Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(35, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 14 | 8 |
Cusp forms | 18 | 14 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(35, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
35.6.b.a | $14$ | $5.613$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(156\) | \(0\) | \(q-\beta _{4}q^{2}+\beta _{6}q^{3}+(-15+\beta _{1})q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(35, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(35, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)