3.12953e12 1.32332
\(563\) 3.08311e12 1.29330 0.646652 0.762785i \(-0.276169\pi\)
0.646652 + 0.762785i \(0.276169\pi\)
\(564\) 2.46058e12 1.02396
\(565\) 0 0
\(566\) −9.64483e11 −0.395021
\(567\) −1.16181e12 −0.472075
\(568\) 3.91715e11 0.157907
\(569\) −2.74669e11 −0.109851 −0.0549256 0.998490i \(-0.517492\pi\)
−0.0549256 + 0.998490i \(0.517492\pi\)
\(570\) 0 0
\(571\) 2.82499e12 1.11213 0.556064 0.831140i \(-0.312311\pi\)
0.556064 + 0.831140i \(0.312311\pi\)
\(572\) 1.98433e11 0.0775055
\(573\) 6.49310e11 0.251626
\(574\) 2.44359e11 0.0939560
\(575\) 0 0
\(576\) 1.54636e11 0.0585340
\(577\) −3.76585e12 −1.41440 −0.707199 0.707014i \(-0.750042\pi\)
−0.707199 + 0.707014i \(0.750042\pi\)
\(578\) 1.89007e12 0.704371
\(579\) −4.10028e12 −1.51621
\(580\) 0 0
\(581\) 8.91940e11 0.324745
\(582\) −2.06181e12 −0.744894
\(583\) 2.92430e12 1.04837
\(584\) 1.25541e12 0.446609
\(585\) 0 0
\(586\) −7.78789e11 −0.272823
\(587\) 3.00831e12 1.04580 0.522902 0.852393i \(-0.324849\pi\)
0.522902 + 0.852393i \(0.324849\pi\)
\(588\) −2.50884e11 −0.0865516
\(589\) −4.15471e12 −1.42240
\(590\) 0 0
\(591\) −2.12157e12 −0.715342
\(592\) 2.55225e11 0.0854036
\(593\) −3.64775e12 −1.21138 −0.605688 0.795703i \(-0.707102\pi\)
−0.605688 + 0.795703i \(0.707102\pi\)
\(594\) −1.38990e12 −0.458083
\(595\) 0 0
\(596\) −1.18809e11 −0.0385691
\(597\) 4.98316e11 0.160554
\(598\) −6.27420e11 −0.200633
\(599\) 4.17778e12 1.32594 0.662972 0.748644i \(-0.269295\pi\)
0.662972 + 0.748644i \(0.269295\pi\)
\(600\) 0 0
\(601\) 4.84445e12 1.51464 0.757321 0.653043i \(-0.226508\pi\)
0.757321 + 0.653043i \(0.226508\pi\)
\(602\) −7.18429e11 −0.222946
\(603\) −8.62218e11 −0.265576
\(604\) 1.87374e12 0.572853
\(605\) 0 0
\(606\) −2.45946e12 −0.740819
\(607\) 1.58444e12 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(608\) 7.51210e11 0.222944
\(609\) −2.26813e12 −0.668175
\(610\) 0 0
\(611\) −8.97614e11 −0.260558
\(612\) 5.05369e10 0.0145622
\(613\) 2.79203e11 0.0798635 0.0399318 0.999202i \(-0.487286\pi\)
0.0399318 + 0.999202i \(0.487286\pi\)
\(614\) 4.40285e12 1.25019
\(615\) 0 0
\(616\) −4.80159e11 −0.134361
\(617\) 5.55576e12 1.54333 0.771667 0.636027i \(-0.219423\pi\)
0.771667 + 0.636027i \(0.219423\pi\)
\(618\) −5.38986e12 −1.48638
\(619\) −2.70437e12 −0.740385 −0.370192 0.928955i \(-0.620708\pi\)
−0.370192 + 0.928955i \(0.620708\pi\)
\(620\) 0 0
\(621\) 4.39467e12 1.18581
