Properties

Label 35.6.a.d.1.4
Level $35$
Weight $6$
Character 35.1
Self dual yes
Analytic conductor $5.613$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 82x^{2} + 58x + 1168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-7.92431\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.92431 q^{2} +0.133419 q^{3} +66.4919 q^{4} +25.0000 q^{5} +1.32409 q^{6} -49.0000 q^{7} +342.308 q^{8} -242.982 q^{9} +248.108 q^{10} +674.476 q^{11} +8.87129 q^{12} -770.741 q^{13} -486.291 q^{14} +3.33548 q^{15} +1269.43 q^{16} -693.730 q^{17} -2411.43 q^{18} -1391.69 q^{19} +1662.30 q^{20} -6.53754 q^{21} +6693.71 q^{22} +1321.87 q^{23} +45.6704 q^{24} +625.000 q^{25} -7649.07 q^{26} -64.8394 q^{27} -3258.10 q^{28} +172.983 q^{29} +33.1023 q^{30} -4694.07 q^{31} +1644.34 q^{32} +89.9880 q^{33} -6884.79 q^{34} -1225.00 q^{35} -16156.3 q^{36} +13295.3 q^{37} -13811.6 q^{38} -102.832 q^{39} +8557.69 q^{40} +20700.2 q^{41} -64.8806 q^{42} -8548.62 q^{43} +44847.2 q^{44} -6074.55 q^{45} +13118.7 q^{46} +13781.0 q^{47} +169.366 q^{48} +2401.00 q^{49} +6202.69 q^{50} -92.5570 q^{51} -51248.0 q^{52} +6727.47 q^{53} -643.486 q^{54} +16861.9 q^{55} -16773.1 q^{56} -185.679 q^{57} +1716.74 q^{58} +38517.7 q^{59} +221.782 q^{60} +7676.86 q^{61} -46585.4 q^{62} +11906.1 q^{63} -24302.8 q^{64} -19268.5 q^{65} +893.069 q^{66} -49040.1 q^{67} -46127.4 q^{68} +176.363 q^{69} -12157.3 q^{70} +22757.6 q^{71} -83174.7 q^{72} -22821.6 q^{73} +131946. q^{74} +83.3870 q^{75} -92536.4 q^{76} -33049.3 q^{77} -1020.53 q^{78} +20160.9 q^{79} +31735.7 q^{80} +59036.0 q^{81} +205435. q^{82} -108242. q^{83} -434.693 q^{84} -17343.3 q^{85} -84839.2 q^{86} +23.0793 q^{87} +230878. q^{88} -36635.3 q^{89} -60285.7 q^{90} +37766.3 q^{91} +87893.9 q^{92} -626.280 q^{93} +136766. q^{94} -34792.4 q^{95} +219.386 q^{96} +147232. q^{97} +23828.3 q^{98} -163886. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{2} + 14 q^{3} + 49 q^{4} + 100 q^{5} + 136 q^{6} - 196 q^{7} + 489 q^{8} + 774 q^{9} + 175 q^{10} + 770 q^{11} + 840 q^{12} + 58 q^{13} - 343 q^{14} + 350 q^{15} - 615 q^{16} + 2006 q^{17} - 1409 q^{18}+ \cdots - 420668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.92431 1.75439 0.877193 0.480138i \(-0.159413\pi\)
0.877193 + 0.480138i \(0.159413\pi\)
\(3\) 0.133419 0.00855885 0.00427942 0.999991i \(-0.498638\pi\)
0.00427942 + 0.999991i \(0.498638\pi\)
\(4\) 66.4919 2.07787
\(5\) 25.0000 0.447214
\(6\) 1.32409 0.0150155
\(7\) −49.0000 −0.377964
\(8\) 342.308 1.89100
\(9\) −242.982 −0.999927
\(10\) 248.108 0.784585
\(11\) 674.476 1.68068 0.840339 0.542061i \(-0.182356\pi\)
0.840339 + 0.542061i \(0.182356\pi\)
\(12\) 8.87129 0.0177842
\(13\) −770.741 −1.26488 −0.632441 0.774608i \(-0.717947\pi\)
−0.632441 + 0.774608i \(0.717947\pi\)
\(14\) −486.291 −0.663096
\(15\) 3.33548 0.00382763
\(16\) 1269.43 1.23968
\(17\) −693.730 −0.582195 −0.291097 0.956693i \(-0.594020\pi\)
−0.291097 + 0.956693i \(0.594020\pi\)
\(18\) −2411.43 −1.75426
\(19\) −1391.69 −0.884423 −0.442211 0.896911i \(-0.645806\pi\)
−0.442211 + 0.896911i \(0.645806\pi\)
\(20\) 1662.30 0.929252
\(21\) −6.53754 −0.00323494
\(22\) 6693.71 2.94856
\(23\) 1321.87 0.521039 0.260520 0.965469i \(-0.416106\pi\)
0.260520 + 0.965469i \(0.416106\pi\)
\(24\) 45.6704 0.0161848
\(25\) 625.000 0.200000
\(26\) −7649.07 −2.21909
\(27\) −64.8394 −0.0171171
\(28\) −3258.10 −0.785361
\(29\) 172.983 0.0381952 0.0190976 0.999818i \(-0.493921\pi\)
0.0190976 + 0.999818i \(0.493921\pi\)
\(30\) 33.1023 0.00671515
\(31\) −4694.07 −0.877295 −0.438648 0.898659i \(-0.644542\pi\)
−0.438648 + 0.898659i \(0.644542\pi\)
\(32\) 1644.34 0.283868
\(33\) 89.9880 0.0143847
\(34\) −6884.79 −1.02139
\(35\) −1225.00 −0.169031
\(36\) −16156.3 −2.07772
\(37\) 13295.3 1.59659 0.798293 0.602269i \(-0.205737\pi\)
0.798293 + 0.602269i \(0.205737\pi\)
\(38\) −13811.6 −1.55162
\(39\) −102.832 −0.0108259
\(40\) 8557.69 0.845681
\(41\) 20700.2 1.92316 0.961578 0.274532i \(-0.0885229\pi\)
0.961578 + 0.274532i \(0.0885229\pi\)
\(42\) −64.8806 −0.00567533
\(43\) −8548.62 −0.705058 −0.352529 0.935801i \(-0.614678\pi\)
−0.352529 + 0.935801i \(0.614678\pi\)
\(44\) 44847.2 3.49223
\(45\) −6074.55 −0.447181
\(46\) 13118.7 0.914104
\(47\) 13781.0 0.909986 0.454993 0.890495i \(-0.349642\pi\)
0.454993 + 0.890495i \(0.349642\pi\)
\(48\) 169.366 0.0106102
\(49\) 2401.00 0.142857
\(50\) 6202.69 0.350877
\(51\) −92.5570 −0.00498292
\(52\) −51248.0 −2.62826
\(53\) 6727.47 0.328975 0.164487 0.986379i \(-0.447403\pi\)
0.164487 + 0.986379i \(0.447403\pi\)
\(54\) −643.486 −0.0300299
\(55\) 16861.9 0.751622
\(56\) −16773.1 −0.714731
\(57\) −185.679 −0.00756964
\(58\) 1716.74 0.0670091
\(59\) 38517.7 1.44056 0.720278 0.693686i \(-0.244014\pi\)
0.720278 + 0.693686i \(0.244014\pi\)
\(60\) 221.782 0.00795332
\(61\) 7676.86 0.264155 0.132078 0.991239i \(-0.457835\pi\)
0.132078 + 0.991239i \(0.457835\pi\)
\(62\) −46585.4 −1.53911
\(63\) 11906.1 0.377937
\(64\) −24302.8 −0.741661
\(65\) −19268.5 −0.565673
\(66\) 893.069 0.0252363
\(67\) −49040.1 −1.33464 −0.667320 0.744771i \(-0.732559\pi\)
−0.667320 + 0.744771i \(0.732559\pi\)
\(68\) −46127.4 −1.20973
\(69\) 176.363 0.00445950
\(70\) −12157.3 −0.296545
\(71\) 22757.6 0.535772 0.267886 0.963451i \(-0.413675\pi\)
0.267886 + 0.963451i \(0.413675\pi\)
