Properties

Label 35.6.a.d.1.3
Level $35$
Weight $6$
Character 35.1
Self dual yes
Analytic conductor $5.613$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 82x^{2} + 58x + 1168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.86448\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.86448 q^{2} +26.2268 q^{3} +2.39209 q^{4} +25.0000 q^{5} +153.807 q^{6} -49.0000 q^{7} -173.635 q^{8} +444.847 q^{9} +146.612 q^{10} -676.537 q^{11} +62.7370 q^{12} +571.689 q^{13} -287.359 q^{14} +655.671 q^{15} -1094.82 q^{16} +1903.37 q^{17} +2608.80 q^{18} -1367.34 q^{19} +59.8022 q^{20} -1285.12 q^{21} -3967.54 q^{22} -1746.33 q^{23} -4553.89 q^{24} +625.000 q^{25} +3352.65 q^{26} +5293.81 q^{27} -117.212 q^{28} -273.868 q^{29} +3845.17 q^{30} -7565.95 q^{31} -864.258 q^{32} -17743.4 q^{33} +11162.3 q^{34} -1225.00 q^{35} +1064.11 q^{36} +7769.34 q^{37} -8018.71 q^{38} +14993.6 q^{39} -4340.87 q^{40} -783.889 q^{41} -7536.53 q^{42} +7996.03 q^{43} -1618.34 q^{44} +11121.2 q^{45} -10241.3 q^{46} +24154.4 q^{47} -28713.8 q^{48} +2401.00 q^{49} +3665.30 q^{50} +49919.4 q^{51} +1367.53 q^{52} +7980.61 q^{53} +31045.4 q^{54} -16913.4 q^{55} +8508.11 q^{56} -35860.9 q^{57} -1606.09 q^{58} +10820.1 q^{59} +1568.42 q^{60} +5839.92 q^{61} -44370.3 q^{62} -21797.5 q^{63} +29966.0 q^{64} +14292.2 q^{65} -104056. q^{66} +12849.4 q^{67} +4553.03 q^{68} -45800.8 q^{69} -7183.98 q^{70} -70670.5 q^{71} -77241.0 q^{72} -4283.01 q^{73} +45563.1 q^{74} +16391.8 q^{75} -3270.79 q^{76} +33150.3 q^{77} +87929.5 q^{78} +54126.1 q^{79} -27370.6 q^{80} +30742.1 q^{81} -4597.10 q^{82} -24745.8 q^{83} -3074.11 q^{84} +47584.2 q^{85} +46892.5 q^{86} -7182.68 q^{87} +117470. q^{88} +50597.7 q^{89} +65219.9 q^{90} -28012.7 q^{91} -4177.38 q^{92} -198431. q^{93} +141653. q^{94} -34183.4 q^{95} -22666.7 q^{96} -44803.8 q^{97} +14080.6 q^{98} -300956. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{2} + 14 q^{3} + 49 q^{4} + 100 q^{5} + 136 q^{6} - 196 q^{7} + 489 q^{8} + 774 q^{9} + 175 q^{10} + 770 q^{11} + 840 q^{12} + 58 q^{13} - 343 q^{14} + 350 q^{15} - 615 q^{16} + 2006 q^{17} - 1409 q^{18}+ \cdots - 420668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.86448 1.03670 0.518351 0.855168i \(-0.326546\pi\)
0.518351 + 0.855168i \(0.326546\pi\)
\(3\) 26.2268 1.68245 0.841226 0.540683i \(-0.181834\pi\)
0.841226 + 0.540683i \(0.181834\pi\)
\(4\) 2.39209 0.0747528
\(5\) 25.0000 0.447214
\(6\) 153.807 1.74420
\(7\) −49.0000 −0.377964
\(8\) −173.635 −0.959206
\(9\) 444.847 1.83065
\(10\) 146.612 0.463628
\(11\) −676.537 −1.68581 −0.842907 0.538059i \(-0.819158\pi\)
−0.842907 + 0.538059i \(0.819158\pi\)
\(12\) 62.7370 0.125768
\(13\) 571.689 0.938212 0.469106 0.883142i \(-0.344576\pi\)
0.469106 + 0.883142i \(0.344576\pi\)
\(14\) −287.359 −0.391837
\(15\) 655.671 0.752416
\(16\) −1094.82 −1.06916
\(17\) 1903.37 1.59735 0.798676 0.601761i \(-0.205534\pi\)
0.798676 + 0.601761i \(0.205534\pi\)
\(18\) 2608.80 1.89784
\(19\) −1367.34 −0.868943 −0.434472 0.900685i \(-0.643065\pi\)
−0.434472 + 0.900685i \(0.643065\pi\)
\(20\) 59.8022 0.0334305
\(21\) −1285.12 −0.635907
\(22\) −3967.54 −1.74769
\(23\) −1746.33 −0.688346 −0.344173 0.938906i \(-0.611841\pi\)
−0.344173 + 0.938906i \(0.611841\pi\)
\(24\) −4553.89 −1.61382
\(25\) 625.000 0.200000
\(26\) 3352.65 0.972647
\(27\) 5293.81 1.39752
\(28\) −117.212 −0.0282539
\(29\) −273.868 −0.0604708 −0.0302354 0.999543i \(-0.509626\pi\)
−0.0302354 + 0.999543i \(0.509626\pi\)
\(30\) 3845.17 0.780031
\(31\) −7565.95 −1.41403 −0.707016 0.707198i \(-0.749959\pi\)
−0.707016 + 0.707198i \(0.749959\pi\)
\(32\) −864.258 −0.149200
\(33\) −17743.4 −2.83630
\(34\) 11162.3 1.65598
\(35\) −1225.00 −0.169031
\(36\) 1064.11 0.136846
\(37\) 7769.34 0.932996 0.466498 0.884522i \(-0.345515\pi\)
0.466498 + 0.884522i \(0.345515\pi\)
\(38\) −8018.71 −0.900836
\(39\) 14993.6 1.57850
\(40\) −4340.87 −0.428970
\(41\) −783.889 −0.0728274 −0.0364137 0.999337i \(-0.511593\pi\)
−0.0364137 + 0.999337i \(0.511593\pi\)
\(42\) −7536.53 −0.659247
\(43\) 7996.03 0.659483 0.329741 0.944071i \(-0.393038\pi\)
0.329741 + 0.944071i \(0.393038\pi\)
\(44\) −1618.34 −0.126019
\(45\) 11121.2 0.818690
\(46\) −10241.3 −0.713611
\(47\) 24154.4 1.59497 0.797483 0.603341i \(-0.206164\pi\)
0.797483 + 0.603341i \(0.206164\pi\)
\(48\) −28713.8 −1.79882
\(49\) 2401.00 0.142857
\(50\) 3665.30 0.207341
\(51\) 49919.4 2.68747
\(52\) 1367.53 0.0701340
\(53\) 7980.61 0.390253 0.195127 0.980778i \(-0.437488\pi\)
0.195127 + 0.980778i \(0.437488\pi\)
\(54\) 31045.4 1.44882
\(55\) −16913.4 −0.753919
\(56\) 8508.11 0.362546
\(57\) −35860.9 −1.46196
\(58\) −1606.09 −0.0626902
\(59\) 10820.1 0.404672 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(60\) 1568.42 0.0562452
\(61\) 5839.92 0.200947 0.100474 0.994940i \(-0.467964\pi\)
0.100474 + 0.994940i \(0.467964\pi\)
\(62\) −44370.3 −1.46593
\(63\) −21797.5 −0.691919
\(64\) 29966.0 0.914489
\(65\) 14292.2 0.419581
\(66\) −104056. −2.94040
\(67\) 12849.4 0.349701 0.174851 0.984595i \(-0.444056\pi\)
0.174851 + 0.984595i \(0.444056\pi\)
\(68\) 4553.03 0.119407
\(69\) −45800.8 −1.15811
\(70\) −7183.98 −0.175235
\(71\) −70670.5 −1.66377 −0.831883 0.554951i \(-0.812737\pi\)
−0.831883 + 0.554951i \(0.812737\pi\)
\(72\) −77241.0 −1.75597