\(622\) −1.79715e12 −0.481423
\(623\) −3.97324e11 −0.105669
\(624\) −1.76876e11 −0.0467024
\(625\) 0 0
\(626\) −1.69823e12 −0.441991
\(627\) 5.94626e12 1.53653
\(628\) 1.13421e12 0.290987
\(629\) 8.34109e10 0.0212469
\(630\) 0 0
\(631\) −4.73158e12 −1.18816 −0.594078 0.804407i \(-0.702483\pi\)
−0.594078 + 0.804407i \(0.702483\pi\)
\(632\) −2.03356e12 −0.507025
\(633\) −5.72863e12 −1.41819
\(634\) 3.70172e10 0.00909918
\(635\) 0 0
\(636\) −2.60662e12 −0.631713
\(637\) 9.15220e10 0.0220241
\(638\) −4.34090e12 −1.03726
\(639\) −8.81454e11 −0.209144
\(640\) 0 0
\(641\) 1.38865e12 0.324887 0.162444 0.986718i \(-0.448062\pi\)
0.162444 + 0.986718i \(0.448062\pi\)
\(642\) −1.13255e12 −0.263118
\(643\) −3.09398e12 −0.713786 −0.356893 0.934145i \(-0.616164\pi\)
−0.356893 + 0.934145i \(0.616164\pi\)
\(644\) 1.51820e12 0.347810
\(645\) 0 0
\(646\) 2.45505e11 0.0554644
\(647\) −2.31453e12 −0.519270 −0.259635 0.965707i \(-0.583602\pi\)
−0.259635 + 0.965707i \(0.583602\pi\)
\(648\) 1.98200e12 0.441586
\(649\) 8.08670e12 1.78925
\(650\) 0 0
\(651\) −2.36712e12 −0.516542
\(652\) 3.42132e12 0.741446
\(653\) 8.10575e11 0.174455 0.0872276 0.996188i \(-0.472199\pi\)
0.0872276 + 0.996188i \(0.472199\pi\)
\(654\) −3.45225e12 −0.737908
\(655\) 0 0
\(656\) −4.16865e11 −0.0878878
\(657\) −2.82498e12 −0.591522
\(658\) 2.17200e12 0.451694
\(659\) 4.57355e11 0.0944645 0.0472323 0.998884i \(-0.484960\pi\)
0.0472323 + 0.998884i \(0.484960\pi\)
\(660\) 0 0
\(661\) 7.94557e12 1.61889 0.809447 0.587193i \(-0.199767\pi\)
0.809447 + 0.587193i \(0.199767\pi\)
\(662\) 3.45897e12 0.699980
\(663\) −5.78055e10 −0.0116187
\(664\) −1.52161e12 −0.303772
\(665\) 0 0
\(666\) −5.74319e11 −0.113115
\(667\) 1.37254e13 2.68508
\(668\) 3.18608e12 0.619103
\(669\) −6.58254e12 −1.27050
\(670\) 0 0
\(671\) 2.51048e12 0.478086
\(672\) 4.27997e11 0.0809616
\(673\) 8.92805e12 1.67760 0.838801 0.544439i \(-0.183257\pi\)
0.838801 + 0.544439i \(0.183257\pi\)
\(674\) 8.00465e11 0.149408
\(675\) 0 0
\(676\) −2.65023e12 −0.488116
\(677\) 8.01730e12 1.46683 0.733414 0.679782i \(-0.237926\pi\)
0.733414 + 0.679782i \(0.237926\pi\)
\(678\) 7.71195e12 1.40162
\(679\) −1.82000e12 −0.328592
\(680\) 0 0
\(681\) 1.30732e13 2.32927
\(682\) −4.53036e12 −0.801868
\(683\) −4.14724e12 −0.729233 −0.364617 0.931158i \(-0.618800\pi\)
−0.364617 + 0.931158i \(0.618800\pi\)
\(684\) −1.69041e12 −0.295283
\(685\) 0 0
\(686\) −2.21461e11 −0.0381802