\(72\) −83174.7 −1.89086
\(73\) −22821.6 −0.501232 −0.250616 0.968087i \(-0.580633\pi\)
−0.250616 + 0.968087i \(0.580633\pi\)
\(74\) 131946. 2.80103
\(75\) 83.3870 0.00171177
\(76\) −92536.4 −1.83772
\(77\) −33049.3 −0.635237
\(78\) −1020.53 −0.0189929
\(79\) 20160.9 0.363448 0.181724 0.983350i \(-0.441832\pi\)
0.181724 + 0.983350i \(0.441832\pi\)
\(80\) 31735.7 0.554400
\(81\) 59036.0 0.999780
\(82\) 205435. 3.37396
\(83\) −108242. −1.72466 −0.862328 0.506350i \(-0.830994\pi\)
−0.862328 + 0.506350i \(0.830994\pi\)
\(84\) −434.693 −0.00672179
\(85\) −17343.3 −0.260365
\(86\) −84839.2 −1.23694
\(87\) 23.0793 0.000326907 0
\(88\) 230878. 3.17817
\(89\) −36635.3 −0.490258 −0.245129 0.969490i \(-0.578830\pi\)
−0.245129 + 0.969490i \(0.578830\pi\)
\(90\) −60285.7 −0.784528
\(91\) 37766.3 0.478081
\(92\) 87893.9 1.08265
\(93\) −626.280 −0.00750863
\(94\) 136766. 1.59647
\(95\) −34792.4 −0.395526
\(96\) 219.386 0.00242958
\(97\) 147232. 1.58881 0.794405 0.607388i \(-0.207783\pi\)
0.794405 + 0.607388i \(0.207783\pi\)
\(98\) 23828.3 0.250627
\(99\) −163886. −1.68056
\(100\) 41557.4 0.415574
\(101\) −106647. −1.04026 −0.520132 0.854086i \(-0.674117\pi\)
−0.520132 + 0.854086i \(0.674117\pi\)
\(102\) −918.564 −0.00874196
\(103\) −87459.8 −0.812298 −0.406149 0.913807i \(-0.633129\pi\)
−0.406149 + 0.913807i \(0.633129\pi\)
\(104\) −263831. −2.39189
\(105\) −163.439 −0.00144671
\(106\) 66765.5 0.577148
\(107\) −164801. −1.39155 −0.695777 0.718258i \(-0.744940\pi\)
−0.695777 + 0.718258i \(0.744940\pi\)
\(108\) −4311.29 −0.0355670
\(109\) −91743.7 −0.739622 −0.369811 0.929107i \(-0.620578\pi\)
−0.369811 + 0.929107i \(0.620578\pi\)
\(110\) 167343. 1.31864
\(111\) 1773.84 0.0136649
\(112\) −62201.9 −0.468553
\(113\) −147541. −1.08696 −0.543482 0.839421i \(-0.682894\pi\)
−0.543482 + 0.839421i \(0.682894\pi\)
\(114\) −1842.73 −0.0132801
\(115\) 33046.9 0.233016
\(116\) 11502.0 0.0793646
\(117\) 187276. 1.26479
\(118\) 382261. 2.52729
\(119\) 33992.8 0.220049
\(120\) 1141.76 0.00723806
\(121\) 293867. 1.82468
\(122\) 76187.5 0.463430
\(123\) 2761.80 0.0164600
\(124\) −312118. −1.82291
\(125\) 15625.0 0.0894427
\(126\) 118160. 0.663047
\(127\) −105224. −0.578905 −0.289452 0.957192i \(-0.593473\pi\)
−0.289452 + 0.957192i \(0.593473\pi\)
\(128\) −293807. −1.58503
\(129\) −1140.55 −0.00603449
\(130\) −191227. −0.992408
\(131\) 327117. 1.66542 0.832711 0.553707i \(-0.186787\pi\)
0.832711 + 0.553707i \(0.186787\pi\)
\(132\) 5983.47 0.0298895
\(133\) 68193.0 0.334280
\(134\) −486689. −2.34147
\(135\) −1620.98 −0.00765498
\(136\) −237469. −1.10093
\(137\) 106825. 0.486264 0.243132 0.969993i \(-0.421825\pi\)
0.243132 + 0.969993i \(0.421825\pi\)
\(138\) 1750.28 0.00782368
\(139\) 90143.0 0.395726 0.197863 0.980230i \(-0.436600\pi\)
0.197863 + 0.980230i \(0.436600\pi\)
\(140\) −81452.5 −0.351224
\(141\) 1838.65 0.00778843
\(142\) 225853. 0.939950
\(143\) −519846. −2.12586
\(144\) −308448. −1.23958
\(145\) 4324.57 0.0170814
\(146\) −226488. −0.879354
\(147\) 320.340 0.00122269
\(148\) 884026. 3.31750
\(149\) 465454. 1.71756 0.858778 0.512348i \(-0.171224\pi\)
0.858778 + 0.512348i \(0.171224\pi\)
\(150\) 827.558 0.00300310
\(151\) −156745. −0.559437 −0.279718 0.960082i \(-0.590241\pi\)
−0.279718 + 0.960082i \(0.590241\pi\)
\(152\) −476388. −1.67244
\(153\) 168564. 0.582152
\(154\) −327992. −1.11445
\(155\) −117352. −0.392338
\(156\) −6837.47 −0.0224949
\(157\) −395491. −1.28052 −0.640261 0.768157i \(-0.721174\pi\)
−0.640261 + 0.768157i \(0.721174\pi\)
\(158\) 200083. 0.637628
\(159\) 897.574 0.00281564
\(160\) 41108.5 0.126950
\(161\) −64771.8 −0.196934
\(162\) 585892. 1.75400
\(163\) 362186. 1.06773 0.533866 0.845569i \(-0.320739\pi\)
0.533866 + 0.845569i \(0.320739\pi\)
\(164\) 1.37639e6 3.99607
\(165\) 2249.70 0.00643302
\(166\) −1.07423e6 −3.02571
\(167\) 187502. 0.520254 0.260127 0.965574i \(-0.416236\pi\)
0.260127 + 0.965574i \(0.416236\pi\)
\(168\) −2237.85 −0.00611727
\(169\) 222749. 0.599928
\(170\) −172120. −0.456782
\(171\) 338157. 0.884358
\(172\) −568414. −1.46502
\(173\) −81318.8 −0.206574 −0.103287 0.994652i \(-0.532936\pi\)
−0.103287 + 0.994652i \(0.532936\pi\)
\(174\) 229.046 0.000573520 0
\(175\) −30625.0 −0.0755929
\(176\) 856198. 2.08350
\(177\) 5139.00 0.0123295
\(178\) −363580. −0.860102
\(179\) −728608. −1.69966 −0.849829 0.527059i \(-0.823295\pi\)
−0.849829 + 0.527059i \(0.823295\pi\)
\(180\) −403908. −0.929184
\(181\) 727174. 1.64984 0.824920 0.565249i \(-0.191220\pi\)
0.824920 + 0.565249i \(0.191220\pi\)
\(182\) 374804. 0.838738
\(183\) 1024.24 0.00226086
\(184\) 452488. 0.985286
\(185\) 332381. 0.714015
\(186\) −6215.39 −0.0131730
\(187\) −467904. −0.978483
\(188\) 916322. 1.89083
\(189\) 3177.13 0.00646964
\(190\) −345290. −0.693905
\(191\) −144726. −0.287054 −0.143527 0.989646i \(-0.545844\pi\)
−0.143527 + 0.989646i \(0.545844\pi\)
\(192\) −3242.45 −0.00634776
\(193\) 155707. 0.300895 0.150448 0.988618i \(-0.451929\pi\)
0.150448 + 0.988618i \(0.451929\pi\)
\(194\) 1.46117e6 2.78739
\(195\) −2570.79 −0.00484151
\(196\) 159647. 0.296839
\(197\) −476409. −0.874609 −0.437305 0.899313i \(-0.644067\pi\)
−0.437305 + 0.899313i \(0.644067\pi\)
\(198\) −1.62645e6 −2.94834
\(199\) −162445. −0.290786 −0.145393 0.989374i \(-0.546445\pi\)
−0.145393 + 0.989374i \(0.546445\pi\)
