Properties

Label 35.6.e.b
Level $35$
Weight $6$
Character orbit 35.e
Analytic conductor $5.613$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(11,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.11"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 234 x^{14} - 399 x^{13} + 37070 x^{12} - 54845 x^{11} + 2990279 x^{10} + \cdots + 1025569391616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 7^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{6} - \beta_{5}) q^{3} + (\beta_{10} - \beta_{4} - \beta_{3} + \cdots + \beta_1) q^{4} + (25 \beta_{2} - 25) q^{5} + (\beta_{12} - \beta_{9} + \beta_{5} + \cdots - 6) q^{6}+ \cdots + ( - 67 \beta_{15} + 120 \beta_{14} + \cdots + 52438) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + 2 q^{3} - 203 q^{4} - 200 q^{5} - 112 q^{6} + 158 q^{7} + 498 q^{8} - 1218 q^{9} - 75 q^{10} - 120 q^{11} + 884 q^{12} + 3988 q^{13} - 975 q^{14} - 100 q^{15} - 6451 q^{16} - 1856 q^{17}+ \cdots + 794488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 3 x^{15} + 234 x^{14} - 399 x^{13} + 37070 x^{12} - 54845 x^{11} + 2990279 x^{10} + \cdots + 1025569391616 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 62\!\cdots\!88 \nu^{15} + \cdots + 19\!\cdots\!28 ) / 55\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 73\!\cdots\!45 \nu^{15} + \cdots - 42\!\cdots\!44 ) / 37\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 88\!\cdots\!13 \nu^{15} + \cdots - 19\!\cdots\!96 ) / 37\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 27\!\cdots\!44 \nu^{15} + \cdots + 58\!\cdots\!84 ) / 69\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 19\!\cdots\!57 \nu^{15} + \cdots - 49\!\cdots\!16 ) / 14\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 18\!\cdots\!64 \nu^{15} + \cdots - 10\!\cdots\!04 ) / 73\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 74\!\cdots\!43 \nu^{15} + \cdots + 55\!\cdots\!68 ) / 14\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 20\!\cdots\!59 \nu^{15} + \cdots + 48\!\cdots\!00 ) / 36\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 33\!\cdots\!10 \nu^{15} + \cdots - 19\!\cdots\!84 ) / 55\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 32\!\cdots\!87 \nu^{15} + \cdots + 16\!\cdots\!48 ) / 48\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 17\!\cdots\!01 \nu^{15} + \cdots + 26\!\cdots\!28 ) / 24\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 60\!\cdots\!82 \nu^{15} + \cdots - 18\!\cdots\!64 ) / 73\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 27\!\cdots\!29 \nu^{15} + \cdots + 65\!\cdots\!36 ) / 14\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 29\!\cdots\!11 \nu^{15} + \cdots - 22\!\cdots\!12 ) / 73\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{10} - \beta_{4} - \beta_{3} - 57\beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{14} - \beta_{9} + \beta_{8} - \beta_{4} - 92\beta_{3} - 21 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{15} + 2 \beta_{14} - 2 \beta_{13} + 2 \beta_{12} - 4 \beta_{11} - 129 \beta_{10} + \cdots - 5229 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 22 \beta_{15} + 155 \beta_{14} - 159 \beta_{13} - 2 \beta_{12} + 131 \beta_{11} - 105 \beta_{10} + \cdots + 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 688 \beta_{15} - 996 \beta_{14} - 268 \beta_{13} - 204 \beta_{12} - 688 \beta_{11} + 432 \beta_{9} + \cdots + 552541 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 2232 \beta_{15} + 2232 \beta_{14} + 23521 \beta_{13} - 8176 \beta_{12} - 12201 \beta_{11} + \cdots + 411289 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 124230 \beta_{15} + 101928 \beta_{14} + 100336 \beta_{13} - 66946 \beta_{12} + 246908 \beta_{11} + \cdots + 28642 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 175036 \beta_{15} - 2767577 \beta_{14} - 358498 \beta_{13} + 1204452 \beta_{12} - 175036 \beta_{11} + \cdots - 35376707 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 2888284 \beta_{15} + 2888284 \beta_{14} - 10587796 \beta_{13} + 17971632 \beta_{12} + \cdots - 7116610289 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 67626368 \beta_{15} + 288747941 \beta_{14} - 341172461 \beta_{13} + 34229664 \beta_{12} + \cdots + 50928016 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 1565408900 \beta_{15} - 1933414574 \beta_{14} - 287129634 \beta_{13} - 1256245056 \beta_{12} + \cdots + 829210958651 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 6818243834 \beta_{15} + 6818243834 \beta_{14} + 49107672801 \beta_{13} - 28259486578 \beta_{12} + \cdots + 79918583721 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 223047133372 \beta_{15} + 202996821360 \beta_{14} + 222318207876 \beta_{13} - 165868204068 \beta_{12} + \cdots + 28589464652 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 132894014880 \beta_{15} - 5001147059825 \beta_{14} - 882819017416 \beta_{13} + 2982124636728 \beta_{12} + \cdots + 9509382356655 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