\(687\) −7.39694e12 −1.26691
\(688\) 1.22561e12 0.208547
\(689\) 9.50888e11 0.160747
\(690\) 0 0
\(691\) −6.05580e12 −1.01046 −0.505231 0.862984i \(-0.668593\pi\)
−0.505231 + 0.862984i \(0.668593\pi\)
\(692\) −2.67633e12 −0.443672
\(693\) 1.08048e12 0.177957
\(694\) −2.95370e12 −0.483336
\(695\) 0 0
\(696\) 3.86933e12 0.625020
\(697\) −1.36237e11 −0.0218649
\(698\) −4.39466e12 −0.700771
\(699\) −3.51973e12 −0.557651
\(700\) 0 0
\(701\) 1.88599e12 0.294990 0.147495 0.989063i \(-0.452879\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(702\) −4.51950e11 −0.0702383
\(703\) −2.79001e12 −0.430831
\(704\) 8.19131e11 0.125683
\(705\) 0 0
\(706\) −2.52886e12 −0.383092
\(707\) −2.17101e12 −0.326795
\(708\) −7.20820e12 −1.07815
\(709\) −4.76210e12 −0.707767 −0.353884 0.935289i \(-0.615139\pi\)
−0.353884 + 0.935289i \(0.615139\pi\)
\(710\) 0 0
\(711\) 4.57600e12 0.671542
\(712\) 6.77817e11 0.0988444
\(713\) 1.43244e13 2.07574
\(714\) 1.39875e11 0.0201418
\(715\) 0 0
\(716\) −1.03524e12 −0.147208
\(717\) −3.67574e12 −0.519408
\(718\) −5.45215e12 −0.765610
\(719\) 5.34893e12 0.746427 0.373213 0.927746i \(-0.378256\pi\)
0.373213 + 0.927746i \(0.378256\pi\)
\(720\) 0 0
\(721\) −4.75774e12 −0.655681
\(722\) −3.04889e12 −0.417565
\(723\) −1.15224e13 −1.56827
\(724\) 3.19322e12 0.431922
\(725\) 0 0
\(726\) 7.02720e10 0.00938788
\(727\) −9.08222e12 −1.20583 −0.602917 0.797804i \(-0.705995\pi\)
−0.602917 + 0.797804i \(0.705995\pi\)
\(728\) −1.56132e11 −0.0206016
\(729\) 1.49349e12 0.195852
\(730\) 0 0
\(731\) 4.00544e11 0.0518827
\(732\) −2.23776e12 −0.288080
\(733\) 1.20547e13 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(734\) −9.76345e12 −1.24157
\(735\) 0 0
\(736\) −2.58998e12 −0.325347
\(737\) −4.56731e12 −0.570239
\(738\) 9.38048e11 0.116405
\(739\) 1.08128e13 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(740\) 0 0
\(741\) 1.93353e12 0.235597
\(742\) −2.30091e12 −0.278665
\(743\) −6.39433e12 −0.769742 −0.384871 0.922970i \(-0.625754\pi\)
−0.384871 + 0.922970i \(0.625754\pi\)
\(744\) 4.03820e12 0.483181
\(745\) 0 0
\(746\) 6.95889e12 0.822650
\(747\) 3.42400e12 0.402337
\(748\) 2.67702e11 0.0312676
\(749\) −9.99726e11 −0.116068
\(750\) 0 0
\(751\) −2.30580e12 −0.264510 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(752\) −3.70534e12 −0.422521
\(753\) −8.29422e11 −0.0940152
\(754\) −1.41152e12 −0.159044
\(755\) 0 0