\(200\) 213942. 0.378200
\(201\) −6542.89 −0.0114230
\(202\) −1.05839e6 −1.82502
\(203\) −8476.17 −0.0144364
\(204\) −6154.28 −0.0103539
\(205\) 517505. 0.860061
\(206\) −867978. −1.42508
\(207\) −321192. −0.521001
\(208\) −978400. −1.56804
\(209\) −938664. −1.48643
\(210\) −1622.01 −0.00253809
\(211\) −220597. −0.341109 −0.170554 0.985348i \(-0.554556\pi\)
−0.170554 + 0.985348i \(0.554556\pi\)
\(212\) 447322. 0.683567
\(213\) 3036.29 0.00458559
\(214\) −1.63553e6 −2.44132
\(215\) −213716. −0.315312
\(216\) −22195.0 −0.0323684
\(217\) 230010. 0.331586
\(218\) −910492. −1.29758
\(219\) −3044.84 −0.00428997
\(220\) 1.12118e6 1.56177
\(221\) 534687. 0.736408
\(222\) 17604.2 0.0239736
\(223\) 744023. 1.00190 0.500950 0.865476i \(-0.332984\pi\)
0.500950 + 0.865476i \(0.332984\pi\)
\(224\) −80572.6 −0.107292
\(225\) −151864. −0.199985
\(226\) −1.46424e6 −1.90696
\(227\) −318343. −0.410045 −0.205022 0.978757i \(-0.565727\pi\)
−0.205022 + 0.978757i \(0.565727\pi\)
\(228\) −12346.1 −0.0157287
\(229\) 1.43755e6 1.81148 0.905741 0.423832i \(-0.139315\pi\)
0.905741 + 0.423832i \(0.139315\pi\)
\(230\) 327967. 0.408800
\(231\) −4409.41 −0.00543689
\(232\) 59213.4 0.0722271
\(233\) −192194. −0.231926 −0.115963 0.993254i \(-0.536995\pi\)
−0.115963 + 0.993254i \(0.536995\pi\)
\(234\) 1.85859e6 2.21893
\(235\) 344524. 0.406958
\(236\) 2.56111e6 2.99329
\(237\) 2689.85 0.00311070
\(238\) 337355. 0.386051
\(239\) −783481. −0.887225 −0.443613 0.896219i \(-0.646303\pi\)
−0.443613 + 0.896219i \(0.646303\pi\)
\(240\) 4234.15 0.00474502
\(241\) −833352. −0.924243 −0.462121 0.886817i \(-0.652912\pi\)
−0.462121 + 0.886817i \(0.652912\pi\)
\(242\) 2.91642e6 3.20120
\(243\) 23632.5 0.0256740
\(244\) 510448. 0.548880
\(245\) 60025.0 0.0638877
\(246\) 27409.0 0.0288772
\(247\) 1.07264e6 1.11869
\(248\) −1.60682e6 −1.65897
\(249\) −14441.6 −0.0147611
\(250\) 155067. 0.156917
\(251\) −310658. −0.311242 −0.155621 0.987817i \(-0.549738\pi\)
−0.155621 + 0.987817i \(0.549738\pi\)
\(252\) 791661. 0.785304
\(253\) 891572. 0.875700
\(254\) −1.04428e6 −1.01562
\(255\) −2313.92 −0.00222843
\(256\) −2.13814e6 −2.03909
\(257\) −698374. −0.659561 −0.329781 0.944058i \(-0.606975\pi\)
−0.329781 + 0.944058i \(0.606975\pi\)
\(258\) −11319.2 −0.0105868
\(259\) −651468. −0.603453
\(260\) −1.28120e6 −1.17539
\(261\) −42031.8 −0.0381924
\(262\) 3.24641e6 2.92179
\(263\) 574995. 0.512595 0.256298 0.966598i \(-0.417497\pi\)
0.256298 + 0.966598i \(0.417497\pi\)
\(264\) 30803.6 0.0272014
\(265\) 168187. 0.147122
\(266\) 676769. 0.586457
\(267\) −4887.85 −0.00419604
\(268\) −3.26077e6 −2.77321
\(269\) −246902. −0.208038 −0.104019 0.994575i \(-0.533170\pi\)
−0.104019 + 0.994575i \(0.533170\pi\)
\(270\) −16087.1 −0.0134298
\(271\) −1.29025e6 −1.06721 −0.533607 0.845733i \(-0.679164\pi\)
−0.533607 + 0.845733i \(0.679164\pi\)
\(272\) −880640. −0.721733
\(273\) 5038.75 0.00409182
\(274\) 1.06016e6 0.853094
\(275\) 421547. 0.336136
\(276\) 11726.7 0.00926626
\(277\) −968667. −0.758534 −0.379267 0.925287i \(-0.623824\pi\)
−0.379267 + 0.925287i \(0.623824\pi\)
\(278\) 894607. 0.694257
\(279\) 1.14058e6 0.877231
\(280\) −419327. −0.319637
\(281\) 1.37144e6 1.03612 0.518062 0.855343i \(-0.326654\pi\)
0.518062 + 0.855343i \(0.326654\pi\)
\(282\) 18247.3 0.0136639
\(283\) −151658. −0.112564 −0.0562818 0.998415i \(-0.517925\pi\)
−0.0562818 + 0.998415i \(0.517925\pi\)
\(284\) 1.51319e6 1.11326
\(285\) −4641.97 −0.00338525
\(286\) −5.15911e6 −3.72958
\(287\) −1.01431e6 −0.726885
\(288\) −399545. −0.283847
\(289\) −938595. −0.661049
\(290\) 42918.4 0.0299674
\(291\) 19643.5 0.0135984
\(292\) −1.51745e6 −1.04149
\(293\) 566468. 0.385484 0.192742 0.981249i \(-0.438262\pi\)
0.192742 + 0.981249i \(0.438262\pi\)
\(294\) 3179.15 0.00214507
\(295\) 962942. 0.644236
\(296\) 4.55107e6 3.01915
\(297\) −43732.6 −0.0287683
\(298\) 4.61931e6 3.01326
\(299\) −1.01882e6 −0.659054
\(300\) 5544.56 0.00355683
\(301\) 418883. 0.266487
\(302\) −1.55558e6 −0.981468
\(303\) −14228.7 −0.00890345
\(304\) −1.76666e6 −1.09640
\(305\) 191921. 0.118134
\(306\) 1.67288e6 1.02132
\(307\) −1.62246e6 −0.982492 −0.491246 0.871021i \(-0.663458\pi\)
−0.491246 + 0.871021i \(0.663458\pi\)
\(308\) −2.19751e6 −1.31994
\(309\) −11668.8 −0.00695234
\(310\) −1.16464e6 −0.688313
\(311\) −458811. −0.268988 −0.134494 0.990914i \(-0.542941\pi\)
−0.134494 + 0.990914i \(0.542941\pi\)
\(312\) −35200.1 −0.0204719
\(313\) −706205. −0.407446 −0.203723 0.979029i \(-0.565304\pi\)
−0.203723 + 0.979029i \(0.565304\pi\)
\(314\) −3.92497e6 −2.24653
\(315\) 297653. 0.169018
\(316\) 1.34054e6 0.755198
\(317\) −1.12397e6 −0.628213 −0.314106 0.949388i \(-0.601705\pi\)
−0.314106 + 0.949388i \(0.601705\pi\)
\(318\) 8907.80 0.00493972
\(319\) 116673. 0.0641938
\(320\) −607569. −0.331681
\(321\) −21987.6 −0.0119101
\(322\) −642816. −0.345499
\(323\) 965461. 0.514906
\(324\) 3.92541e6 2.07741
\(325\) −481713. −0.252976
\(326\) 3.59444e6 1.87322
\(327\) −12240.4 −0.00633031
\(328\) 7.08583e6 3.63669
\(329\) −675267. −0.343943
\(330\) 22326.7 0.0112860
\(331\) 2.85545e6 1.43253 0.716266 0.697827i \(-0.245850\pi\)
0.716266 + 0.697827i \(0.245850\pi\)
\(332\) −7.19724e6 −3.58361
\(333\) −3.23051e6 −1.59647
\(334\) 1.86083e6 0.912726
\(335\) −1.22600e6 −0.596869
\(336\) −8298.93 −0.00401027