\(73\) −4283.01 −0.0940679 −0.0470340 0.998893i \(-0.514977\pi\)
−0.0470340 + 0.998893i \(0.514977\pi\)
\(74\) 45563.1 0.967240
\(75\) 16391.8 0.336491
\(76\) −3270.79 −0.0649560
\(77\) 33150.3 0.637178
\(78\) 87929.5 1.63643
\(79\) 54126.1 0.975752 0.487876 0.872913i \(-0.337772\pi\)
0.487876 + 0.872913i \(0.337772\pi\)
\(80\) −27370.6 −0.478145
\(81\) 30742.1 0.520621
\(82\) −4597.10 −0.0755004
\(83\) −24745.8 −0.394281 −0.197141 0.980375i \(-0.563166\pi\)
−0.197141 + 0.980375i \(0.563166\pi\)
\(84\) −3074.11 −0.0475359
\(85\) 47584.2 0.714358
\(86\) 46892.5 0.683687
\(87\) −7182.68 −0.101739
\(88\) 117470. 1.61704
\(89\) 50597.7 0.677105 0.338552 0.940948i \(-0.390063\pi\)
0.338552 + 0.940948i \(0.390063\pi\)
\(90\) 65219.9 0.848738
\(91\) −28012.7 −0.354611
\(92\) −4177.38 −0.0514558
\(93\) −198431. −2.37904
\(94\) 141653. 1.65351
\(95\) −34183.4 −0.388603
\(96\) −22666.7 −0.251022
\(97\) −44803.8 −0.483488 −0.241744 0.970340i \(-0.577719\pi\)
−0.241744 + 0.970340i \(0.577719\pi\)
\(98\) 14080.6 0.148100
\(99\) −300956. −3.08613
\(100\) 1495.06 0.0149506
\(101\) 56542.4 0.551532 0.275766 0.961225i \(-0.411068\pi\)
0.275766 + 0.961225i \(0.411068\pi\)
\(102\) 292751. 2.78611
\(103\) 112268. 1.04270 0.521352 0.853342i \(-0.325428\pi\)
0.521352 + 0.853342i \(0.325428\pi\)
\(104\) −99265.1 −0.899939
\(105\) −32127.9 −0.284386
\(106\) 46802.1 0.404577
\(107\) −95494.2 −0.806338 −0.403169 0.915125i \(-0.632091\pi\)
−0.403169 + 0.915125i \(0.632091\pi\)
\(108\) 12663.3 0.104469
\(109\) −61831.4 −0.498475 −0.249237 0.968442i \(-0.580180\pi\)
−0.249237 + 0.968442i \(0.580180\pi\)
\(110\) −99188.4 −0.781590
\(111\) 203765. 1.56972
\(112\) 53646.4 0.404106
\(113\) −191050. −1.40751 −0.703754 0.710443i \(-0.748494\pi\)
−0.703754 + 0.710443i \(0.748494\pi\)
\(114\) −210306. −1.51561
\(115\) −43658.3 −0.307838
\(116\) −655.116 −0.00452036
\(117\) 254314. 1.71754
\(118\) 63454.5 0.419525
\(119\) −93265.1 −0.603742
\(120\) −113847. −0.721722
\(121\) 296651. 1.84197
\(122\) 34248.1 0.208323
\(123\) −20558.9 −0.122529
\(124\) −18098.4 −0.105703
\(125\) 15625.0 0.0894427
\(126\) −127831. −0.717315
\(127\) 122110. 0.671802 0.335901 0.941897i \(-0.390959\pi\)
0.335901 + 0.941897i \(0.390959\pi\)
\(128\) 203391. 1.09725
\(129\) 209711. 1.10955
\(130\) 83816.4 0.434981
\(131\) −384005. −1.95505 −0.977527 0.210812i \(-0.932389\pi\)
−0.977527 + 0.210812i \(0.932389\pi\)
\(132\) −42443.9 −0.212022
\(133\) 66999.5 0.328430
\(134\) 75355.2 0.362536
\(135\) 132345. 0.624992
\(136\) −330491. −1.53219
\(137\) −361164. −1.64400 −0.822001 0.569485i \(-0.807142\pi\)
−0.822001 + 0.569485i \(0.807142\pi\)
\(138\) −268597. −1.20062
\(139\) −297689. −1.30685 −0.653425 0.756991i \(-0.726668\pi\)
−0.653425 + 0.756991i \(0.726668\pi\)
\(140\) −2930.31 −0.0126355
\(141\) 633493. 2.68345
\(142\) −414445. −1.72483
\(143\) −386769. −1.58165
\(144\) −487030. −1.95726
\(145\) −6846.69 −0.0270434
\(146\) −25117.6 −0.0975205
\(147\) 62970.6 0.240350
\(148\) 18585.0 0.0697441
\(149\) 93592.3 0.345362 0.172681 0.984978i \(-0.444757\pi\)
0.172681 + 0.984978i \(0.444757\pi\)
\(150\) 96129.2 0.348841
\(151\) −95862.0 −0.342140 −0.171070 0.985259i \(-0.554722\pi\)
−0.171070 + 0.985259i \(0.554722\pi\)
\(152\) 237417. 0.833496
\(153\) 846708. 2.92419
\(154\) 194409. 0.660564
\(155\) −189149. −0.632374
\(156\) 35866.0 0.117997
\(157\) 232416. 0.752517 0.376259 0.926515i \(-0.377210\pi\)
0.376259 + 0.926515i \(0.377210\pi\)
\(158\) 317421. 1.01156
\(159\) 209306. 0.656583
\(160\) −21606.4 −0.0667242
\(161\) 85570.2 0.260170
\(162\) 180287. 0.539729
\(163\) 343004. 1.01118 0.505592 0.862772i \(-0.331274\pi\)
0.505592 + 0.862772i \(0.331274\pi\)
\(164\) −1875.13 −0.00544405
\(165\) −443586. −1.26843
\(166\) −145121. −0.408752
\(167\) −588919. −1.63405 −0.817023 0.576605i \(-0.804377\pi\)
−0.817023 + 0.576605i \(0.804377\pi\)
\(168\) 223141. 0.609966
\(169\) −44465.1 −0.119757
\(170\) 279057. 0.740577
\(171\) −608256. −1.59073
\(172\) 19127.2 0.0492982
\(173\) 236377. 0.600468 0.300234 0.953866i \(-0.402935\pi\)
0.300234 + 0.953866i \(0.402935\pi\)
\(174\) −42122.7 −0.105473
\(175\) −30625.0 −0.0755929
\(176\) 740689. 1.80241
\(177\) 283778. 0.680842
\(178\) 296729. 0.701957
\(179\) 316194. 0.737600 0.368800 0.929509i \(-0.379769\pi\)
0.368800 + 0.929509i \(0.379769\pi\)
\(180\) 26602.9 0.0611994
\(181\) −54339.9 −0.123288 −0.0616442 0.998098i \(-0.519634\pi\)
−0.0616442 + 0.998098i \(0.519634\pi\)
\(182\) −164280. −0.367626
\(183\) 153163. 0.338084
\(184\) 303224. 0.660266
\(185\) 194234. 0.417249
\(186\) −1.16369e6 −2.46636
\(187\) −1.28770e6 −2.69284
\(188\) 57779.5 0.119228
\(189\) −259397. −0.528214
\(190\) −200468. −0.402866
\(191\) 884422. 1.75419 0.877094 0.480318i \(-0.159479\pi\)
0.877094 + 0.480318i \(0.159479\pi\)
\(192\) 785913. 1.53858
\(193\) −123842. −0.239318 −0.119659 0.992815i \(-0.538180\pi\)
−0.119659 + 0.992815i \(0.538180\pi\)
\(194\) −262751. −0.501233
\(195\) 374840. 0.705926
\(196\) 5743.41 0.0106790
\(197\) −437627. −0.803412 −0.401706 0.915769i \(-0.631583\pi\)
−0.401706 + 0.915769i \(0.631583\pi\)
\(198\) −1.76495e6 −3.19940
\(199\) 915515. 1.63883 0.819413 0.573204i \(-0.194300\pi\)
0.819413 + 0.573204i \(0.194300\pi\)
\(200\) −108522. −0.191841
\(201\) 337000. 0.588356