\(756\) 1.09361e12 0.121763
\(757\) 6.85316e12 0.758507 0.379253 0.925293i \(-0.376181\pi\)
0.379253 + 0.925293i \(0.376181\pi\)
\(758\) 1.16908e13 1.28628
\(759\) −2.05012e13 −2.24229
\(760\) 0 0
\(761\) −1.55520e12 −0.168095 −0.0840474 0.996462i \(-0.526785\pi\)
−0.0840474 + 0.996462i \(0.526785\pi\)
\(762\) −1.48045e13 −1.59073
\(763\) −3.04737e12 −0.325510
\(764\) −9.77784e11 −0.103830
\(765\) 0 0
\(766\) 3.37718e12 0.354425
\(767\) 2.62954e12 0.274347
\(768\) −7.30144e11 −0.0757327
\(769\) −1.31148e12 −0.135236 −0.0676179 0.997711i \(-0.521540\pi\)
−0.0676179 + 0.997711i \(0.521540\pi\)
\(770\) 0 0
\(771\) −4.67549e12 −0.476521
\(772\) 6.17454e12 0.625644
\(773\) 9.82010e12 0.989255 0.494627 0.869105i \(-0.335305\pi\)
0.494627 + 0.869105i \(0.335305\pi\)
\(774\) −2.75792e12 −0.276215
\(775\) 0 0
\(776\) 3.10484e12 0.307370
\(777\) −1.58959e12 −0.156455
\(778\) −1.15497e11 −0.0113022
\(779\) 4.55698e12 0.443362
\(780\) 0 0
\(781\) −4.66921e12 −0.449070
\(782\) −8.46439e11 −0.0809404
\(783\) 9.88682e12 0.940001
\(784\) 3.77802e11 0.0357143
\(785\) 0 0
\(786\) −1.75184e12 −0.163716
\(787\) 4.81658e12 0.447562 0.223781 0.974639i \(-0.428160\pi\)
0.223781 + 0.974639i \(0.428160\pi\)
\(788\) 3.19484e12 0.295176
\(789\) −3.78411e12 −0.347630
\(790\) 0 0
\(791\) 6.80750e12 0.618292
\(792\) −1.84324e12 −0.166464
\(793\) 8.16328e11 0.0733053
\(794\) −1.11902e13 −0.999183
\(795\) 0 0
\(796\) −7.50406e11 −0.0662502
\(797\) −7.71344e12 −0.677151 −0.338575 0.940939i \(-0.609945\pi\)
−0.338575 + 0.940939i \(0.609945\pi\)
\(798\) −4.67867e12 −0.408423
\(799\) −1.21095e12 −0.105116
\(800\) 0 0
\(801\) −1.52525e12 −0.130917
\(802\) −1.02503e13 −0.874887
\(803\) −1.49644e13 −1.27010
\(804\) 4.07114e12 0.343609
\(805\) 0 0
\(806\) −1.47313e12 −0.122951
\(807\) −2.94128e12 −0.244121
\(808\) 3.70365e12 0.305688
\(809\) 2.12869e13 1.74721 0.873604 0.486637i \(-0.161777\pi\)
0.873604 + 0.486637i \(0.161777\pi\)
\(810\) 0 0
\(811\) 2.45053e13 1.98914 0.994570 0.104067i \(-0.0331856\pi\)
0.994570 + 0.104067i \(0.0331856\pi\)
\(812\) 3.41554e12 0.275713
\(813\) −8.19231e12 −0.657656
\(814\) −3.04227e12 −0.242878
\(815\) 0 0
\(816\) −2.38621e11 −0.0188409
\(817\) −1.33978e13 −1.05204
\(818\) 2.10400e11 0.0164307
\(819\) 3.51336e11 0.0272863
\(820\) 0 0
\(821\) −9.72826e12 −0.747293 −0.373646 0.927571i \(-0.621893\pi\)
−0.373646 + 0.927571i \(0.621893\pi\)
\(822\) −4.55261e12 −0.347807