\(337\) 816793. 0.391776 0.195888 0.980626i \(-0.437241\pi\)
0.195888 + 0.980626i \(0.437241\pi\)
\(338\) 2.21063e6 1.05250
\(339\) −19684.7 −0.00930316
\(340\) −1.15319e6 −0.541006
\(341\) −3.16604e6 −1.47445
\(342\) 3.35597e6 1.55151
\(343\) −117649. −0.0539949
\(344\) −2.92626e6 −1.33327
\(345\) 4409.09 0.00199435
\(346\) −807033. −0.362411
\(347\) −1.66997e6 −0.744537 −0.372268 0.928125i \(-0.621420\pi\)
−0.372268 + 0.928125i \(0.621420\pi\)
\(348\) 1534.58 0.000679269 0
\(349\) 2.32623e6 1.02233 0.511163 0.859484i \(-0.329215\pi\)
0.511163 + 0.859484i \(0.329215\pi\)
\(350\) −303932. −0.132619
\(351\) 49974.4 0.0216511
\(352\) 1.10907e6 0.477091
\(353\) 1.91401e6 0.817537 0.408768 0.912638i \(-0.365958\pi\)
0.408768 + 0.912638i \(0.365958\pi\)
\(354\) 51001.0 0.0216307
\(355\) 568939. 0.239604
\(356\) −2.43595e6 −1.01869
\(357\) 4535.29 0.00188337
\(358\) −7.23093e6 −2.98186
\(359\) 1.43287e6 0.586774 0.293387 0.955994i \(-0.405218\pi\)
0.293387 + 0.955994i \(0.405218\pi\)
\(360\) −2.07937e6 −0.845619
\(361\) −539285. −0.217796
\(362\) 7.21670e6 2.89446
\(363\) 39207.5 0.0156172
\(364\) 2.51115e6 0.993390
\(365\) −570540. −0.224158
\(366\) 10164.9 0.00396643
\(367\) 306282. 0.118701 0.0593507 0.998237i \(-0.481097\pi\)
0.0593507 + 0.998237i \(0.481097\pi\)
\(368\) 1.67802e6 0.645920
\(369\) −5.02978e6 −1.92302
\(370\) 3.29866e6 1.25266
\(371\) −329646. −0.124341
\(372\) −41642.5 −0.0156020
\(373\) 3.01040e6 1.12035 0.560174 0.828375i \(-0.310734\pi\)
0.560174 + 0.828375i \(0.310734\pi\)
\(374\) −4.64363e6 −1.71664
\(375\) 2084.68 0.000765526 0
\(376\) 4.71733e6 1.72079
\(377\) −133325. −0.0483124
\(378\) 31530.8 0.0113503
\(379\) 2.60610e6 0.931952 0.465976 0.884797i \(-0.345703\pi\)
0.465976 + 0.884797i \(0.345703\pi\)
\(380\) −2.31341e6 −0.821852
\(381\) −14039.0 −0.00495476
\(382\) −1.43631e6 −0.503604
\(383\) 239580. 0.0834552 0.0417276 0.999129i \(-0.486714\pi\)
0.0417276 + 0.999129i \(0.486714\pi\)
\(384\) −39199.5 −0.0135660
\(385\) −826233. −0.284087
\(386\) 1.54529e6 0.527886
\(387\) 2.07716e6 0.705007
\(388\) 9.78971e6 3.30134
\(389\) 3.83014e6 1.28334 0.641669 0.766982i \(-0.278242\pi\)
0.641669 + 0.766982i \(0.278242\pi\)
\(390\) −25513.3 −0.00849387
\(391\) −917024. −0.303346
\(392\) 821881. 0.270143
\(393\) 43643.6 0.0142541
\(394\) −4.72802e6 −1.53440
\(395\) 504023. 0.162539
\(396\) −1.08971e7 −3.49198
\(397\) 4.87686e6 1.55297 0.776487 0.630134i \(-0.217000\pi\)
0.776487 + 0.630134i \(0.217000\pi\)
\(398\) −1.61215e6 −0.510150
\(399\) 9098.26 0.00286105
\(400\) 793392. 0.247935
\(401\) 1.76120e6 0.546951 0.273475 0.961879i \(-0.411827\pi\)
0.273475 + 0.961879i \(0.411827\pi\)
\(402\) −64933.6 −0.0200403
\(403\) 3.61792e6 1.10968
\(404\) −7.09113e6 −2.16153
\(405\) 1.47590e6 0.447115
\(406\) −84120.1 −0.0253270
\(407\) 8.96733e6 2.68335
\(408\) −31683.0 −0.00942270
\(409\) −1.04639e6 −0.309304 −0.154652 0.987969i \(-0.549426\pi\)
−0.154652 + 0.987969i \(0.549426\pi\)
\(410\) 5.13587e6 1.50888
\(411\) 14252.5 0.00416186
\(412\) −5.81537e6 −1.68785
\(413\) −1.88737e6 −0.544479
\(414\) −3.18761e6 −0.914037
\(415\) −2.70606e6 −0.771289
\(416\) −1.26736e6 −0.359060
\(417\) 12026.8 0.00338696
\(418\) −9.31559e6 −2.60777
\(419\) −960422. −0.267256 −0.133628 0.991032i \(-0.542663\pi\)
−0.133628 + 0.991032i \(0.542663\pi\)
\(420\) −10867.3 −0.00300607
\(421\) −2.31530e6 −0.636651 −0.318326 0.947981i \(-0.603121\pi\)
−0.318326 + 0.947981i \(0.603121\pi\)
\(422\) −2.18927e6 −0.598436
\(423\) −3.34853e6 −0.909920
\(424\) 2.30287e6 0.622091
\(425\) −433581. −0.116439
\(426\) 30133.1 0.00804489
\(427\) −376166. −0.0998412
\(428\) −1.09579e7 −2.89147
\(429\) −69357.5 −0.0181949
\(430\) −2.12098e6 −0.553178
\(431\) 5.32857e6 1.38171 0.690856 0.722992i \(-0.257234\pi\)
0.690856 + 0.722992i \(0.257234\pi\)
\(432\) −82308.9 −0.0212196
\(433\) −7.30765e6 −1.87309 −0.936544 0.350550i \(-0.885995\pi\)
−0.936544 + 0.350550i \(0.885995\pi\)
\(434\) 2.28269e6 0.581730
\(435\) 576.981 0.000146197 0
\(436\) −6.10021e6 −1.53684
\(437\) −1.83965e6 −0.460819
\(438\) −30217.9 −0.00752626
\(439\) −1.22233e6 −0.302711 −0.151355 0.988479i \(-0.548364\pi\)
−0.151355 + 0.988479i \(0.548364\pi\)
\(440\) 5.77196e6 1.42132
\(441\) −583400. −0.142847
\(442\) 5.30639e6 1.29194
\(443\) −4.69869e6 −1.13754 −0.568771 0.822496i \(-0.692581\pi\)
−0.568771 + 0.822496i \(0.692581\pi\)
\(444\) 117946. 0.0283940
\(445\) −915882. −0.219250
\(446\) 7.38391e6 1.75772
\(447\) 62100.5 0.0147003
\(448\) 1.19083e6 0.280322
\(449\) 4.75176e6 1.11234 0.556171 0.831068i \(-0.312270\pi\)
0.556171 + 0.831068i \(0.312270\pi\)
\(450\) −1.50714e6 −0.350852
\(451\) 1.39618e7 3.23221
\(452\) −9.81024e6 −2.25857
\(453\) −20912.8 −0.00478813
\(454\) −3.15934e6 −0.719377
\(455\) 944158. 0.213804
\(456\) −63559.3 −0.0143142
\(457\) −5.17959e6 −1.16012 −0.580062 0.814572i \(-0.696972\pi\)
−0.580062 + 0.814572i \(0.696972\pi\)
\(458\) 1.42667e7 3.17804
\(459\) 44981.0 0.00996547
\(460\) 2.19735e6 0.484177
\(461\) 685554. 0.150241 0.0751206 0.997174i \(-0.476066\pi\)
0.0751206 + 0.997174i \(0.476066\pi\)
\(462\) −43760.4 −0.00953841
\(463\) 3.43842e6 0.745429 0.372714 0.927946i \(-0.378427\pi\)
0.372714 + 0.927946i \(0.378427\pi\)
\(464\) 219589. 0.0473496
\(465\) −15657.0 −0.00335796
\(466\) −1.90739e6 −0.406888
