Properties

Label 35.8.f
Level $35$
Weight $8$
Character orbit 35.f
Rep. character $\chi_{35}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $52$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 35.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(35, [\chi])\).

Total New Old
Modular forms 60 60 0
Cusp forms 52 52 0
Eisenstein series 8 8 0

Trace form

\( 52 q - 4 q^{2} + 1740 q^{7} + 2512 q^{8} + 140 q^{11} + 17360 q^{15} - 100216 q^{16} - 41368 q^{18} - 82116 q^{21} - 112004 q^{22} + 178232 q^{23} + 134000 q^{25} - 436688 q^{28} + 302420 q^{30} + 527472 q^{32}+ \cdots - 55279908 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.8.f.a 35.f 35.f $52$ $10.933$ None 35.8.f.a \(-4\) \(0\) \(0\) \(1740\) $\mathrm{SU}(2)[C_{4}]$