\(202\) 331592. 0.571775
\(203\) 13419.5 0.0228558
\(204\) 119412. 0.200896
\(205\) −19597.2 −0.0325694
\(206\) 658390. 1.08097
\(207\) −776851. −1.26012
\(208\) −625899. −1.00310
\(209\) 925054. 1.46488
\(210\) −188413. −0.294824
\(211\) −700562. −1.08328 −0.541640 0.840611i \(-0.682196\pi\)
−0.541640 + 0.840611i \(0.682196\pi\)
\(212\) 19090.3 0.0291725
\(213\) −1.85346e6 −2.79921
\(214\) −560023. −0.835933
\(215\) 199901. 0.294930
\(216\) −919191. −1.34051
\(217\) 370732. 0.534454
\(218\) −362609. −0.516770
\(219\) −112330. −0.158265
\(220\) −40458.4 −0.0563576
\(221\) 1.08813e6 1.49866
\(222\) 1.19498e6 1.62734
\(223\) 769708. 1.03649 0.518244 0.855233i \(-0.326586\pi\)
0.518244 + 0.855233i \(0.326586\pi\)
\(224\) 42348.6 0.0563922
\(225\) 278029. 0.366129
\(226\) −1.12041e6 −1.45917
\(227\) −254422. −0.327710 −0.163855 0.986484i \(-0.552393\pi\)
−0.163855 + 0.986484i \(0.552393\pi\)
\(228\) −85782.5 −0.109285
\(229\) −392135. −0.494136 −0.247068 0.968998i \(-0.579467\pi\)
−0.247068 + 0.968998i \(0.579467\pi\)
\(230\) −256033. −0.319136
\(231\) 869428. 1.07202
\(232\) 47553.0 0.0580040
\(233\) −1.52018e6 −1.83444 −0.917222 0.398377i \(-0.869574\pi\)
−0.917222 + 0.398377i \(0.869574\pi\)
\(234\) 1.49142e6 1.78057
\(235\) 603860. 0.713291
\(236\) 25882.8 0.0302504
\(237\) 1.41956e6 1.64166
\(238\) −546951. −0.625902
\(239\) −472223. −0.534752 −0.267376 0.963592i \(-0.586157\pi\)
−0.267376 + 0.963592i \(0.586157\pi\)
\(240\) −717845. −0.804456
\(241\) −357240. −0.396202 −0.198101 0.980182i \(-0.563477\pi\)
−0.198101 + 0.980182i \(0.563477\pi\)
\(242\) 1.73970e6 1.90958
\(243\) −480128. −0.521604
\(244\) 13969.6 0.0150214
\(245\) 60025.0 0.0638877
\(246\) −120567. −0.127026
\(247\) −781691. −0.815253
\(248\) 1.31371e6 1.35635
\(249\) −649004. −0.663359
\(250\) 91632.5 0.0927255
\(251\) −47641.6 −0.0477312 −0.0238656 0.999715i \(-0.507597\pi\)
−0.0238656 + 0.999715i \(0.507597\pi\)
\(252\) −52141.6 −0.0517229
\(253\) 1.18146e6 1.16042
\(254\) 716110. 0.696459
\(255\) 1.24798e6 1.20187
\(256\) 233871. 0.223037
\(257\) −40866.7 −0.0385956 −0.0192978 0.999814i \(-0.506143\pi\)
−0.0192978 + 0.999814i \(0.506143\pi\)
\(258\) 1.22984e6 1.15027
\(259\) −380698. −0.352639
\(260\) 34188.3 0.0313649
\(261\) −121829. −0.110701
\(262\) −2.25199e6 −2.02681
\(263\) 1.66805e6 1.48703 0.743516 0.668718i \(-0.233157\pi\)
0.743516 + 0.668718i \(0.233157\pi\)
\(264\) 3.08088e6 2.72060
\(265\) 199515. 0.174527
\(266\) 392917. 0.340484
\(267\) 1.32702e6 1.13920
\(268\) 30737.0 0.0261412
\(269\) −1.10986e6 −0.935163 −0.467581 0.883950i \(-0.654875\pi\)
−0.467581 + 0.883950i \(0.654875\pi\)
\(270\) 776136. 0.647931
\(271\) 63944.2 0.0528905 0.0264453 0.999650i \(-0.491581\pi\)
0.0264453 + 0.999650i \(0.491581\pi\)
\(272\) −2.08386e6 −1.70783
\(273\) −734686. −0.596616
\(274\) −2.11804e6 −1.70434
\(275\) −422836. −0.337163
\(276\) −109560. −0.0865720
\(277\) −1.03013e6 −0.806667 −0.403334 0.915053i \(-0.632149\pi\)
−0.403334 + 0.915053i \(0.632149\pi\)
\(278\) −1.74579e6 −1.35482
\(279\) −3.36569e6 −2.58859
\(280\) 212703. 0.162135
\(281\) −849393. −0.641716 −0.320858 0.947127i \(-0.603971\pi\)
−0.320858 + 0.947127i \(0.603971\pi\)
\(282\) 3.71511e6 2.78195
\(283\) 1.36010e6 1.00949 0.504747 0.863268i \(-0.331586\pi\)
0.504747 + 0.863268i \(0.331586\pi\)
\(284\) −169050. −0.124371
\(285\) −896523. −0.653807
\(286\) −2.26820e6 −1.63970
\(287\) 38410.5 0.0275262
\(288\) −384463. −0.273132
\(289\) 2.20296e6 1.55153
\(290\) −40152.3 −0.0280359
\(291\) −1.17506e6 −0.813446
\(292\) −10245.3 −0.00703184
\(293\) −1.07839e6 −0.733851 −0.366925 0.930250i \(-0.619590\pi\)
−0.366925 + 0.930250i \(0.619590\pi\)
\(294\) 369290. 0.249172
\(295\) 270504. 0.180975
\(296\) −1.34903e6 −0.894936
\(297\) −3.58146e6 −2.35597
\(298\) 548870. 0.358038
\(299\) −998358. −0.645815
\(300\) 39210.6 0.0251536
\(301\) −391806. −0.249261
\(302\) −562180. −0.354698
\(303\) 1.48293e6 0.927927
\(304\) 1.49699e6 0.929044
\(305\) 145998. 0.0898663
\(306\) 4.96550e6 3.03151
\(307\) 1.17194e6 0.709676 0.354838 0.934928i \(-0.384536\pi\)
0.354838 + 0.934928i \(0.384536\pi\)
\(308\) 79298.5 0.0476309
\(309\) 2.94442e6 1.75430
\(310\) −1.10926e6 −0.655584
\(311\) −798202. −0.467963 −0.233982 0.972241i \(-0.575176\pi\)
−0.233982 + 0.972241i \(0.575176\pi\)
\(312\) −2.60341e6 −1.51411
\(313\) −161807. −0.0933546 −0.0466773 0.998910i \(-0.514863\pi\)
−0.0466773 + 0.998910i \(0.514863\pi\)
\(314\) 1.36300e6 0.780137
\(315\) −544938. −0.309436
\(316\) 129475. 0.0729402
\(317\) 2.61024e6 1.45892 0.729461 0.684022i \(-0.239771\pi\)
0.729461 + 0.684022i \(0.239771\pi\)
\(318\) 1.22747e6 0.680681
\(319\) 185282. 0.101943
\(320\) 749149. 0.408972
\(321\) −2.50451e6 −1.35663
\(322\) 501825. 0.269719
\(323\) −2.60255e6 −1.38801
\(324\) 73538.0 0.0389179
\(325\) 357305. 0.187642
\(326\) 2.01154e6 1.04830
\(327\) −1.62164e6 −0.838660
\(328\) 136110. 0.0698565
\(329\) −1.18357e6 −0.602841
\(330\) −2.60140e6 −1.31499
\(331\) −182935. −0.0917754 −0.0458877 0.998947i \(-0.514612\pi\)
−0.0458877 + 0.998947i \(0.514612\pi\)
\(332\) −59194.1 −0.0294736
\(333\) 3.45617e6 1.70799
\(334\) −3.45370e6 −1.69402
\(335\) 321236. 0.156391
\(336\) 1.40698e6 0.679890
\(337\) 2.88308e6 1.38287 0.691436 0.722438i \(-0.256978\pi\)