\(823\) 8.28745e11 0.0629683 0.0314841 0.999504i \(-0.489977\pi\)
0.0314841 + 0.999504i \(0.489977\pi\)
\(824\) 8.11650e12 0.613333
\(825\) 0 0
\(826\) −6.36283e12 −0.475598
\(827\) −2.42842e13 −1.80530 −0.902649 0.430376i \(-0.858381\pi\)
−0.902649 + 0.430376i \(0.858381\pi\)
\(828\) 5.82809e12 0.430913
\(829\) 1.95570e13 1.43816 0.719078 0.694929i \(-0.244564\pi\)
0.719078 + 0.694929i \(0.244564\pi\)
\(830\) 0 0
\(831\) 1.36652e13 0.994055
\(832\) 2.66355e11 0.0192711
\(833\) 1.23471e11 0.00888507
\(834\) −1.13514e13 −0.812459
\(835\) 0 0
\(836\) −8.95437e12 −0.634025
\(837\) 1.03183e13 0.726682
\(838\) 9.27865e12 0.649960
\(839\) −7.69577e12 −0.536196 −0.268098 0.963392i \(-0.586395\pi\)
−0.268098 + 0.963392i \(0.586395\pi\)
\(840\) 0 0
\(841\) 1.63712e13 1.12849
\(842\) −2.65880e12 −0.182298
\(843\) 3.32512e13 2.26769
\(844\) 8.62664e12 0.585195
\(845\) 0 0
\(846\) 8.33793e12 0.559618
\(847\) 6.20305e10 0.00414124
\(848\) 3.92526e12 0.260667
\(849\) −1.02476e13 −0.676923
\(850\) 0 0
\(851\) 9.61924e12 0.628721
\(852\) 4.16197e12 0.270596
\(853\) 2.79895e12 0.181019 0.0905097 0.995896i \(-0.471150\pi\)
0.0905097 + 0.995896i \(0.471150\pi\)
\(854\) −1.97531e12 −0.127079
\(855\) 0 0
\(856\) 1.70549e12 0.108572
\(857\) 5.56141e12 0.352185 0.176093 0.984374i \(-0.443654\pi\)
0.176093 + 0.984374i \(0.443654\pi\)
\(858\) 2.10835e12 0.132816
\(859\) 3.51052e12 0.219989 0.109995 0.993932i \(-0.464917\pi\)
0.109995 + 0.993932i \(0.464917\pi\)
\(860\) 0 0
\(861\) 2.59631e12 0.161006
\(862\) −1.21236e13 −0.747908
\(863\) −1.43838e13 −0.882721 −0.441361 0.897330i \(-0.645504\pi\)
−0.441361 + 0.897330i \(0.645504\pi\)
\(864\) −1.86565e12 −0.113898
\(865\) 0 0
\(866\) −1.71976e13 −1.03905
\(867\) 2.00820e13 1.20704
\(868\) 3.56460e12 0.213144
\(869\) 2.42399e13 1.44192
\(870\) 0 0
\(871\) −1.48514e12 −0.0874353
\(872\) 5.19868e12 0.304487
\(873\) −6.98664e12 −0.407103
\(874\) 2.83125e13 1.64126
\(875\) 0 0
\(876\) 1.33387e13 0.765325
\(877\) 6.34278e12 0.362061 0.181030 0.983477i \(-0.442057\pi\)
0.181030 + 0.983477i \(0.442057\pi\)
\(878\) −2.72670e12 −0.154850
\(879\) −8.27463e12 −0.467519
\(880\) 0 0
\(881\) −2.89282e13 −1.61782 −0.808910 0.587933i \(-0.799942\pi\)
−0.808910 + 0.587933i \(0.799942\pi\)
\(882\) −8.50147e11 −0.0473026
\(883\) 7.17154e12 0.396999 0.198500 0.980101i \(-0.436393\pi\)
0.198500 + 0.980101i \(0.436393\pi\)
