Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,6,Mod(4,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.4");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.61343369345\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −9.26620 | + | 5.34984i | −6.62610 | − | 3.82558i | 41.2416 | − | 71.4326i | 27.5440 | + | 48.6449i | 81.8650 | 102.235 | − | 79.7187i | 540.155i | −92.2299 | − | 159.747i | −515.471 | − | 303.397i | ||||
4.2 | −8.10526 | + | 4.67957i | 16.9158 | + | 9.76637i | 27.7968 | − | 48.1454i | −7.12267 | − | 55.4461i | −182.810 | −26.0548 | − | 126.997i | 220.815i | 69.2638 | + | 119.968i | 317.195 | + | 416.074i | ||||
4.3 | −7.42641 | + | 4.28764i | −18.5335 | − | 10.7003i | 20.7677 | − | 35.9707i | 2.14959 | − | 55.8604i | 183.516 | −115.368 | + | 59.1374i | 81.7681i | 107.493 | + | 186.183i | 223.545 | + | 424.058i | ||||
4.4 | −6.93682 | + | 4.00497i | 6.61661 | + | 3.82010i | 16.0796 | − | 27.8508i | −50.5682 | + | 23.8298i | −61.1976 | −6.10907 | + | 129.498i | 1.27596i | −92.3137 | − | 159.892i | 255.345 | − | 367.827i | ||||
4.5 | −4.66496 | + | 2.69332i | 15.4088 | + | 8.89629i | −1.49207 | + | 2.58434i | 55.0416 | − | 9.76832i | −95.8422 | 79.8400 | + | 102.140i | − | 188.447i | 36.7880 | + | 63.7187i | −230.458 | + | 193.814i | |||
4.6 | −3.93557 | + | 2.27220i | −21.4808 | − | 12.4020i | −5.67417 | + | 9.82796i | −51.2816 | + | 22.2531i | 112.719 | 125.933 | − | 30.7878i | − | 196.993i | 186.118 | + | 322.365i | 151.259 | − | 204.101i | |||
4.7 | −3.70291 | + | 2.13788i | −7.17064 | − | 4.13997i | −6.85895 | + | 11.8801i | 43.3948 | + | 35.2404i | 35.4030 | −117.071 | − | 55.6909i | − | 195.479i | −87.2213 | − | 151.072i | −236.027 | − | 37.7194i | |||
4.8 | −2.03171 | + | 1.17301i | 21.8875 | + | 12.6367i | −13.2481 | + | 22.9464i | −30.5927 | + | 46.7877i | −59.2919 | −33.3578 | − | 125.277i | − | 137.233i | 197.874 | + | 342.729i | 7.27310 | − | 130.944i | |||
4.9 | −1.15385 | + | 0.666174i | −2.36481 | − | 1.36533i | −15.1124 | + | 26.1755i | −0.183573 | − | 55.9014i | 3.63818 | 102.879 | − | 78.8855i | − | 82.9052i | −117.772 | − | 203.987i | 37.4519 | + | 64.3794i | |||
4.10 | 1.15385 | − | 0.666174i | 2.36481 | + | 1.36533i | −15.1124 | + | 26.1755i | −48.3202 | − | 28.1097i | 3.63818 | −102.879 | + | 78.8855i | 82.9052i | −117.772 | − | 203.987i | −74.4801 | − | 0.244583i | ||||
4.11 | 2.03171 | − | 1.17301i | −21.8875 | − | 12.6367i | −13.2481 | + | 22.9464i | 55.8157 | − | 3.10020i | −59.2919 | 33.3578 | + | 125.277i | 137.233i | 197.874 | + | 342.729i | 109.764 | − | 71.7708i | ||||