0.691436 + 0.722438i \(0.256978\pi\)
\(338\) −260765. −0.124153
\(339\) −5.01064e6 −2.36807
\(340\) 113826. 0.0534002
\(341\) 5.11865e6 2.38380
\(342\) −3.56710e6 −1.64911
\(343\) −117649. −0.0539949
\(344\) −1.38839e6 −0.632580
\(345\) −1.14502e6 −0.517923
\(346\) 1.38623e6 0.622507
\(347\) −217786. −0.0970970 −0.0485485 0.998821i \(-0.515460\pi\)
−0.0485485 + 0.998821i \(0.515460\pi\)
\(348\) −17181.6 −0.00760529
\(349\) −486940. −0.213999 −0.106999 0.994259i \(-0.534124\pi\)
−0.106999 + 0.994259i \(0.534124\pi\)
\(350\) −179600. −0.0783674
\(351\) 3.02641e6 1.31117
\(352\) 584702. 0.251523
\(353\) −3.86915e6 −1.65264 −0.826322 0.563198i \(-0.809571\pi\)
−0.826322 + 0.563198i \(0.809571\pi\)
\(354\) 1.66421e6 0.705830
\(355\) −1.76676e6 −0.744059
\(356\) 121034. 0.0506155
\(357\) −2.44605e6 −1.01577
\(358\) 1.85431e6 0.764672
\(359\) 1.56454e6 0.640693 0.320346 0.947300i \(-0.396201\pi\)
0.320346 + 0.947300i \(0.396201\pi\)
\(360\) −1.93102e6 −0.785293
\(361\) −606489. −0.244937
\(362\) −318675. −0.127813
\(363\) 7.78023e6 3.09903
\(364\) −67009.0 −0.0265082
\(365\) −107075. −0.0420685
\(366\) 898218. 0.350493
\(367\) 3.59726e6 1.39414 0.697070 0.717003i \(-0.254487\pi\)
0.697070 + 0.717003i \(0.254487\pi\)
\(368\) 1.91193e6 0.735956
\(369\) −348711. −0.133321
\(370\) 1.13908e6 0.432563
\(371\) −391050. −0.147502
\(372\) −474665. −0.177840
\(373\) 235126. 0.0875042 0.0437521 0.999042i \(-0.486069\pi\)
0.0437521 + 0.999042i \(0.486069\pi\)
\(374\) −7.55169e6 −2.79168
\(375\) 409794. 0.150483
\(376\) −4.19405e6 −1.52990
\(377\) −156567. −0.0567344
\(378\) −1.52123e6 −0.547601
\(379\) 5.00375e6 1.78936 0.894680 0.446708i \(-0.147404\pi\)
0.894680 + 0.446708i \(0.147404\pi\)
\(380\) −81769.8 −0.0290492
\(381\) 3.20255e6 1.13027
\(382\) 5.18667e6 1.81857
\(383\) 95576.7 0.0332931 0.0166466 0.999861i \(-0.494701\pi\)
0.0166466 + 0.999861i \(0.494701\pi\)
\(384\) 5.33430e6 1.84608
\(385\) 828758. 0.284955
\(386\) −726270. −0.248102
\(387\) 3.55701e6 1.20728
\(388\) −107175. −0.0361421
\(389\) −202953. −0.0680018 −0.0340009 0.999422i \(-0.510825\pi\)
−0.0340009 + 0.999422i \(0.510825\pi\)
\(390\) 2.19824e6 0.731835
\(391\) −3.32391e6 −1.09953
\(392\) −416897. −0.137029
\(393\) −1.00712e7 −3.28928
\(394\) −2.56645e6 −0.832899
\(395\) 1.35315e6 0.436369
\(396\) −719913. −0.230697
\(397\) 5.10471e6 1.62553 0.812765 0.582592i \(-0.197961\pi\)
0.812765 + 0.582592i \(0.197961\pi\)
\(398\) 5.36902e6 1.69897
\(399\) 1.75719e6 0.552567
\(400\) −684265. −0.213833
\(401\) 3.55590e6 1.10430 0.552152 0.833744i \(-0.313807\pi\)
0.552152 + 0.833744i \(0.313807\pi\)
\(402\) 1.97633e6 0.609950
\(403\) −4.32537e6 −1.32666
\(404\) 135255. 0.0412286
\(405\) 768553. 0.232829
\(406\) 78698.4 0.0236947
\(407\) −5.25625e6 −1.57286
\(408\) −8.66774e6 −2.57784
\(409\) 4.06243e6 1.20082 0.600409 0.799693i \(-0.295005\pi\)
0.600409 + 0.799693i \(0.295005\pi\)
\(410\) −114927. −0.0337648
\(411\) −9.47218e6 −2.76596
\(412\) 268554. 0.0779451
\(413\) −530187. −0.152952
\(414\) −4.55582e6 −1.30637
\(415\) −618644. −0.176328
\(416\) −494086. −0.139981
\(417\) −7.80744e6 −2.19871
\(418\) 5.42496e6 1.51864
\(419\) −5.00441e6 −1.39257 −0.696287 0.717764i \(-0.745166\pi\)
−0.696287 + 0.717764i \(0.745166\pi\)
\(420\) −76852.8 −0.0212587
\(421\) 2.18001e6 0.599450 0.299725 0.954026i \(-0.403105\pi\)
0.299725 + 0.954026i \(0.403105\pi\)
\(422\) −4.10843e6 −1.12304
\(423\) 1.07450e7 2.91982
\(424\) −1.38571e6 −0.374333
\(425\) 1.18961e6 0.319470
\(426\) −1.08696e7 −2.90195
\(427\) −286156. −0.0759509
\(428\) −228431. −0.0602761
\(429\) −1.01437e7 −2.66106
\(430\) 1.17231e6 0.305754
\(431\) 1.89764e6 0.492064 0.246032 0.969262i \(-0.420873\pi\)
0.246032 + 0.969262i \(0.420873\pi\)
\(432\) −5.79580e6 −1.49418
\(433\) 2.54804e6 0.653109 0.326555 0.945178i \(-0.394112\pi\)
0.326555 + 0.945178i \(0.394112\pi\)
\(434\) 2.17415e6 0.554070
\(435\) −179567. −0.0454992
\(436\) −147906. −0.0372624
\(437\) 2.38782e6 0.598134
\(438\) −658755. −0.164074
\(439\) −3.49094e6 −0.864531 −0.432266 0.901746i \(-0.642286\pi\)
−0.432266 + 0.901746i \(0.642286\pi\)
\(440\) 2.93676e6 0.723164
\(441\) 1.06808e6 0.261521
\(442\) 6.38134e6 1.55366
\(443\) 7.44707e6 1.80292 0.901459 0.432865i \(-0.142497\pi\)
0.901459 + 0.432865i \(0.142497\pi\)
\(444\) 487425. 0.117341
\(445\) 1.26494e6 0.302811
\(446\) 4.51394e6 1.07453
\(447\) 2.45463e6 0.581055
\(448\) −1.46833e6 −0.345644
\(449\) 6.53613e6 1.53005 0.765024 0.644002i \(-0.222727\pi\)
0.765024 + 0.644002i \(0.222727\pi\)
\(450\) 1.63050e6 0.379567
\(451\) 530330. 0.122773
\(452\) −457009. −0.105215
\(453\) −2.51416e6 −0.575635
\(454\) −1.49205e6 −0.339738
\(455\) −700319. −0.158587
\(456\) 6.22671e6 1.40232
\(457\) −3.97253e6 −0.889769 −0.444884 0.895588i \(-0.646755\pi\)
−0.444884 + 0.895588i \(0.646755\pi\)
\(458\) −2.29966e6 −0.512272
\(459\) 1.00761e7 2.23234
\(460\) −104435. −0.0230117
\(461\) −3.06530e6 −0.671771 −0.335885 0.941903i \(-0.609035\pi\)
−0.335885 + 0.941903i \(0.609035\pi\)
\(462\) 5.09874e6 1.11137
\(463\) −6.12862e6 −1.32865 −0.664324 0.747445i \(-0.731281\pi\)
−0.664324 + 0.747445i \(0.731281\pi\)
\(464\) 299837. 0.0646532
\(465\) −4.96077e6 −1.06394
\(466\) −8.91504e6 −1.90177
\(467\) 3.32929e6 0.706414 0.353207 0.935545i \(-0.385091\pi\)