\(467\) 4.97787e6 1.05621 0.528107 0.849178i \(-0.322902\pi\)
0.528107 + 0.849178i \(0.322902\pi\)
\(468\) 1.24524e7 2.62807
\(469\) 2.40296e6 0.504447
\(470\) 3.41916e6 0.713962
\(471\) −52766.1 −0.0109598
\(472\) 1.31849e7 2.72409
\(473\) −5.76584e6 −1.18498
\(474\) 26694.9 0.00545736
\(475\) −869809. −0.176885
\(476\) 2.26024e6 0.457233
\(477\) −1.63466e6 −0.328950
\(478\) −7.77551e6 −1.55654
\(479\) −4.65268e6 −0.926540 −0.463270 0.886217i \(-0.653324\pi\)
−0.463270 + 0.886217i \(0.653324\pi\)
\(480\) 5484.66 0.00108654
\(481\) −1.02472e7 −2.01949
\(482\) −8.27044e6 −1.62148
\(483\) −8641.81 −0.00168553
\(484\) 1.95397e7 3.79145
\(485\) 3.68079e6 0.710538
\(486\) 234536. 0.0450422
\(487\) −3.55267e6 −0.678786 −0.339393 0.940645i \(-0.610222\pi\)
−0.339393 + 0.940645i \(0.610222\pi\)
\(488\) 2.62785e6 0.499517
\(489\) 48322.6 0.00913856
\(490\) 595706. 0.112084
\(491\) −7.33350e6 −1.37280 −0.686401 0.727224i \(-0.740810\pi\)
−0.686401 + 0.727224i \(0.740810\pi\)
\(492\) 183637. 0.0342017
\(493\) −120004. −0.0222370
\(494\) 1.06452e7 1.96262
\(495\) −4.09714e6 −0.751567
\(496\) −5.95879e6 −1.08756
\(497\) −1.11512e6 −0.202503
\(498\) −143323. −0.0258966
\(499\) −6.53921e6 −1.17564 −0.587819 0.808992i \(-0.700013\pi\)
−0.587819 + 0.808992i \(0.700013\pi\)
\(500\) 1.03894e6 0.185850
\(501\) 25016.4 0.00445277
\(502\) −3.08306e6 −0.546039
\(503\) 6.11279e6 1.07726 0.538629 0.842543i \(-0.318943\pi\)
0.538629 + 0.842543i \(0.318943\pi\)
\(504\) 4.07556e6 0.714679
\(505\) −2.66616e6 −0.465220
\(506\) 8.84824e6 1.53632
\(507\) 29719.0 0.00513469
\(508\) −6.99657e6 −1.20289
\(509\) 1.07468e7 1.83859 0.919295 0.393569i \(-0.128760\pi\)
0.919295 + 0.393569i \(0.128760\pi\)
\(510\) −22964.1 −0.00390952
\(511\) 1.11826e6 0.189448
\(512\) −1.18177e7 −1.99232
\(513\) 90236.6 0.0151387
\(514\) −6.93088e6 −1.15713
\(515\) −2.18650e6 −0.363271
\(516\) −75837.3 −0.0125389
\(517\) 9.29493e6 1.52939
\(518\) −6.46536e6 −1.05869
\(519\) −10849.5 −0.00176804
\(520\) −6.59577e6 −1.06969
\(521\) −1.11135e7 −1.79373 −0.896866 0.442302i \(-0.854162\pi\)
−0.896866 + 0.442302i \(0.854162\pi\)
\(522\) −417136. −0.0670042
\(523\) −277156. −0.0443067 −0.0221534 0.999755i \(-0.507052\pi\)
−0.0221534 + 0.999755i \(0.507052\pi\)
\(524\) 2.17506e7 3.46053
\(525\) −4085.96 −0.000646988 0
\(526\) 5.70643e6 0.899290
\(527\) 3.25642e6 0.510757
\(528\) 114233. 0.0178323
\(529\) −4.68899e6 −0.728518
\(530\) 1.66914e6 0.258109
\(531\) −9.35911e6 −1.44045
\(532\) 4.53428e6 0.694591
\(533\) −1.59545e7 −2.43257
\(534\) −48508.5 −0.00736148
\(535\) −4.12002e6 −0.622322
\(536\) −1.67868e7 −2.52381
\(537\) −97210.3 −0.0145471
\(538\) −2.45033e6 −0.364980
\(539\) 1.61942e6 0.240097
\(540\) −107782. −0.0159061
\(541\) 7.89961e6 1.16041 0.580207 0.814469i \(-0.302972\pi\)
0.580207 + 0.814469i \(0.302972\pi\)
\(542\) −1.28049e7 −1.87231
\(543\) 97019.0 0.0141207
\(544\) −1.14073e6 −0.165266
\(545\) −2.29359e6 −0.330769
\(546\) 50006.1 0.00717863
\(547\) −7.01645e6 −1.00265 −0.501325 0.865259i \(-0.667154\pi\)
−0.501325 + 0.865259i \(0.667154\pi\)
\(548\) 7.10300e6 1.01039
\(549\) −1.86534e6 −0.264136
\(550\) 4.18357e6 0.589712
\(551\) −240739. −0.0337807
\(552\) 60370.6 0.00843291
\(553\) −987885. −0.137371
\(554\) −9.61335e6 −1.33076
\(555\) 44346.1 0.00611115
\(556\) 5.99378e6 0.822268
\(557\) 5.34027e6 0.729332 0.364666 0.931138i \(-0.381183\pi\)
0.364666 + 0.931138i \(0.381183\pi\)
\(558\) 1.13194e7 1.53900
\(559\) 6.58878e6 0.891816
\(560\) −1.55505e6 −0.209543
\(561\) −62427.4 −0.00837468
\(562\) 1.36106e7 1.81776
\(563\) 3.95451e6 0.525801 0.262901 0.964823i \(-0.415321\pi\)
0.262901 + 0.964823i \(0.415321\pi\)
\(564\) 122255. 0.0161834
\(565\) −3.68851e6 −0.486105
\(566\) −1.50510e6 −0.197480
\(567\) −2.89277e6 −0.377881
\(568\) 7.79009e6 1.01314
\(569\) 2.06862e6 0.267856 0.133928 0.990991i \(-0.457241\pi\)
0.133928 + 0.990991i \(0.457241\pi\)
\(570\) −46068.3 −0.00593903
\(571\) 2.62182e6 0.336522 0.168261 0.985742i \(-0.446185\pi\)
0.168261 + 0.985742i \(0.446185\pi\)
\(572\) −3.45655e7 −4.41726
\(573\) −19309.3 −0.00245685
\(574\) −1.00663e7 −1.27524
\(575\) 826171. 0.104208
\(576\) 5.90514e6 0.741607
\(577\) 4.89383e6 0.611940 0.305970 0.952041i \(-0.401019\pi\)
0.305970 + 0.952041i \(0.401019\pi\)
\(578\) −9.31491e6 −1.15974
\(579\) 20774.3 0.00257532
\(580\) 287549. 0.0354929
\(581\) 5.30388e6 0.651859
\(582\) 194949. 0.0238568
\(583\) 4.53752e6 0.552901
\(584\) −7.81200e6 −0.947830
\(585\) 4.68191e6 0.565631
\(586\) 5.62180e6 0.676288
\(587\) 3.88480e6 0.465343 0.232672 0.972555i \(-0.425253\pi\)
0.232672 + 0.972555i \(0.425253\pi\)
\(588\) 21300.0 0.00254060
\(589\) 6.53272e6 0.775900
\(590\) 9.55653e6 1.13024
\(591\) −63562.1 −0.00748565
\(592\) 1.68774e7 1.97925
\(593\) 9.98996e6 1.16661 0.583307 0.812252i \(-0.301759\pi\)
0.583307 + 0.812252i \(0.301759\pi\)
\(594\) −434016. −0.0504707
\(595\) 849820. 0.0984089
\(596\) 3.09489e7 3.56886
\(597\) −21673.2 −0.00248879
\(598\) −1.01111e7 −1.15623
\(599\) −9.87104e6 −1.12408 −0.562038 0.827111i \(-0.689983\pi\)
−0.562038 + 0.827111i \(0.689983\pi\)
\(600\) 28544.0 0.00323696
\(601\) −320717. −0.0362190 −0.0181095 0.999836i \(-0.505765\pi\)
−0.0181095 + 0.999836i \(0.505765\pi\)
\(602\) 4.15712e6 0.467521
\(603\) 1.19159e7 1.33454