5.48128 + 9.49385i
4.82595 + 8.35879i
2.45778 + 4.25701i
1.55686 + 2.69657i
−0.634553 1.09908i
−3.31717 5.74550i
−3.38502 5.86303i
−5.48513 9.50052i
5.48128 9.49385i
4.82595 8.35879i
2.45778 4.25701i
1.55686 2.69657i
−0.634553 + 1.09908i
−3.31717 + 5.74550i
−3.38502 + 5.86303i
−5.48513 + 9.50052i
−5.48128 9.49385i 11.8224 20.4771i −44.0888 + 76.3640i −12.5000 21.6506i −259.208 −128.275 + 18.7779i 615.850 −158.040 273.733i −137.032 + 237.346i
11.2 −4.82595 8.35879i −11.4297 + 19.7969i −30.5796 + 52.9654i −12.5000 21.6506i 220.637 107.309 72.7443i 281.441 −139.778 242.102i −120.649 + 208.970i
11.3 −2.45778 4.25701i −4.95859 + 8.58852i 3.91860 6.78721i −12.5000 21.6506i 48.7485 −109.337 + 69.6590i −195.822 72.3249 + 125.270i −61.4446 + 106.425i
11.4 −1.55686 2.69657i 10.3031 17.8456i 11.1524 19.3164i −12.5000 21.6506i −64.1623 98.0088 + 84.8603i −169.090 −90.8096 157.287i −38.9216 + 67.4141i
11.5 0.634553 + 1.09908i −3.50500 + 6.07083i 15.1947 26.3180i −12.5000 21.6506i −8.89643 69.6963 109.313i 79.1787 96.9300 + 167.888i 15.8638 27.4770i
11.6 3.31717 + 5.74550i −15.2893 + 26.4818i −6.00720 + 10.4048i −12.5000 21.6506i −202.868 54.7457 + 117.516i 132.591 −346.023 599.329i 82.9292 143.638i
11.7 3.38502 + 5.86303i 11.7457 20.3441i −6.91677 + 11.9802i −12.5000 21.6506i 159.037 23.1361 127.561i 122.988 −154.421 267.465i 84.6256 146.576i
11.8 5.48513 + 9.50052i 2.31134 4.00336i −44.1733 + 76.5104i −12.5000 21.6506i 50.7120 −36.2843 + 124.461i −618.137 110.815 + 191.938i 137.128 237.513i
16.1 −5.48128 + 9.49385i 11.8224 + 20.4771i −44.0888 76.3640i −12.5000 + 21.6506i −259.208 −128.275 18.7779i 615.850 −158.040 + 273.733i −137.032 237.346i
16.2 −4.82595 + 8.35879i −11.4297 19.7969i −30.5796 52.9654i −12.5000 + 21.6506i 220.637 107.309 + 72.7443i 281.441 −139.778 + 242.102i −120.649 208.970i
16.3 −2.45778 + 4.25701i −4.95859 8.58852i 3.91860 + 6.78721i −12.5000 + 21.6506i 48.7485 −109.337 69.6590i −195.822 72.3249 125.270i −61.4446 106.425i
16.4 −1.55686 + 2.69657i 10.3031 + 17.8456i 11.1524 + 19.3164i −12.5000 + 21.6506i −64.1623 98.0088 84.8603i −169.090 −90.8096 + 157.287i −38.9216 67.4141i
16.5 0.634553 1.09908i −3.50500 6.07083i 15.1947 + 26.3180i −12.5000 + 21.6506i −8.89643 69.6963 + 109.313i 79.1787 96.9300 167.888i 15.8638 + 27.4770i
16.6 3.31717 5.74550i −15.2893 26.4818i −6.00720 10.4048i −12.5000 + 21.6506i −202.868 54.7457 117.516i 132.591 −346.023 + 599.329i 82.9292 + 143.638i
16.7 3.38502 5.86303i 11.7457 + 20.3441i −6.91677 11.9802i −12.5000 + 21.6506i 159.037 23.1361 + 127.561i 122.988 −154.421 + 267.465i 84.6256 + 146.576i
16.8 5.48513 9.50052i 2.31134 + 4.00336i −44.1733 76.5104i −12.5000 + 21.6506i 50.7120 −36.2843 124.461i −618.137 110.815 191.938i 137.128 + 237.513i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.6.e.b 16
7.c even 3 1 inner 35.6.e.b 16
7.c even 3 1 245.6.a.j 8
7.d odd 6 1 245.6.a.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.e.b 16 1.a even 1 1 trivial
35.6.e.b 16 7.c even 3 1 inner
245.6.a.j 8 7.c even 3 1
245.6.a.k 8 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 3 T_{2}^{15} + 234 T_{2}^{14} + 399 T_{2}^{13} + 37070 T_{2}^{12} + 54845 T_{2}^{11} + \cdots + 1025569391616 \) acting on \(S_{6}^{\mathrm{new}}(35, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + \cdots + 1025569391616 \) Copy content Toggle raw display
$3$ \( T^{16} + \cdots + 66\!\cdots\!56 \) Copy content Toggle raw display
$5$ \( (T^{2} + 25 T + 625)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 63\!\cdots\!01 \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{8} + \cdots - 52\!\cdots\!44)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 31\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 22\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 54\!\cdots\!61 \) Copy content Toggle raw display
$29$ \( (T^{8} + \cdots + 54\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 18\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots - 44\!\cdots\!75)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots - 19\!\cdots\!12)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 34\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 69\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots - 11\!\cdots\!24)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 47\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 31\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 20\!\cdots\!56)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 10\!\cdots\!16)^{2} \) Copy content Toggle raw display
show more
show less