0.353207 + 0.935545i \(0.385091\pi\)
\(468\) 608342. 0.128391
\(469\) −629623. −0.132175
\(470\) 3.54132e6 0.739470
\(471\) 6.09553e6 1.26607
\(472\) −1.87876e6 −0.388164
\(473\) −5.40961e6 −1.11177
\(474\) 8.32496e6 1.70191
\(475\) −854585. −0.173789
\(476\) −223098. −0.0451314
\(477\) 3.55015e6 0.714416
\(478\) −2.76934e6 −0.554379
\(479\) 1.66554e6 0.331678 0.165839 0.986153i \(-0.446967\pi\)
0.165839 + 0.986153i \(0.446967\pi\)
\(480\) −566669. −0.112260
\(481\) 4.44164e6 0.875349
\(482\) −2.09502e6 −0.410744
\(483\) 2.24424e6 0.437725
\(484\) 709617. 0.137693
\(485\) −1.12010e6 −0.216222
\(486\) −2.81570e6 −0.540748
\(487\) 6.07174e6 1.16009 0.580044 0.814585i \(-0.303035\pi\)
0.580044 + 0.814585i \(0.303035\pi\)
\(488\) −1.01401e6 −0.192750
\(489\) 8.99592e6 1.70127
\(490\) 352015. 0.0662325
\(491\) 3.17811e6 0.594930 0.297465 0.954733i \(-0.403859\pi\)
0.297465 + 0.954733i \(0.403859\pi\)
\(492\) −49178.8 −0.00915936
\(493\) −521271. −0.0965932
\(494\) −4.58421e6 −0.845176
\(495\) −7.52389e6 −1.38016
\(496\) 8.28339e6 1.51183
\(497\) 3.46285e6 0.628844
\(498\) −3.80607e6 −0.687706
\(499\) 6.34535e6 1.14079 0.570393 0.821372i \(-0.306791\pi\)
0.570393 + 0.821372i \(0.306791\pi\)
\(500\) 37376.4 0.00668609
\(501\) −1.54455e7 −2.74921
\(502\) −279393. −0.0494831
\(503\) −1.02132e7 −1.79988 −0.899941 0.436012i \(-0.856391\pi\)
−0.899941 + 0.436012i \(0.856391\pi\)
\(504\) 3.78481e6 0.663694
\(505\) 1.41356e6 0.246653
\(506\) 6.92863e6 1.20302
\(507\) −1.16618e6 −0.201486
\(508\) 292098. 0.0502191
\(509\) 365958. 0.0626090 0.0313045 0.999510i \(-0.490034\pi\)
0.0313045 + 0.999510i \(0.490034\pi\)
\(510\) 7.31877e6 1.24599
\(511\) 209867. 0.0355543
\(512\) −5.13698e6 −0.866031
\(513\) −7.23843e6 −1.21437
\(514\) −239662. −0.0400121
\(515\) 2.80669e6 0.466312
\(516\) 501647. 0.0829418
\(517\) −1.63413e7 −2.68882
\(518\) −2.23259e6 −0.365582
\(519\) 6.19942e6 1.01026
\(520\) −2.48163e6 −0.402465
\(521\) −4.87107e6 −0.786195 −0.393097 0.919497i \(-0.628596\pi\)
−0.393097 + 0.919497i \(0.628596\pi\)
\(522\) −714465. −0.114764
\(523\) −5.97444e6 −0.955087 −0.477544 0.878608i \(-0.658473\pi\)
−0.477544 + 0.878608i \(0.658473\pi\)
\(524\) −918574. −0.146146
\(525\) −803197. −0.127181
\(526\) 9.78226e6 1.54161
\(527\) −1.44008e7 −2.25871
\(528\) 1.94259e7 3.03248
\(529\) −3.38667e6 −0.526179
\(530\) 1.17005e6 0.180932
\(531\) 4.81331e6 0.740812
\(532\) 160269. 0.0245510
\(533\) −448140. −0.0683276
\(534\) 7.78227e6 1.18101
\(535\) −2.38735e6 −0.360606
\(536\) −2.23111e6 −0.335436
\(537\) 8.29277e6 1.24098
\(538\) −6.50874e6 −0.969486
\(539\) −1.62437e6 −0.240831
\(540\) 316582. 0.0467199
\(541\) 2.15541e6 0.316619 0.158310 0.987390i \(-0.449396\pi\)
0.158310 + 0.987390i \(0.449396\pi\)
\(542\) 374999. 0.0548318
\(543\) −1.42516e6 −0.207427
\(544\) −1.64500e6 −0.238325
\(545\) −1.54579e6 −0.222925
\(546\) −4.30855e6 −0.618514
\(547\) 3.29386e6 0.470692 0.235346 0.971912i \(-0.424378\pi\)
0.235346 + 0.971912i \(0.424378\pi\)
\(548\) −863936. −0.122894
\(549\) 2.59787e6 0.367863
\(550\) −2.47971e6 −0.349538
\(551\) 374469. 0.0525457
\(552\) 7.95261e6 1.11087
\(553\) −2.65218e6 −0.368799
\(554\) −6.04120e6 −0.836274
\(555\) 5.09413e6 0.702001
\(556\) −712099. −0.0976907
\(557\) −7.08864e6 −0.968111 −0.484055 0.875037i \(-0.660837\pi\)
−0.484055 + 0.875037i \(0.660837\pi\)
\(558\) −1.97380e7 −2.68360
\(559\) 4.57124e6 0.618735
\(560\) 1.34116e6 0.180722
\(561\) −3.37723e7 −4.53058
\(562\) −4.98124e6 −0.665269
\(563\) 5.57433e6 0.741177 0.370589 0.928797i \(-0.379156\pi\)
0.370589 + 0.928797i \(0.379156\pi\)
\(564\) 1.51537e6 0.200596
\(565\) −4.77625e6 −0.629457
\(566\) 7.97625e6 1.04654
\(567\) −1.50636e6 −0.196776
\(568\) 1.22709e7 1.59590
\(569\) −1.22641e7 −1.58801 −0.794005 0.607911i \(-0.792008\pi\)
−0.794005 + 0.607911i \(0.792008\pi\)
\(570\) −5.25764e6 −0.677803
\(571\) 2.14667e6 0.275533 0.137767 0.990465i \(-0.456008\pi\)
0.137767 + 0.990465i \(0.456008\pi\)
\(572\) −925185. −0.118233
\(573\) 2.31956e7 2.95134
\(574\) 225258. 0.0285365
\(575\) −1.09146e6 −0.137669
\(576\) 1.33303e7 1.67411
\(577\) 4.63935e6 0.580120 0.290060 0.957008i \(-0.406325\pi\)
0.290060 + 0.957008i \(0.406325\pi\)
\(578\) 1.29192e7 1.60848
\(579\) −3.24799e6 −0.402641
\(580\) −16377.9 −0.00202157
\(581\) 1.21254e6 0.149024
\(582\) −6.89113e6 −0.843301
\(583\) −5.39918e6 −0.657895
\(584\) 743680. 0.0902306
\(585\) 6.35785e6 0.768105
\(586\) −6.32421e6 −0.760785
\(587\) 3.95890e6 0.474219 0.237110 0.971483i \(-0.423800\pi\)
0.237110 + 0.971483i \(0.423800\pi\)
\(588\) 150631. 0.0179669
\(589\) 1.03452e7 1.22871
\(590\) 1.58636e6 0.187617
\(591\) −1.14776e7 −1.35170
\(592\) −8.50607e6 −0.997527
\(593\) 1.13423e7 1.32454 0.662271 0.749264i \(-0.269593\pi\)
0.662271 + 0.749264i \(0.269593\pi\)
\(594\) −2.10034e7 −2.44244
\(595\) −2.33163e6 −0.270002
\(596\) 223881. 0.0258168
\(597\) 2.40111e7 2.75725
\(598\) −5.85485e6 −0.669518
\(599\) −9.26926e6 −1.05555 −0.527774 0.849385i \(-0.676973\pi\)
−0.527774 + 0.849385i \(0.676973\pi\)
\(600\) −2.84618e6 −0.322764
\(601\) 7.97681e6 0.900831 0.450415 0.892819i \(-0.351276\pi\)
0.450415 + 0.892819i \(0.351276\pi\)
\(602\) −2.29773e6 −0.258410
\(603\) 5.71604e6 0.640179
\(604\) −229310. −0.0255759
\(605\) 7.41628e6 0.823755