\(604\) −1.04223e7 −1.16244
\(605\) 7.34667e6 0.816022
\(606\) −141210. −0.0156201
\(607\) 963709. 0.106163 0.0530816 0.998590i \(-0.483096\pi\)
0.0530816 + 0.998590i \(0.483096\pi\)
\(608\) −2.28842e6 −0.251059
\(609\) −1130.88 −0.000123559 0
\(610\) 1.90469e6 0.207252
\(611\) −1.06216e7 −1.15103
\(612\) 1.12081e7 1.20964
\(613\) 1.31019e6 0.140826 0.0704129 0.997518i \(-0.477568\pi\)
0.0704129 + 0.997518i \(0.477568\pi\)
\(614\) −1.61018e7 −1.72367
\(615\) 69045.0 0.00736113
\(616\) −1.13130e7 −1.20123
\(617\) −1.01289e7 −1.07115 −0.535575 0.844488i \(-0.679905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(618\) −115805. −0.0121971
\(619\) −2.79242e6 −0.292923 −0.146462 0.989216i \(-0.546789\pi\)
−0.146462 + 0.989216i \(0.546789\pi\)
\(620\) −7.80294e6 −0.815228
\(621\) −85709.5 −0.00891867
\(622\) −4.55338e6 −0.471909
\(623\) 1.79513e6 0.185300
\(624\) −130537. −0.0134206
\(625\) 390625. 0.0400000
\(626\) −7.00859e6 −0.714817
\(627\) −125236. −0.0127221
\(628\) −2.62969e7 −2.66076
\(629\) −9.22332e6 −0.929525
\(630\) 2.95400e6 0.296524
\(631\) −4.46346e6 −0.446271 −0.223135 0.974787i \(-0.571629\pi\)
−0.223135 + 0.974787i \(0.571629\pi\)
\(632\) 6.90124e6 0.687281
\(633\) −29431.8 −0.00291950
\(634\) −1.11546e7 −1.10213
\(635\) −2.63061e6 −0.258894
\(636\) 59681.4 0.00585054
\(637\) −1.85055e6 −0.180697
\(638\) 1.15790e6 0.112621
\(639\) −5.52968e6 −0.535732
\(640\) −7.34517e6 −0.708846
\(641\) 5.63340e6 0.541534 0.270767 0.962645i \(-0.412723\pi\)
0.270767 + 0.962645i \(0.412723\pi\)
\(642\) −218212. −0.0208949
\(643\) 6.56955e6 0.626626 0.313313 0.949650i \(-0.398561\pi\)
0.313313 + 0.949650i \(0.398561\pi\)
\(644\) −4.30680e6 −0.409204
\(645\) −28513.8 −0.00269870
\(646\) 9.58153e6 0.903345
\(647\) 1.26415e7 1.18724 0.593621 0.804745i \(-0.297698\pi\)
0.593621 + 0.804745i \(0.297698\pi\)
\(648\) 2.02085e7 1.89059
\(649\) 2.59792e7 2.42111
\(650\) −4.78067e6 −0.443818
\(651\) 30687.7 0.00283800
\(652\) 2.40824e7 2.21861
\(653\) −3.52591e6 −0.323585 −0.161792 0.986825i \(-0.551727\pi\)
−0.161792 + 0.986825i \(0.551727\pi\)
\(654\) −121477. −0.0111058
\(655\) 8.17792e6 0.744800
\(656\) 2.62774e7 2.38409
\(657\) 5.54524e6 0.501195
\(658\) −6.70156e6 −0.603408
\(659\) 228429. 0.0204898 0.0102449 0.999948i \(-0.496739\pi\)
0.0102449 + 0.999948i \(0.496739\pi\)
\(660\) 149587. 0.0133670
\(661\) −5.75333e6 −0.512172 −0.256086 0.966654i \(-0.582433\pi\)
−0.256086 + 0.966654i \(0.582433\pi\)
\(662\) 2.83383e7 2.51321
\(663\) 71337.5 0.00630280
\(664\) −3.70522e7 −3.26133
\(665\) 1.70483e6 0.149495
\(666\) −3.20606e7 −2.80082
\(667\) 228662. 0.0199012
\(668\) 1.24674e7 1.08102
\(669\) 99267.0 0.00857511
\(670\) −1.21672e7 −1.04714
\(671\) 5.17786e6 0.443960
\(672\) −10749.9 −0.000918296 0
\(673\) −2.78862e6 −0.237330 −0.118665 0.992934i \(-0.537861\pi\)
−0.118665 + 0.992934i \(0.537861\pi\)
\(674\) 8.10611e6 0.687326
\(675\) −40524.6 −0.00342341
\(676\) 1.48110e7 1.24657
\(677\) 1.80943e7 1.51729 0.758647 0.651502i \(-0.225861\pi\)
0.758647 + 0.651502i \(0.225861\pi\)
\(678\) −195357. −0.0163213
\(679\) −7.21436e6 −0.600514
\(680\) −5.93673e6 −0.492351
\(681\) −42473.1 −0.00350951
\(682\) −3.14207e7 −2.58676
\(683\) 9.00064e6 0.738281 0.369141 0.929374i \(-0.379652\pi\)
0.369141 + 0.929374i \(0.379652\pi\)
\(684\) 2.24847e7 1.83758
\(685\) 2.67063e6 0.217464
\(686\) −1.16758e6 −0.0947279
\(687\) 191797. 0.0155042
\(688\) −1.08519e7 −0.874043
\(689\) −5.18514e6 −0.416114
\(690\) 43757.1 0.00349886
\(691\) −2.07405e7 −1.65243 −0.826216 0.563353i \(-0.809511\pi\)
−0.826216 + 0.563353i \(0.809511\pi\)
\(692\) −5.40704e6 −0.429234
\(693\) 8.03040e6 0.635190
\(694\) −1.65733e7 −1.30620
\(695\) 2.25358e6 0.176974
\(696\) 7900.21 0.000618181 0
\(697\) −1.43603e7 −1.11965
\(698\) 2.30862e7 1.79355
\(699\) −25642.3 −0.00198502
\(700\) −2.03631e6 −0.157072
\(701\) −1.30675e7 −1.00438 −0.502188 0.864758i \(-0.667472\pi\)
−0.502188 + 0.864758i \(0.667472\pi\)
\(702\) 495961. 0.0379843
\(703\) −1.85029e7 −1.41206
\(704\) −1.63916e7 −1.24649
\(705\) 45966.1 0.00348309
\(706\) 1.89952e7 1.43427
\(707\) 5.22568e6 0.393183
\(708\) 341701. 0.0256191
\(709\) 1.04313e7 0.779334 0.389667 0.920956i \(-0.372590\pi\)
0.389667 + 0.920956i \(0.372590\pi\)
\(710\) 5.64632e6 0.420359
\(711\) −4.89874e6 −0.363422
\(712\) −1.25405e7 −0.927078
\(713\) −6.20498e6 −0.457105
\(714\) 45009.6 0.00330415
\(715\) −1.29962e7 −0.950714
\(716\) −4.84465e7 −3.53167
\(717\) −104531. −0.00759363
\(718\) 1.42202e7 1.02943
\(719\) −2.21542e6 −0.159821 −0.0799104 0.996802i \(-0.525463\pi\)
−0.0799104 + 0.996802i \(0.525463\pi\)
\(720\) −7.71121e6 −0.554359
\(721\) 4.28553e6 0.307020
\(722\) −5.35203e6 −0.382099
\(723\) −111185. −0.00791045
\(724\) 4.83512e7 3.42815
\(725\) 108114. 0.00763903
\(726\) 389107. 0.0273985
\(727\) −2.78699e7 −1.95569 −0.977844 0.209335i \(-0.932870\pi\)
−0.977844 + 0.209335i \(0.932870\pi\)
\(728\) 1.29277e7 0.904051
\(729\) −1.43426e7 −0.999561
\(730\) −5.66221e6 −0.393259
\(731\) 5.93044e6 0.410481
\(732\) 68103.6 0.00469778
\(733\) 1.39510e7 0.959059 0.479530 0.877526i \(-0.340807\pi\)
0.479530 + 0.877526i \(0.340807\pi\)
\(734\) 3.03963e6 0.208248
\(735\) 8008.49 0.000546805 0
\(736\) 2.17361e6 0.147906
\(737\) −3.30764e7 −2.24310
\(738\) −4.99170e7 −3.37371