\(884\) 8.70482e10 0.00479430
\(885\) 0 0
\(886\) 1.96699e13 1.07238
\(887\) 1.68020e13 0.911389 0.455695 0.890136i \(-0.349391\pi\)
0.455695 + 0.890136i \(0.349391\pi\)
\(888\) 2.71177e12 0.146351
\(889\) −1.30682e13 −0.701711
\(890\) 0 0
\(891\) −2.36252e13 −1.25582
\(892\) 9.91254e12 0.524255
\(893\) 4.05052e13 2.13147
\(894\) −1.26234e12 −0.0660933
\(895\) 0 0
\(896\) −6.44514e11 −0.0334077
\(897\) −6.66633e12 −0.343812
\(898\) 1.16127e12 0.0595921
\(899\) 3.22260e13 1.64546
\(900\) 0 0
\(901\) 1.28282e12 0.0648493
\(902\) 4.96900e12 0.249942
\(903\) −7.63331e12 −0.382048
\(904\) −1.16133e13 −0.578359
\(905\) 0 0
\(906\) 1.99085e13 0.981660
\(907\) 1.87924e13 0.922038 0.461019 0.887390i \(-0.347484\pi\)
0.461019 + 0.887390i \(0.347484\pi\)
\(908\) −1.96867e13 −0.961139
\(909\) −8.33412e12 −0.404876
\(910\) 0 0
\(911\) −3.39496e13 −1.63306 −0.816529 0.577304i \(-0.804105\pi\)
−0.816529 + 0.577304i \(0.804105\pi\)
\(912\) 7.98161e12 0.382044
\(913\) 1.81375e13 0.863890
\(914\) −1.06267e13 −0.503666
\(915\) 0 0
\(916\) 1.11389e13 0.522773
\(917\) −1.54638e12 −0.0722195
\(918\) −6.09717e11 −0.0283359
\(919\) 1.03287e13 0.477667 0.238833 0.971061i \(-0.423235\pi\)
0.238833 + 0.971061i \(0.423235\pi\)
\(920\) 0 0
\(921\) 4.67803e13 2.14237
\(922\) 1.94401e13 0.885952
\(923\) −1.51828e12 −0.0688563
\(924\) −5.10169e12 −0.230245
\(925\) 0 0
\(926\) 4.70205e12 0.210154
\(927\) −1.82641e13 −0.812344
\(928\) −5.82675e12 −0.257906
\(929\) −2.79767e13 −1.23233 −0.616163 0.787619i \(-0.711314\pi\)
−0.616163 + 0.787619i \(0.711314\pi\)
\(930\) 0 0
\(931\) −4.12996e12 −0.180166
\(932\) 5.30030e12 0.230107
\(933\) −1.90947e13 −0.824984
\(934\) 7.56980e12 0.325479
\(935\) 0 0
\(936\) −5.99364e11 −0.0255240
\(937\) −3.31649e13 −1.40556 −0.702782 0.711406i \(-0.748059\pi\)
−0.702782 + 0.711406i \(0.748059\pi\)
\(938\) 3.59368e12 0.151575
\(939\) −1.80437e13 −0.757411
\(940\) 0 0
\(941\) 3.19309e13 1.32757 0.663786 0.747923i \(-0.268949\pi\)
0.663786 + 0.747923i \(0.268949\pi\)
\(942\) 1.20510e13 0.498646
\(943\) −1.57113e13 −0.647009
\(944\) 1.08547e13 0.444881
\(945\) 0 0
\(946\) −1.46092e13 −0.593082
\(947\) −3.56921e13 −1.44210 −0.721052 0.692881i \(-0.756341\pi\)
−0.721052 + 0.692881i \(0.756341\pi\)
\(948\) −2.16066e13 −0.868856
\(949\) −4.86594e12 −0.194746
\(950\) 0 0
\(951\) 3.93308e11 0.0155927
\(952\) −2.10635e11 −0.00831122
\(953\) 3.04923e13 1.19749 0.598745 0.800940i \(-0.295666\pi\)