\(606\) 8.69660e6 0.961984
\(607\) 1.10438e7 1.21660 0.608299 0.793708i \(-0.291852\pi\)
0.608299 + 0.793708i \(0.291852\pi\)
\(608\) 1.18173e6 0.129646
\(609\) 351951. 0.0384538
\(610\) 856201. 0.0931647
\(611\) 1.38088e7 1.49642
\(612\) 2.02540e6 0.218591
\(613\) 6.46147e6 0.694513 0.347256 0.937770i \(-0.387113\pi\)
0.347256 + 0.937770i \(0.387113\pi\)
\(614\) 6.87282e6 0.735723
\(615\) −513973. −0.0547965
\(616\) −5.75605e6 −0.611185
\(617\) −1.26159e6 −0.133415 −0.0667076 0.997773i \(-0.521249\pi\)
−0.0667076 + 0.997773i \(0.521249\pi\)
\(618\) 1.72675e7 1.81869
\(619\) −1.50526e7 −1.57901 −0.789506 0.613743i \(-0.789663\pi\)
−0.789506 + 0.613743i \(0.789663\pi\)
\(620\) −452461. −0.0472718
\(621\) −9.24475e6 −0.961980
\(622\) −4.68104e6 −0.485139
\(623\) −2.47929e6 −0.255922
\(624\) −1.64153e7 −1.68767
\(625\) 390625. 0.0400000
\(626\) −948912. −0.0967810
\(627\) 2.42612e7 2.46459
\(628\) 555959. 0.0562528
\(629\) 1.47879e7 1.49032
\(630\) −3.19578e6 −0.320793
\(631\) 2.35746e6 0.235706 0.117853 0.993031i \(-0.462399\pi\)
0.117853 + 0.993031i \(0.462399\pi\)
\(632\) −9.39819e6 −0.935947
\(633\) −1.83735e7 −1.82257
\(634\) 1.53077e7 1.51247
\(635\) 3.05274e6 0.300439
\(636\) 500679. 0.0490814
\(637\) 1.37262e6 0.134030
\(638\) 1.08658e6 0.105684
\(639\) −3.14376e7 −3.04577
\(640\) 5.08478e6 0.490707
\(641\) 3.11408e6 0.299354 0.149677 0.988735i \(-0.452177\pi\)
0.149677 + 0.988735i \(0.452177\pi\)
\(642\) −1.46876e7 −1.40642
\(643\) −5.53949e6 −0.528375 −0.264187 0.964471i \(-0.585104\pi\)
−0.264187 + 0.964471i \(0.585104\pi\)
\(644\) 204692. 0.0194485
\(645\) 5.24277e6 0.496205
\(646\) −1.52626e7 −1.43895
\(647\) −6.75129e6 −0.634054 −0.317027 0.948416i \(-0.602685\pi\)
−0.317027 + 0.948416i \(0.602685\pi\)
\(648\) −5.33791e6 −0.499383
\(649\) −7.32023e6 −0.682202
\(650\) 2.09541e6 0.194529
\(651\) 9.72312e6 0.899193
\(652\) 820497. 0.0755889
\(653\) −1.18732e6 −0.108965 −0.0544824 0.998515i \(-0.517351\pi\)
−0.0544824 + 0.998515i \(0.517351\pi\)
\(654\) −9.51009e6 −0.869441
\(655\) −9.60012e6 −0.874326
\(656\) 858221. 0.0778645
\(657\) −1.90528e6 −0.172205
\(658\) −6.94099e6 −0.624967
\(659\) −1.60043e6 −0.143556 −0.0717781 0.997421i \(-0.522867\pi\)
−0.0717781 + 0.997421i \(0.522867\pi\)
\(660\) −1.06110e6 −0.0948190
\(661\) 2.18068e6 0.194128 0.0970641 0.995278i \(-0.469055\pi\)
0.0970641 + 0.995278i \(0.469055\pi\)
\(662\) −1.07282e6 −0.0951439
\(663\) 2.85383e7 2.52142
\(664\) 4.29673e6 0.378197
\(665\) 1.67499e6 0.146878
\(666\) 2.02686e7 1.77067
\(667\) 478264. 0.0416248
\(668\) −1.40875e6 −0.122150
\(669\) 2.01870e7 1.74384
\(670\) 1.88388e6 0.162131
\(671\) −3.95092e6 −0.338760
\(672\) 1.11067e6 0.0948773
\(673\) 4.74231e6 0.403601 0.201800 0.979427i \(-0.435321\pi\)
0.201800 + 0.979427i \(0.435321\pi\)
\(674\) 1.69078e7 1.43363
\(675\) 3.30863e6 0.279505
\(676\) −106365. −0.00895221
\(677\) 1.62647e7 1.36388 0.681939 0.731409i \(-0.261137\pi\)
0.681939 + 0.731409i \(0.261137\pi\)
\(678\) −2.93848e7 −2.45498
\(679\) 2.19539e6 0.182741
\(680\) −8.26228e6 −0.685216
\(681\) −6.67268e6 −0.551356
\(682\) 3.00182e7 2.47129
\(683\) −6.37968e6 −0.523295 −0.261648 0.965163i \(-0.584266\pi\)
−0.261648 + 0.965163i \(0.584266\pi\)
\(684\) −1.45500e6 −0.118911
\(685\) −9.02909e6 −0.735220
\(686\) −689950. −0.0559767
\(687\) −1.02845e7 −0.831361
\(688\) −8.75425e6 −0.705096
\(689\) 4.56242e6 0.366140
\(690\) −6.71494e6 −0.536932
\(691\) −1.68738e6 −0.134436 −0.0672182 0.997738i \(-0.521412\pi\)
−0.0672182 + 0.997738i \(0.521412\pi\)
\(692\) 565435. 0.0448867
\(693\) 1.47468e7 1.16645
\(694\) −1.27720e6 −0.100661
\(695\) −7.44222e6 −0.584441
\(696\) 1.24716e6 0.0975889
\(697\) −1.49203e6 −0.116331
\(698\) −2.85565e6 −0.221853
\(699\) −3.98694e7 −3.08636
\(700\) −73257.8 −0.00565078
\(701\) 7.09402e6 0.545252 0.272626 0.962120i \(-0.412108\pi\)
0.272626 + 0.962120i \(0.412108\pi\)
\(702\) 1.77483e7 1.35930
\(703\) −1.06233e7 −0.810721
\(704\) −2.02731e7 −1.54166
\(705\) 1.58373e7 1.20008
\(706\) −2.26906e7 −1.71330
\(707\) −2.77058e6 −0.208460
\(708\) 678823. 0.0508948
\(709\) 1.59881e7 1.19448 0.597242 0.802061i \(-0.296263\pi\)
0.597242 + 0.802061i \(0.296263\pi\)
\(710\) −1.03611e7 −0.771368
\(711\) 2.40779e7 1.78626
\(712\) −8.78553e6 −0.649483
\(713\) 1.32127e7 0.973344
\(714\) −1.43448e7 −1.05305
\(715\) −9.66921e6 −0.707336
\(716\) 756364. 0.0551377
\(717\) −1.23849e7 −0.899695
\(718\) 9.17519e6 0.664208
\(719\) −1.71955e6 −0.124049 −0.0620244 0.998075i \(-0.519756\pi\)
−0.0620244 + 0.998075i \(0.519756\pi\)
\(720\) −1.21757e7 −0.875315
\(721\) −5.50111e6 −0.394105
\(722\) −3.55674e6 −0.253927
\(723\) −9.36927e6 −0.666592
\(724\) −129986. −0.00921616
\(725\) −171167. −0.0120942
\(726\) 4.56270e7 3.21277
\(727\) −9.77842e6 −0.686172 −0.343086 0.939304i \(-0.611472\pi\)
−0.343086 + 0.939304i \(0.611472\pi\)
\(728\) 4.86399e6 0.340145
\(729\) −2.00626e7 −1.39819
\(730\) −627940. −0.0436125
\(731\) 1.52194e7 1.05343
\(732\) 366379. 0.0252727
\(733\) 3.78427e6 0.260149 0.130074 0.991504i \(-0.458478\pi\)
0.130074 + 0.991504i \(0.458478\pi\)
\(734\) 2.10960e7 1.44531
\(735\) 1.57427e6 0.107488
\(736\) 1.50928e6 0.102701
\(737\) −8.69312e6 −0.589531
\(738\) −2.04501e6 −0.138214
\(739\) −2.79115e7 −1.88006 −0.940032 0.341085i \(-0.889205\pi\)
