Properties

Label 35.6.f
Level $35$
Weight $6$
Character orbit 35.f
Rep. character $\chi_{35}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $36$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(35, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q - 4 q^{2} - 196 q^{7} - 368 q^{8} + 412 q^{11} + 2960 q^{15} - 7672 q^{16} + 3368 q^{18} - 84 q^{21} + 4604 q^{22} + 2008 q^{23} - 7000 q^{25} + 21280 q^{28} - 5260 q^{30} - 6960 q^{32} - 34860 q^{35}+ \cdots + 413868 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.6.f.a 35.f 35.f $36$ $5.613$ None 35.6.f.a \(-4\) \(0\) \(0\) \(-196\) $\mathrm{SU}(2)[C_{4}]$