4.12 | 3.70291 | − | 2.13788i | 7.17064 | + | 4.13997i | −6.85895 | + | 11.8801i | 8.82168 | + | 55.2012i | 35.4030 | 117.071 | + | 55.6909i | 195.479i | −87.2213 | − | 151.072i | 150.679 | + | 185.546i | ||||
4.13 | 3.93557 | − | 2.27220i | 21.4808 | + | 12.4020i | −5.67417 | + | 9.82796i | 44.9126 | − | 33.2846i | 112.719 | −125.933 | + | 30.7878i | 196.993i | 186.118 | + | 322.365i | 101.127 | − | 233.044i | ||||
4.14 | 4.66496 | − | 2.69332i | −15.4088 | − | 8.89629i | −1.49207 | + | 2.58434i | −35.9804 | + | 42.7833i | −95.8422 | −79.8400 | − | 102.140i | 188.447i | 36.7880 | + | 63.7187i | −52.6184 | + | 296.489i | ||||
4.15 | 6.93682 | − | 4.00497i | −6.61661 | − | 3.82010i | 16.0796 | − | 27.8508i | 45.9213 | − | 31.8784i | −61.1976 | 6.10907 | − | 129.498i | − | 1.27596i | −92.3137 | − | 159.892i | 190.875 | − | 405.049i | |||
4.16 | 7.42641 | − | 4.28764i | 18.5335 | + | 10.7003i | 20.7677 | − | 35.9707i | −49.4513 | − | 26.0686i | 183.516 | 115.368 | − | 59.1374i | − | 81.7681i | 107.493 | + | 186.183i | −479.018 | + | 18.4333i | |||
4.17 | 8.10526 | − | 4.67957i | −16.9158 | − | 9.76637i | 27.7968 | − | 48.1454i | −44.4564 | − | 33.8915i | −182.810 | 26.0548 | + | 126.997i | − | 220.815i | 69.2638 | + | 119.968i | −518.928 | − | 66.6621i | |||
4.18 | 9.26620 | − | 5.34984i | 6.62610 | + | 3.82558i | 41.2416 | − | 71.4326i | 28.3557 | + | 48.1763i | 81.8650 | −102.235 | + | 79.7187i | − | 540.155i | −92.2299 | − | 159.747i | 520.485 | + | 294.712i | |||
9.1 | −9.26620 | − | 5.34984i | −6.62610 | + | 3.82558i | 41.2416 | + | 71.4326i | 27.5440 | − | 48.6449i | 81.8650 | 102.235 | + | 79.7187i | − | 540.155i | −92.2299 | + | 159.747i | −515.471 | + | 303.397i | |||
9.2 | −8.10526 | − | 4.67957i | 16.9158 | − | 9.76637i | 27.7968 | + | 48.1454i | −7.12267 | + | 55.4461i | −182.810 | −26.0548 | + | 126.997i | − | 220.815i | 69.2638 | − | 119.968i | 317.195 | − | 416.074i | |||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.6.j.a | ✓ | 36 |
5.b | even | 2 | 1 | inner | 35.6.j.a | ✓ | 36 |
7.c | even | 3 | 1 | inner | 35.6.j.a | ✓ | 36 |
7.c | even | 3 | 1 | 245.6.b.f | 18 | ||
7.d | odd | 6 | 1 | 245.6.b.e | 18 | ||
35.i | odd | 6 | 1 | 245.6.b.e | 18 | ||
35.j | even | 6 | 1 | inner | 35.6.j.a | ✓ | 36 |
35.j | even | 6 | 1 | 245.6.b.f | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.6.j.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
35.6.j.a | ✓ | 36 | 5.b | even | 2 | 1 | inner |
35.6.j.a | ✓ | 36 | 7.c | even | 3 | 1 | inner |
35.6.j.a | ✓ | 36 | 35.j | even | 6 | 1 | inner |
245.6.b.e | 18 | 7.d | odd | 6 | 1 | ||
245.6.b.e | 18 | 35.i | odd | 6 | 1 | ||
245.6.b.f | 18 | 7.c | even | 3 | 1 | ||
245.6.b.f | 18 | 35.j | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(35, [\chi])\).