\(739\) 1.31926e7 0.888624 0.444312 0.895872i \(-0.353448\pi\)
0.444312 + 0.895872i \(0.353448\pi\)
\(740\) 2.21007e7 1.48363
\(741\) 143110. 0.00957470
\(742\) −3.27151e6 −0.218142
\(743\) 8.04528e6 0.534650 0.267325 0.963606i \(-0.413860\pi\)
0.267325 + 0.963606i \(0.413860\pi\)
\(744\) −214380. −0.0141988
\(745\) 1.16363e7 0.768114
\(746\) 2.98762e7 1.96552
\(747\) 2.63010e7 1.72453
\(748\) −3.11118e7 −2.03316
\(749\) 8.07524e6 0.525958
\(750\) 20689.0 0.00134303
\(751\) 7.74693e6 0.501221 0.250611 0.968088i \(-0.419369\pi\)
0.250611 + 0.968088i \(0.419369\pi\)
\(752\) 1.74939e7 1.12809
\(753\) −41447.7 −0.00266387
\(754\) −1.32316e6 −0.0847586
\(755\) −3.91862e6 −0.250188
\(756\) 211253. 0.0134431
\(757\) 4.44611e6 0.281994 0.140997 0.990010i \(-0.454969\pi\)
0.140997 + 0.990010i \(0.454969\pi\)
\(758\) 2.58638e7 1.63500
\(759\) 118953. 0.00749498
\(760\) −1.19097e7 −0.747940
\(761\) −7.94660e6 −0.497416 −0.248708 0.968579i \(-0.580006\pi\)
−0.248708 + 0.968579i \(0.580006\pi\)
\(762\) −139327. −0.00869256
\(763\) 4.49544e6 0.279551
\(764\) −9.62313e6 −0.596462
\(765\) 4.21410e6 0.260346
\(766\) 2.37767e6 0.146413
\(767\) −2.96872e7 −1.82213
\(768\) −285269. −0.0174523
\(769\) 1.94209e7 1.18428 0.592139 0.805836i \(-0.298284\pi\)
0.592139 + 0.805836i \(0.298284\pi\)
\(770\) −8.19979e6 −0.498398
\(771\) −93176.5 −0.00564508
\(772\) 1.03533e7 0.625221
\(773\) 2.88010e7 1.73364 0.866821 0.498620i \(-0.166160\pi\)
0.866821 + 0.498620i \(0.166160\pi\)
\(774\) 2.06144e7 1.23685
\(775\) −2.93380e6 −0.175459
\(776\) 5.03986e7 3.00444
\(777\) −86918.3 −0.00516486
\(778\) 3.80115e7 2.25147
\(779\) −2.88083e7 −1.70088
\(780\) −170937. −0.0100600
\(781\) 1.53494e7 0.900460
\(782\) −9.10083e6 −0.532187
\(783\) −11216.1 −0.000653789 0
\(784\) 3.04790e6 0.177096
\(785\) −9.88727e6 −0.572667
\(786\) 433133. 0.0250072
\(787\) −2.83115e7 −1.62939 −0.814695 0.579889i \(-0.803096\pi\)
−0.814695 + 0.579889i \(0.803096\pi\)
\(788\) −3.16773e7 −1.81732
\(789\) 76715.4 0.00438722
\(790\) 5.00208e6 0.285156
\(791\) 7.22949e6 0.410834
\(792\) −5.60993e7 −3.17793
\(793\) −5.91687e6 −0.334125
\(794\) 4.83995e7 2.72452
\(795\) 22439.4 0.00125919
\(796\) −1.08012e7 −0.604215
\(797\) 1.04940e7 0.585187 0.292594 0.956237i \(-0.405482\pi\)
0.292594 + 0.956237i \(0.405482\pi\)
\(798\) 90293.9 0.00501939
\(799\) −9.56027e6 −0.529789
\(800\) 1.02771e6 0.0567736
\(801\) 8.90172e6 0.490222
\(802\) 1.74787e7 0.959563
\(803\) −1.53926e7 −0.842410
\(804\) −435049. −0.0237355
\(805\) −1.61930e6 −0.0880717
\(806\) 3.59053e7 1.94680
\(807\) −32941.4 −0.00178057
\(808\) −3.65059e7 −1.96714
\(809\) 2.52546e6 0.135665 0.0678326 0.997697i \(-0.478392\pi\)
0.0678326 + 0.997697i \(0.478392\pi\)
\(810\) 1.46473e7 0.784413
\(811\) −1.20569e7 −0.643698 −0.321849 0.946791i \(-0.604304\pi\)
−0.321849 + 0.946791i \(0.604304\pi\)
\(812\) −563596. −0.0299970
\(813\) −172145. −0.00913412
\(814\) 8.89945e7 4.70763
\(815\) 9.05465e6 0.477505
\(816\) −117494. −0.00617720
\(817\) 1.18971e7 0.623570
\(818\) −1.03847e7 −0.542639
\(819\) −9.17654e6 −0.478046
\(820\) 3.44098e7 1.78710
\(821\) −602636. −0.0312031 −0.0156015 0.999878i \(-0.504966\pi\)
−0.0156015 + 0.999878i \(0.504966\pi\)
\(822\) 141446. 0.00730150
\(823\) 1.05065e7 0.540702 0.270351 0.962762i \(-0.412860\pi\)
0.270351 + 0.962762i \(0.412860\pi\)
\(824\) −2.99382e7 −1.53606
\(825\) 56242.5 0.00287693
\(826\) −1.87308e7 −0.955226
\(827\) 3.20441e7 1.62924 0.814619 0.579997i \(-0.196946\pi\)
0.814619 + 0.579997i \(0.196946\pi\)
\(828\) −2.13566e7 −1.08257
\(829\) 1.14547e7 0.578892 0.289446 0.957194i \(-0.406529\pi\)
0.289446 + 0.957194i \(0.406529\pi\)
\(830\) −2.68558e7 −1.35314
\(831\) −129239. −0.00649218
\(832\) 1.87311e7 0.938114
\(833\) −1.66565e6 −0.0831707
\(834\) 119358. 0.00594204
\(835\) 4.68755e6 0.232664
\(836\) −6.24135e7 −3.08861
\(837\) 304361. 0.0150167
\(838\) −9.53152e6 −0.468870
\(839\) −2.57923e7 −1.26499 −0.632493 0.774566i \(-0.717968\pi\)
−0.632493 + 0.774566i \(0.717968\pi\)
\(840\) −55946.3 −0.00273573
\(841\) −2.04812e7 −0.998541
\(842\) −2.29777e7 −1.11693
\(843\) 182977. 0.00886803
\(844\) −1.46679e7 −0.708780
\(845\) 5.56872e6 0.268296
\(846\) −3.32318e7 −1.59635
\(847\) −1.43995e7 −0.689665
\(848\) 8.54004e6 0.407822
\(849\) −20234.0 −0.000963415 0
\(850\) −4.30300e6 −0.204279
\(851\) 1.75747e7 0.831884
\(852\) 201889. 0.00952826
\(853\) 1.61523e7 0.760082 0.380041 0.924970i \(-0.375910\pi\)
0.380041 + 0.924970i \(0.375910\pi\)
\(854\) −3.73319e6 −0.175160
\(855\) 8.45393e6 0.395497
\(856\) −5.64126e7 −2.63143
\(857\) −6.83810e6 −0.318041 −0.159021 0.987275i \(-0.550834\pi\)
−0.159021 + 0.987275i \(0.550834\pi\)
\(858\) −688325. −0.0319209
\(859\) −3.00489e7 −1.38946 −0.694729 0.719272i \(-0.744476\pi\)
−0.694729 + 0.719272i \(0.744476\pi\)
\(860\) −1.42103e7 −0.655177
\(861\) −135328. −0.00622129
\(862\) 5.28824e7 2.42406
\(863\) −2.77866e7 −1.27001 −0.635007 0.772506i \(-0.719003\pi\)
−0.635007 + 0.772506i \(0.719003\pi\)
\(864\) −106618. −0.00485899
\(865\) −2.03297e6 −0.0923828
\(866\) −7.25234e7 −3.28612
\(867\) −125227. −0.00565782
\(868\) 1.52938e7 0.688994
\(869\) 1.35981e7 0.610840
\(870\) 5726.14 0.000256486 0
\(871\) 3.77972e7 1.68816
\(872\) −3.14046e7 −1.39863
\(873\) −3.57747e7 −1.58869
\(874\) −1.82572e7 −0.808455