0.598745 + 0.800940i \(0.295666\pi\)
\(954\) −8.83279e12 −0.345247
\(955\) 0 0
\(956\) 5.53524e12 0.214326
\(957\) −4.61221e13 −1.77748
\(958\) 3.29512e13 1.26394
\(959\) −4.01869e12 −0.153427
\(960\) 0 0
\(961\) 7.19282e12 0.272047
\(962\) −9.89248e11 −0.0372406
\(963\) −3.83776e12 −0.143800
\(964\) 1.73514e13 0.647124
\(965\) 0 0
\(966\) 1.61309e13 0.596020
\(967\) 3.45533e13 1.27078 0.635389 0.772192i \(-0.280840\pi\)
0.635389 + 0.772192i \(0.280840\pi\)
\(968\) −1.05821e11 −0.00387377
\(969\) 2.60849e12 0.0950457
\(970\) 0 0
\(971\) −2.06708e13 −0.746225 −0.373112 0.927786i \(-0.621709\pi\)
−0.373112 + 0.927786i \(0.621709\pi\)
\(972\) 1.20935e13 0.434563
\(973\) −1.00201e13 −0.358397
\(974\) −1.95595e13 −0.696374
\(975\) 0 0
\(976\) 3.36980e12 0.118872
\(977\) −1.78789e11 −0.00627791 −0.00313896 0.999995i \(-0.500999\pi\)
−0.00313896 + 0.999995i \(0.500999\pi\)
\(978\) 3.63515e13 1.27057
\(979\) −8.07952e12 −0.281102
\(980\) 0 0
\(981\) −1.16983e13 −0.403285
\(982\) −3.17159e12 −0.108837
\(983\) 1.42657e13 0.487305 0.243652 0.969863i \(-0.421654\pi\)
0.243652 + 0.969863i \(0.421654\pi\)
\(984\) −4.42919e12 −0.150608
\(985\) 0 0
\(986\) −1.90426e12 −0.0641622
\(987\) 2.30776e13 0.774038
\(988\) −2.91167e12 −0.0972157
\(989\) 4.61922e13 1.53527
\(990\) 0 0
\(991\) −2.71296e13 −0.893537 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(992\) −6.08106e12 −0.199378
\(993\) 3.67515e13 1.19951
\(994\) 3.67386e12 0.119367
\(995\) 0 0
\(996\) −1.61671e13 −0.520554
\(997\) 3.86723e12 0.123957 0.0619787 0.998077i \(-0.480259\pi\)
0.0619787 + 0.998077i \(0.480259\pi\)
\(998\) 4.81191e12 0.153543
\(999\) 6.92905e12 0.220104
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.10.a.a.1.1 1
5.2 odd 4 350.10.c.d.99.1 2
5.3 odd 4 350.10.c.d.99.2 2
5.4 even 2 14.10.a.b.1.1 1
15.14 odd 2 126.10.a.a.1.1 1
20.19 odd 2 112.10.a.a.1.1 1
35.4 even 6 98.10.c.a.79.1 2
35.9 even 6 98.10.c.a.67.1 2
35.19 odd 6 98.10.c.d.67.1 2
35.24 odd 6 98.10.c.d.79.1 2
35.34 odd 2 98.10.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.a.b.1.1 1 5.4 even 2
98.10.a.b.1.1 1 35.34 odd 2
98.10.c.a.67.1 2 35.9 even 6
98.10.c.a.79.1 2 35.4 even 6
98.10.c.d.67.1 2 35.19 odd 6
98.10.c.d.79.1 2 35.24 odd 6
112.10.a.a.1.1 1 20.19 odd 2
126.10.a.a.1.1 1 15.14 odd 2
350.10.a.a.1.1 1 1.1 even 1 trivial
350.10.c.d.99.1 2 5.2 odd 4
350.10.c.d.99.2 2 5.3 odd 4