−0.940032 + 0.341085i \(0.889205\pi\)
\(740\) 464624. 0.0311905
\(741\) −2.05013e7 −1.37163
\(742\) −2.29330e6 −0.152916
\(743\) −1.29261e7 −0.859003 −0.429501 0.903066i \(-0.641311\pi\)
−0.429501 + 0.903066i \(0.641311\pi\)
\(744\) 3.44545e7 2.28199
\(745\) 2.33981e6 0.154450
\(746\) 1.37889e6 0.0907158
\(747\) −1.10081e7 −0.721789
\(748\) −3.08029e6 −0.201297
\(749\) 4.67921e6 0.304767
\(750\) 2.40323e6 0.156006
\(751\) −2.29989e7 −1.48801 −0.744006 0.668173i \(-0.767077\pi\)
−0.744006 + 0.668173i \(0.767077\pi\)
\(752\) −2.64448e7 −1.70528
\(753\) −1.24949e6 −0.0803055
\(754\) −918183. −0.0588168
\(755\) −2.39655e6 −0.153010
\(756\) −620501. −0.0394855
\(757\) −1.28294e7 −0.813707 −0.406853 0.913493i \(-0.633374\pi\)
−0.406853 + 0.913493i \(0.633374\pi\)
\(758\) 2.93444e7 1.85503
\(759\) 3.09859e7 1.95236
\(760\) 5.93543e6 0.372751
\(761\) −2.75191e7 −1.72256 −0.861278 0.508134i \(-0.830335\pi\)
−0.861278 + 0.508134i \(0.830335\pi\)
\(762\) 1.87813e7 1.17176
\(763\) 3.02974e6 0.188406
\(764\) 2.11562e6 0.131131
\(765\) 2.11677e7 1.30774
\(766\) 560507. 0.0345151
\(767\) 6.18576e6 0.379668
\(768\) 6.13369e6 0.375248
\(769\) 2.27228e6 0.138563 0.0692814 0.997597i \(-0.477929\pi\)
0.0692814 + 0.997597i \(0.477929\pi\)
\(770\) 4.86023e6 0.295413
\(771\) −1.07181e6 −0.0649352
\(772\) −296242. −0.0178897
\(773\) −1.49746e7 −0.901374 −0.450687 0.892682i \(-0.648821\pi\)
−0.450687 + 0.892682i \(0.648821\pi\)
\(774\) 2.08600e7 1.25159
\(775\) −4.72872e6 −0.282806
\(776\) 7.77951e6 0.463765
\(777\) −9.98450e6 −0.593299
\(778\) −1.19021e6 −0.0704977
\(779\) 1.07184e6 0.0632829
\(780\) 896650. 0.0527699
\(781\) 4.78112e7 2.80480
\(782\) −1.94930e7 −1.13989
\(783\) −1.44980e6 −0.0845094
\(784\) −2.62867e6 −0.152738
\(785\) 5.81039e6 0.336536
\(786\) −5.90625e7 −3.41001
\(787\) 1.87087e6 0.107673 0.0538365 0.998550i \(-0.482855\pi\)
0.0538365 + 0.998550i \(0.482855\pi\)
\(788\) −1.04684e6 −0.0600573
\(789\) 4.37477e7 2.50186
\(790\) 7.93554e6 0.452385
\(791\) 9.36145e6 0.531988
\(792\) 5.22564e7 2.96024
\(793\) 3.33861e6 0.188531
\(794\) 2.99365e7 1.68519
\(795\) 5.23266e6 0.293633
\(796\) 2.18999e6 0.122507
\(797\) 9.47450e6 0.528336 0.264168 0.964477i \(-0.414903\pi\)
0.264168 + 0.964477i \(0.414903\pi\)
\(798\) 1.03050e7 0.572848
\(799\) 4.59747e7 2.54772
\(800\) −540161. −0.0298400
\(801\) 2.25083e7 1.23954
\(802\) 2.08535e7 1.14483
\(803\) 2.89761e6 0.158581
\(804\) 806135. 0.0439812
\(805\) 2.13926e6 0.116352
\(806\) −2.53660e7 −1.37535
\(807\) −2.91081e7 −1.57337
\(808\) −9.81774e6 −0.529033
\(809\) −4.29215e6 −0.230570 −0.115285 0.993332i \(-0.536778\pi\)
−0.115285 + 0.993332i \(0.536778\pi\)
\(810\) 4.50716e6 0.241374
\(811\) 5.54068e6 0.295809 0.147904 0.989002i \(-0.452747\pi\)
0.147904 + 0.989002i \(0.452747\pi\)
\(812\) 32100.7 0.00170854
\(813\) 1.67705e6 0.0889858
\(814\) −3.08251e7 −1.63059
\(815\) 8.57511e6 0.452216
\(816\) −5.46530e7 −2.87335
\(817\) −1.09333e7 −0.573053
\(818\) 2.38240e7 1.24489
\(819\) −1.24614e7 −0.649167
\(820\) −46878.3 −0.00243465
\(821\) −2.40253e7 −1.24397 −0.621987 0.783028i \(-0.713674\pi\)
−0.621987 + 0.783028i \(0.713674\pi\)
\(822\) −5.55494e7 −2.86748
\(823\) 3.21565e7 1.65489 0.827446 0.561545i \(-0.189793\pi\)
0.827446 + 0.561545i \(0.189793\pi\)
\(824\) −1.94936e7 −1.00017
\(825\) −1.10896e7 −0.567261
\(826\) −3.10927e6 −0.158565
\(827\) 9.33348e6 0.474548 0.237274 0.971443i \(-0.423746\pi\)
0.237274 + 0.971443i \(0.423746\pi\)
\(828\) −1.85830e6 −0.0941974
\(829\) 2.08810e7 1.05527 0.527636 0.849470i \(-0.323078\pi\)
0.527636 + 0.849470i \(0.323078\pi\)
\(830\) −3.62803e6 −0.182800
\(831\) −2.70172e7 −1.35718
\(832\) 1.71312e7 0.857985
\(833\) 4.56999e6 0.228193
\(834\) −4.57866e7 −2.27941
\(835\) −1.47230e7 −0.730768
\(836\) 2.21281e6 0.109504
\(837\) −4.00527e7 −1.97614
\(838\) −2.93483e7 −1.44368
\(839\) 5.98049e6 0.293313 0.146657 0.989187i \(-0.453149\pi\)
0.146657 + 0.989187i \(0.453149\pi\)
\(840\) 5.57852e6 0.272785
\(841\) −2.04361e7 −0.996343
\(842\) 1.27846e7 0.621452
\(843\) −2.22769e7 −1.07966
\(844\) −1.67581e6 −0.0809782
\(845\) −1.11163e6 −0.0535572
\(846\) 6.30139e7 3.02699
\(847\) −1.45359e7 −0.696200
\(848\) −8.73737e6 −0.417245
\(849\) 3.56710e7 1.69842
\(850\) 6.97642e6 0.331196
\(851\) −1.35678e7 −0.642225
\(852\) −4.43365e6 −0.209249
\(853\) −3.33915e7 −1.57132 −0.785659 0.618660i \(-0.787676\pi\)
−0.785659 + 0.618660i \(0.787676\pi\)
\(854\) −1.67815e6 −0.0787385
\(855\) −1.52064e7 −0.711395
\(856\) 1.65811e7 0.773445
\(857\) 9.92905e6 0.461802 0.230901 0.972977i \(-0.425833\pi\)
0.230901 + 0.972977i \(0.425833\pi\)
\(858\) −5.94876e7 −2.75872
\(859\) −2.98210e7 −1.37892 −0.689461 0.724323i \(-0.742153\pi\)
−0.689461 + 0.724323i \(0.742153\pi\)
\(860\) 478181. 0.0220468
\(861\) 1.00739e6 0.0463115
\(862\) 1.11287e7 0.510124
\(863\) 1.31237e7 0.599830 0.299915 0.953966i \(-0.403042\pi\)
0.299915 + 0.953966i \(0.403042\pi\)
\(864\) −4.57522e6 −0.208510
\(865\) 5.90943e6 0.268538
\(866\) 1.49429e7 0.677080
\(867\) 5.77766e7 2.61038
\(868\) 886823. 0.0399519
\(869\) −3.66183e7 −1.64494
\(870\) −1.05307e6 −0.0471691
\(871\) 7.34588e6 0.328094
\(872\) 1.07361e7 0.478140
\(873\) −1.99309e7 −0.885096
\(874\) 1.40033e7 0.620087
\(875\) −765625. −0.0338062