\(875\) −765625. −0.0338062
\(876\) −202457. −0.00891399
\(877\) 7.87461e6 0.345724 0.172862 0.984946i \(-0.444698\pi\)
0.172862 + 0.984946i \(0.444698\pi\)
\(878\) −1.21308e7 −0.531072
\(879\) 75577.7 0.00329930
\(880\) 2.14050e7 0.931768
\(881\) −1.03666e7 −0.449983 −0.224991 0.974361i \(-0.572235\pi\)
−0.224991 + 0.974361i \(0.572235\pi\)
\(882\) −5.78984e6 −0.250608
\(883\) 2.77598e7 1.19816 0.599080 0.800689i \(-0.295533\pi\)
0.599080 + 0.800689i \(0.295533\pi\)
\(884\) 3.55523e7 1.53016
\(885\) 128475. 0.00551392
\(886\) −4.66312e7 −1.99569
\(887\) 2.05935e7 0.878863 0.439432 0.898276i \(-0.355180\pi\)
0.439432 + 0.898276i \(0.355180\pi\)
\(888\) 607200. 0.0258404
\(889\) 5.15600e6 0.218805
\(890\) −9.08949e6 −0.384649
\(891\) 3.98184e7 1.68031
\(892\) 4.94715e7 2.08182
\(893\) −1.91789e7 −0.804813
\(894\) 616304. 0.0257900
\(895\) −1.82152e7 −0.760110
\(896\) 1.43965e7 0.599084
\(897\) −135931. −0.00564074
\(898\) 4.71579e7 1.95148
\(899\) −811995. −0.0335084
\(900\) −1.00977e7 −0.415544
\(901\) −4.66705e6 −0.191527
\(902\) 1.38561e8 5.67054
\(903\) 55887.0 0.00228082
\(904\) −5.05043e7 −2.05545
\(905\) 1.81794e7 0.737831
\(906\) −207545. −0.00840023
\(907\) −1.66276e7 −0.671136 −0.335568 0.942016i \(-0.608928\pi\)
−0.335568 + 0.942016i \(0.608928\pi\)
\(908\) −2.11672e7 −0.852020
\(909\) 2.59132e7 1.04019
\(910\) 9.37011e6 0.375095
\(911\) 2.47318e7 0.987323 0.493662 0.869654i \(-0.335658\pi\)
0.493662 + 0.869654i \(0.335658\pi\)
\(912\) −235706. −0.00938389
\(913\) −7.30069e7 −2.89859
\(914\) −5.14038e7 −2.03531
\(915\) 25606.0 0.00101109
\(916\) 9.55853e7 3.76402
\(917\) −1.60287e7 −0.629471
\(918\) 446406. 0.0174833
\(919\) −2.32360e7 −0.907555 −0.453777 0.891115i \(-0.649924\pi\)
−0.453777 + 0.891115i \(0.649924\pi\)
\(920\) 1.13122e7 0.440633
\(921\) −216468. −0.00840900
\(922\) 6.80365e6 0.263581
\(923\) −1.75402e7 −0.677688
\(924\) −293190. −0.0112972
\(925\) 8.30954e6 0.319317
\(926\) 3.41239e7 1.30777
\(927\) 2.12512e7 0.812239
\(928\) 284443. 0.0108424
\(929\) 1.23886e7 0.470960 0.235480 0.971879i \(-0.424334\pi\)
0.235480 + 0.971879i \(0.424334\pi\)
\(930\) −155385. −0.00589116
\(931\) −3.34146e6 −0.126346
\(932\) −1.27793e7 −0.481912
\(933\) −61214.2 −0.00230223
\(934\) 4.94019e7 1.85301
\(935\) −1.16976e7 −0.437591
\(936\) 6.41062e7 2.39172
\(937\) −1.87333e7 −0.697050 −0.348525 0.937299i \(-0.613317\pi\)
−0.348525 + 0.937299i \(0.613317\pi\)
\(938\) 2.38478e7 0.884994
\(939\) −94221.2 −0.00348726
\(940\) 2.29080e7 0.845607
\(941\) −1.50137e6 −0.0552730 −0.0276365 0.999618i \(-0.508798\pi\)
−0.0276365 + 0.999618i \(0.508798\pi\)
\(942\) −523667. −0.0192277
\(943\) 2.73630e7 1.00204
\(944\) 4.88954e7 1.78582
\(945\) 79428.2 0.00289331
\(946\) −5.72220e7 −2.07891
\(947\) −3.39097e7 −1.22871 −0.614354 0.789030i \(-0.710583\pi\)
−0.614354 + 0.789030i \(0.710583\pi\)
\(948\) 178853. 0.00646363
\(949\) 1.75895e7 0.633999
\(950\) −8.63225e6 −0.310324
\(951\) −149959. −0.00537678
\(952\) 1.16360e7 0.416113
\(953\) −3.76399e7 −1.34251 −0.671253 0.741228i \(-0.734244\pi\)
−0.671253 + 0.741228i \(0.734244\pi\)
\(954\) −1.62228e7 −0.577106
\(955\) −3.61816e6 −0.128375
\(956\) −5.20951e7 −1.84354
\(957\) 15566.4 0.000549425 0
\(958\) −4.61746e7 −1.62551
\(959\) −5.23443e6 −0.183790
\(960\) −81061.4 −0.00283881
\(961\) −6.59482e6 −0.230353
\(962\) −1.01696e8 −3.54297
\(963\) 4.00437e7 1.39145
\(964\) −5.54111e7 −1.92046
\(965\) 3.89268e6 0.134564
\(966\) −85763.9 −0.00295707
\(967\) −2.61787e6 −0.0900291 −0.0450145 0.998986i \(-0.514333\pi\)
−0.0450145 + 0.998986i \(0.514333\pi\)
\(968\) 1.00593e8 3.45047
\(969\) 128811. 0.00440701
\(970\) 3.65293e7 1.24656
\(971\) −2.74511e7 −0.934353 −0.467177 0.884164i \(-0.654729\pi\)
−0.467177 + 0.884164i \(0.654729\pi\)
\(972\) 1.57137e6 0.0533473
\(973\) −4.41701e6 −0.149571
\(974\) −3.52578e7 −1.19085
\(975\) −64269.8 −0.00216519
\(976\) 9.74521e6 0.327466
\(977\) −8.94121e6 −0.299681 −0.149841 0.988710i \(-0.547876\pi\)
−0.149841 + 0.988710i \(0.547876\pi\)
\(978\) 479568. 0.0160326
\(979\) −2.47096e7 −0.823966
\(980\) 3.99117e6 0.132750
\(981\) 2.22921e7 0.739568
\(982\) −7.27799e7 −2.40842
\(983\) 5.16638e7 1.70531 0.852653 0.522478i \(-0.174992\pi\)
0.852653 + 0.522478i \(0.174992\pi\)
\(984\) 945386. 0.0311259
\(985\) −1.19102e7 −0.391137
\(986\) −1.19095e6 −0.0390123
\(987\) −90093.6 −0.00294375
\(988\) 7.13216e7 2.32449
\(989\) −1.13002e7 −0.367363
\(990\) −4.06613e7 −1.31854
\(991\) 5.83498e7 1.88736 0.943682 0.330855i \(-0.107337\pi\)
0.943682 + 0.330855i \(0.107337\pi\)
\(992\) −7.71865e6 −0.249036
\(993\) 380972. 0.0122608
\(994\) −1.10668e7 −0.355268
\(995\) −4.06112e6 −0.130043
\(996\) −960250. −0.0306716
\(997\) 3.90170e6 0.124313 0.0621565 0.998066i \(-0.480202\pi\)
0.0621565 + 0.998066i \(0.480202\pi\)
\(998\) −6.48971e7 −2.06252
\(999\) −862056. −0.0273289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.6.a.d.1.4 4
3.2 odd 2 315.6.a.l.1.1 4
4.3 odd 2 560.6.a.v.1.3 4
5.2 odd 4 175.6.b.f.99.8 8
5.3 odd 4 175.6.b.f.99.1 8
5.4 even 2 175.6.a.f.1.1 4
7.6 odd 2 245.6.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.d.1.4 4 1.1 even 1 trivial
175.6.a.f.1.1 4 5.4 even 2
175.6.b.f.99.1 8 5.3 odd 4
175.6.b.f.99.8 8 5.2 odd 4
245.6.a.e.1.4 4 7.6 odd 2
315.6.a.l.1.1 4 3.2 odd 2
560.6.a.v.1.3 4 4.3 odd 2