\(876\) −268703. −0.0118307
\(877\) 2.20940e7 0.970008 0.485004 0.874512i \(-0.338818\pi\)
0.485004 + 0.874512i \(0.338818\pi\)
\(878\) −2.04725e7 −0.896262
\(879\) −2.82828e7 −1.23467
\(880\) 1.85172e7 0.806064
\(881\) 1.84644e6 0.0801483 0.0400742 0.999197i \(-0.487241\pi\)
0.0400742 + 0.999197i \(0.487241\pi\)
\(882\) 6.26372e6 0.271120
\(883\) 4.08005e7 1.76102 0.880509 0.474030i \(-0.157201\pi\)
0.880509 + 0.474030i \(0.157201\pi\)
\(884\) 2.60292e6 0.112029
\(885\) 7.09446e6 0.304482
\(886\) 4.36732e7 1.86909
\(887\) 2.73192e6 0.116589 0.0582946 0.998299i \(-0.481434\pi\)
0.0582946 + 0.998299i \(0.481434\pi\)
\(888\) −3.53808e7 −1.50569
\(889\) −5.98338e6 −0.253917
\(890\) 7.41823e6 0.313925
\(891\) −2.07982e7 −0.877670
\(892\) 1.84121e6 0.0774804
\(893\) −3.30272e7 −1.38594
\(894\) 1.43951e7 0.602381
\(895\) 7.90485e6 0.329865
\(896\) −9.96616e6 −0.414723
\(897\) −2.61838e7 −1.08655
\(898\) 3.83310e7 1.58620
\(899\) 2.07207e6 0.0855076
\(900\) 665072. 0.0273692
\(901\) 1.51901e7 0.623372
\(902\) 3.11011e6 0.127280
\(903\) −1.02758e7 −0.419370
\(904\) 3.31730e7 1.35009
\(905\) −1.35850e6 −0.0551363
\(906\) −1.47442e7 −0.596762
\(907\) −4.64835e7 −1.87621 −0.938104 0.346354i \(-0.887419\pi\)
−0.938104 + 0.346354i \(0.887419\pi\)
\(908\) −608600. −0.0244972
\(909\) 2.51527e7 1.00966
\(910\) −4.10700e6 −0.164407
\(911\) 2.51979e7 1.00593 0.502966 0.864306i \(-0.332242\pi\)
0.502966 + 0.864306i \(0.332242\pi\)
\(912\) 3.92614e7 1.56307
\(913\) 1.67414e7 0.664685
\(914\) −2.32968e7 −0.922426
\(915\) 3.82906e6 0.151196
\(916\) −938021. −0.0369381
\(917\) 1.88162e7 0.738941
\(918\) 5.90909e7 2.31427
\(919\) 1.83012e7 0.714810 0.357405 0.933949i \(-0.383662\pi\)
0.357405 + 0.933949i \(0.383662\pi\)
\(920\) 7.58060e6 0.295280
\(921\) 3.07363e7 1.19400
\(922\) −1.79764e7 −0.696426
\(923\) −4.04015e7 −1.56097
\(924\) 2.07975e6 0.0801367
\(925\) 4.85584e6 0.186599
\(926\) −3.59411e7 −1.37741
\(927\) 4.99419e7 1.90882
\(928\) 236692. 0.00902223
\(929\) −1.99283e7 −0.757583 −0.378791 0.925482i \(-0.623660\pi\)
−0.378791 + 0.925482i \(0.623660\pi\)
\(930\) −2.90923e7 −1.10299
\(931\) −3.28298e6 −0.124135
\(932\) −3.63640e6 −0.137130
\(933\) −2.09343e7 −0.787326
\(934\) 1.95245e7 0.732341
\(935\) −3.21925e7 −1.20427
\(936\) −4.41578e7 −1.64747
\(937\) −3.42218e7 −1.27337 −0.636684 0.771125i \(-0.719694\pi\)
−0.636684 + 0.771125i \(0.719694\pi\)
\(938\) −3.69241e6 −0.137026
\(939\) −4.24368e6 −0.157065
\(940\) 1.44449e6 0.0533205
\(941\) −1.20137e7 −0.442286 −0.221143 0.975241i \(-0.570979\pi\)
−0.221143 + 0.975241i \(0.570979\pi\)
\(942\) 3.57471e7 1.31254
\(943\) 1.36893e6 0.0501305
\(944\) −1.18462e7 −0.432661
\(945\) −6.48492e6 −0.236225
\(946\) −3.17245e7 −1.15257
\(947\) 8.21067e6 0.297511 0.148756 0.988874i \(-0.452473\pi\)
0.148756 + 0.988874i \(0.452473\pi\)
\(948\) 3.39571e6 0.122718
\(949\) −2.44855e6 −0.0882557
\(950\) −5.01170e6 −0.180167
\(951\) 6.84583e7 2.45457
\(952\) 1.61941e7 0.579114
\(953\) 5.17724e6 0.184657 0.0923285 0.995729i \(-0.470569\pi\)
0.0923285 + 0.995729i \(0.470569\pi\)
\(954\) 2.08198e7 0.740637
\(955\) 2.21106e7 0.784497
\(956\) −1.12960e6 −0.0399742
\(957\) 4.85935e6 0.171513
\(958\) 9.76754e6 0.343852
\(959\) 1.76970e7 0.621375
\(960\) 1.96478e7 0.688076
\(961\) 2.86144e7 0.999486
\(962\) 2.60479e7 0.907477
\(963\) −4.24803e7 −1.47612
\(964\) −854550. −0.0296173
\(965\) −3.09606e6 −0.107026
\(966\) 1.31613e7 0.453790
\(967\) 2.72831e6 0.0938270 0.0469135 0.998899i \(-0.485061\pi\)
0.0469135 + 0.998899i \(0.485061\pi\)
\(968\) −5.15090e7 −1.76683
\(969\) −6.82566e7 −2.33526
\(970\) −6.56877e6 −0.224158
\(971\) 4.81341e7 1.63834 0.819171 0.573549i \(-0.194434\pi\)
0.819171 + 0.573549i \(0.194434\pi\)
\(972\) −1.14851e6 −0.0389914
\(973\) 1.45868e7 0.493943
\(974\) 3.56076e7 1.20267
\(975\) 9.37099e6 0.315700
\(976\) −6.39369e6 −0.214846
\(977\) −1.54803e7 −0.518851 −0.259425 0.965763i \(-0.583533\pi\)
−0.259425 + 0.965763i \(0.583533\pi\)
\(978\) 5.27564e7 1.76371
\(979\) −3.42312e7 −1.14147
\(980\) 143585. 0.00477578
\(981\) −2.75055e7 −0.912531
\(982\) 1.86380e7 0.616766
\(983\) 562513. 0.0185673 0.00928364 0.999957i \(-0.497045\pi\)
0.00928364 + 0.999957i \(0.497045\pi\)
\(984\) 3.56975e6 0.117530
\(985\) −1.09407e7 −0.359297
\(986\) −3.05698e6 −0.100138
\(987\) −3.10412e7 −1.01425
\(988\) −1.86987e6 −0.0609425
\(989\) −1.39637e7 −0.453952
\(990\) −4.41237e7 −1.43082
\(991\) −2.10005e7 −0.679274 −0.339637 0.940557i \(-0.610304\pi\)
−0.339637 + 0.940557i \(0.610304\pi\)
\(992\) 6.53893e6 0.210973
\(993\) −4.79780e6 −0.154408
\(994\) 2.03078e7 0.651925
\(995\) 2.28879e7 0.732905
\(996\) −1.55247e6 −0.0495880
\(997\) −5.49674e6 −0.175133 −0.0875664 0.996159i \(-0.527909\pi\)
−0.0875664 + 0.996159i \(0.527909\pi\)
\(998\) 3.72122e7 1.18266
\(999\) 4.11294e7 1.30388
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.6.a.d.1.3 4
3.2 odd 2 315.6.a.l.1.2 4
4.3 odd 2 560.6.a.v.1.1 4
5.2 odd 4 175.6.b.f.99.6 8
5.3 odd 4 175.6.b.f.99.3 8
5.4 even 2 175.6.a.f.1.2 4
7.6 odd 2 245.6.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.d.1.3 4 1.1 even 1 trivial
175.6.a.f.1.2 4 5.4 even 2
175.6.b.f.99.3 8 5.3 odd 4
175.6.b.f.99.6 8 5.2 odd 4
245.6.a.e.1.3 4 7.6 odd 2
315.6.a.l.1.2 4 3.2 odd 2
560.6.a.v.1.1 4 4.3 odd 2